Displaying publications 1 - 20 of 247 in total

Abstract:
Sort:
  1. Zaharan NL, Muhamad NH, Jalaludin MY, Su TT, Mohamed Z, Mohamed MNA, et al.
    PMID: 29755414 DOI: 10.3389/fendo.2018.00209
    Background: Several non-synonymous single-nucleotide polymorphisms (nsSNPs) have been shown to be associated with obesity. Little is known about their associations and interactions with physical activity (PA) in relation to adiposity parameters among adolescents in Malaysia.

    Methods: We examined whether (a) PA and (b) selected nsSNPs are associated with adiposity parameters and whether PA interacts with these nsSNPs on these outcomes in adolescents from the Malaysian Health and Adolescents Longitudinal Research Team study (n = 1,151). Body mass indices, waist-hip ratio, and percentage body fat (% BF) were obtained. PA was assessed using Physical Activity Questionnaire for Older Children (PAQ-C). Five nsSNPs were included: beta-3 adrenergic receptor (ADRB3) rs4994, FABP2 rs1799883, GHRL rs696217, MC3R rs3827103, and vitamin D receptor rs2228570, individually and as combined genetic risk score (GRS). Associations and interactions between nsSNPs and PAQ-C scores were examined using generalized linear model.

    Results: PAQ-C scores were associated with % BF (β = -0.44 [95% confidence interval -0.72, -0.16], p = 0.002). The CC genotype of ADRB3 rs4994 (β = -0.16 [-0.28, -0.05], corrected p = 0.01) and AA genotype of MC3R rs3827103 (β = -0.06 [-0.12, -0.00], p = 0.02) were significantly associated with % BF compared to TT and GG genotypes, respectively. Significant interactions with PA were found between ADRB3 rs4994 (β = -0.05 [-0.10, -0.01], p = 0.02) and combined GRS (β = -0.03 [-0.04, -0.01], p = 0.01) for % BF.

    Conclusion: Higher PA score was associated with reduced % BF in Malaysian adolescents. Of the nsSNPs, ADRB3 rs4994 and MC3R rs3827103 were associated with % BF. Significant interactions with PA were found for ADRB3 rs4994 and combined GRS on % BF but not on measurements of weight or circumferences. Targeting body fat represent prospects for molecular studies and lifestyle intervention in this population.

  2. Harith AA, Mohamed Z, Mohammad A, Lim KK, Reffin N, Mohd Fadzil M, et al.
    Med J Malaysia, 2023 Sep;78(5):653-660.
    PMID: 37775494
    INTRODUCTION: Healthcare drivers, including ambulance drivers, were less concerned about health and safety during the COVID-19 pandemic, with not only the risk of COVID-19 infection but also a higher risk of prolonged states of alertness, stress, burnout, fatigue and road traffic accident. This study aimed to determine the prevalence of stress and its associated factors among healthcare drivers, especially during the COVID-19 pandemic.

    MATERIALS AND METHODS: This study employs a crosssectional study design and utilises self-reported data obtained from locally validated personal stress inventory questionnaires. The data collection period spanned from August 1 to 31, 2020. The study sample consisted of 163 healthcare drivers affiliated with the Negeri Sembilan State Health Department. The Chi-square test and Fisher's exact test were the first used to determine the association between variables prior to conducting multiple logistic regression to predict the relationship between dependent and independent variables.

    RESULTS: In COVID-19's first year, 7.4% (n = 12) of healthcare drivers reported perceived stress with ambulance drivers reporting more stress (10.6%; n = 5) than non-ambulance drivers (6.0%; n = 7). Simple statistical analysis identified perceived stress significantly associated with household income, smoking status and performing on-call. Further analysis by multiple logistic regression found that perceived stress was significantly related to smoking (aOR 19.9, 95% CI: 1.86-213.90), and performing on-call (aOR 8.69, 95% CI 1.21-62.28). Nevertheless, no association was found between perceived stress and age, ethnicity, marital status, education, household income, co-morbidities, driving assignment, employment duration, needing a part-time job or motor vehicle accident history.

    CONCLUSION: The study found that the perceived stress amongst Malaysian healthcare drivers during the COVID-19 pandemic was relatively low. This could be due to fewer lifethreatening tasks, emergencies, assigned tasks and increase income due to overtime during the COVD-19 pandemic. The OSH team's efforts to provide consistent safety and health training, including stress management, may have contributed to the healthcare driver's ability to effectively manage the stressful circumstances encountered during the pandemic. In order to enhance salary competitiveness, employers should provide financial management education alongside subsidised housing and childcare provisions. Healthcare drivers who smoke should be taught different stress reduction techniques so that they can handle their stress in a healthy way.

  3. Hamidah NH, Azma RZ, Ezalia E, Das S, Umar NA, Swaminathan M, et al.
    Clin Ter, 2010;161(5):445-8.
    PMID: 20949241
    Non-secretory multiple myeloma (NSMM) is a rare variant of the classic form of multiple myeloma (MM). In NSMM, no monoclonal gammopathy can be detected in serum or urine by conventional techniques, making the diagnosis more difficult. We describe a 71-year-old man who had been diagnosed and treated for granulocytic sarcoma one year prior to his recent problems of progressive low-back pain of two months duration. Skeletal X-rays showed diffuse osteolytic lesions with multiple pathological fractures but there was no monoclonal gammopathy in the serum or urine. The biopsy of the lytic lesion on the upper part of the femur showed infiltration by abnormal plasma cells. A diagnosis of NSMM was made and he was treated with chemotherapy. The early diagnostic difficulty and the challenges faced regarding the case are discussed.
  4. Abdulwanis Mohamed Z, Mohamed Eliaser E, Mazzon E, Rollin P, Cheng Lian Ee G, Abdull Razis AF
    Molecules, 2019 Aug 27;24(17).
    PMID: 31461914 DOI: 10.3390/molecules24173109
    Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases.
  5. Abdulwanis Mohamed Z, Mohamed Eliaser E, Jaafaru MS, Nordin N, Ioannides C, Abdull Razis AF
    Molecules, 2020 Aug 15;25(16).
    PMID: 32824120 DOI: 10.3390/molecules25163724
    Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders.
  6. Haruna A, Mohamed Z, Efe MÖ, Abdullahi AM
    ISA Trans, 2023 Oct;141:470-481.
    PMID: 37507325 DOI: 10.1016/j.isatra.2023.07.002
    In this paper, the energy efficiency of the widespread application of backstepping control to a class of nonlinear motion systems is investigated. A Switched Step Integral Backstepping Control (SSIBC) scheme is introduced to improve immunity to measurement noise and to increase the energy efficiency of conventional backstepping in practice. The SSIBC is realized by switching between two candidate controllers obtained at different steps of the iterative backstepping design process. A bi-state dependent hysteresis rule is developed to supervise stable switching between the different regimes in the presence of noise. The proposed method is experimentally verified on a MIMO twin rotor laboratory helicopter involving coupled nonlinear dynamics, inaccessible states and uncertainties. Experimental results show that in addition to a reduction in power consumption, the SSIBC reduces saturation of the control signal and visible motor jerking in contrast with conventional backstepping. Additional comparisons with a previously proposed optimized decoupling PID controller also show significant improvement in precision achieved with higher energy efficiency. Experimental results obtained with the introduction of an external disturbance into the system also show the robustness of the proposed SSIBC.
  7. Mac Guad R, Zaharan NL, Chik Z, Mohamed Z, Peng NK, Adnan WA
    Transplant Proc, 2016 Jan-Feb;48(1):81-7.
    PMID: 26915847 DOI: 10.1016/j.transproceed.2016.01.001
    BACKGROUND: The aim of this study was to compare the within-patient variability trough levels (Co), dose-adjusted Co, and dose requirements of Prograf and Advograf with CYP3A5 polymorphisms in Malaysia renal transplant recipients.
    METHODS: Stable post-renal transplantation patients switched from Prograf to Advograf were retrospectively identified from University Malaya Medical Centre (n = 28). Co and concomitant tacrolimus dose 6 months preconversion and postconversion were examined. CYP3A5 was genotyped using reverse transcriptase polymerase chain reaction. Wilcoxon signed rank test and Mann-Whitney U test were used to compare Co and dose between formulations and according to genotypes.
    RESULTS: There was a significant difference in the whole-blood tacrolimus Co between the 2 groups (6.16 ± 1.74 ng/mL vs 4.90 ± 1.06 ng/mL; P = .0001). The mean daily maintenance dose of Prograf was 3.9 ± 2.0 mg/kg (0.06 mg/kg/d), which was reduced to 3.3 ± 1.7 mg/d (0.04 mg/kg/d) with Advograf (P = .01). The mean maintenance dose of tacrolimus required for those with CYP3A5*1/*1 (high-expressive) was significantly higher than those with CYP3A5*1/*3 (intermediate-expressive) and CYP3A5*3/*3 (low-expressive) (P < .01) for both formulations. Comparing those with CYP3A5*1/*1, the average dose-adjusted Co was significantly higher in patients with CYP3A5*3/*3 with Advograf (P < .05).
    CONCLUSIONS: The requirement for daily maintenance dose was higher in those with CYP3A5*1/*1 variants in both tacrolimus formulations in the Malaysian patients. Furthermore, those with CYP3A5*3/*3 demonstrated significantly higher dose-adjusted Co with Advograf.
  8. Basri R, Zueter AR, Mohamed Z, Alam MK, Norsa'adah B, Hasan SA, et al.
    Nagoya J Med Sci, 2015 Feb;77(1-2):59-68.
    PMID: 25797971
    To describe the clinical characteristics and the risk factors associated with mortality in patients with meningitis. This is a retrospective review of patients diagnosed to have meningitis with positive culture of the cerebrospinal fluid (CSF) specimen. All cases aged 19 > years who were admitted to Hospital USM between January 2004 and December 2011 were included in the study. The CSF results database were obtained from the Department of Medical Microbiology and Parasitology, Hospital USM, Kelantan. A checklist was used to record the clinical characteristics. A total of 125 cases met the inclusion criteria. The age of patients ranged between newborn and 19 years old (Mean±SD, 74.5±80.6 months). The majority of them were males (65.6%). Fever was the most common presentation (73.6%) followed by poor oral intake (48.0%), seizure (36.0%) and headache (24.8%). The mortality rate was 31.2%. Coagulase negative staphylococcus was the most frequent pathogens isolated (21.6%), followed by Acinetobacter spp. (17.6%), Staphylococcus aureus (13.6%), Streptococcus spp. (11.2%) and Klebsiella pneumoniae (6.4%). There were significant association of in-hospital death with age (p=0.020) and conscious level (p=0.001). Infectious meningitis is a big health concern, especially among children. We found that coagulase negative staphylococcus, Acinetobacter species, S. aureus, Streptococcus spp and K. pneumoniae were prevalent in our hospital. These microorganisms were hospital associated pathogens. The 31% mortality linked to hospital acquired meningitis specifies the need for focused physician attention especially among younger aged patients.
  9. Amini E, Rezaei M, Mohamed Ibrahim N, Golpich M, Ghasemi R, Mohamed Z, et al.
    Mol Neurobiol, 2015 Aug;52(1):492-513.
    PMID: 25195699 DOI: 10.1007/s12035-014-8876-5
    Epilepsy is the most common and chronic neurological disorder characterized by recurrent unprovoked seizures. The key aim in treating patients with epilepsy is the suppression of seizures. An understanding of focal changes that are involved in epileptogenesis may therefore provide novel approaches for optimal treatment of the seizure. Although the actual pathogenesis of epilepsy is still uncertain, recently growing lines of evidence declare that microglia and astrocyte activation, oxidative stress and reactive oxygen species (ROS) production, mitochondria dysfunction, and damage of blood-brain barrier (BBB) are involved in its pathogenesis. Impaired GABAergic function in the brain is probably the most accepted hypothesis regarding the pathogenesis of epilepsy. Clinical neuroimaging of patients and experimental modeling have demonstrated that seizures may induce neuronal apoptosis. Apoptosis signaling pathways are involved in the pathogenesis of several types of epilepsy such as temporal lobe epilepsy (TLE). The quality of life of patients is seriously affected by treatment-related problems and also by unpredictability of epileptic seizures. Moreover, the available antiepileptic drugs (AED) are not significantly effective to prevent epileptogenesis. Thus, novel therapies that are proficient to control seizure in people who are suffering from epilepsy are needed. The preconditioning method promises to serve as an alternative therapeutic approach because this strategy has demonstrated the capability to curtail epileptogenesis. For this reason, understanding of molecular mechanisms underlying brain tolerance induced by preconditioning is crucial to delineate new neuroprotective ways against seizure damage and epileptogenesis. In this review, we summarize the work to date on the pathogenesis of epilepsy and discuss recent therapeutic strategies in the treatment of epilepsy. We will highlight that novel therapy targeting such as preconditioning process holds great promise. In addition, we will also highlight the role of gene reprogramming and mitochondrial biogenesis in the preconditioning-mediated neuroprotective events.
  10. Golpich M, Rahmani B, Mohamed Ibrahim N, Dargahi L, Mohamed Z, Raymond AA, et al.
    Mol Neurobiol, 2015 Feb;51(1):313-30.
    PMID: 24696268 DOI: 10.1007/s12035-014-8689-6
    Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. A numerous of cellular processes including oxidative stress, mitochondrial dysfunction, and accumulation of α-synuclein aggregates are considered to contribute to the pathogenesis of Parkinson's disease. A further understanding of the cellular and molecular mechanisms involved in the pathophysiology of PD is crucial for developing effective diagnostic, preventative, and therapeutic strategies to cure this devastating disorder. Preconditioning (PC) is assumed as a natural adaptive process whereby a subthreshold stimulus can promote protection against a subsequent lethal stimulus in the brain as well as in other tissues that affords robust brain tolerance facing neurodegenerative insults. Multiple lines of evidence have demonstrated that preconditioning as a possible neuroprotective technique may reduce the neural deficits associated with neurodegenerative diseases such as PD. Throughout the last few decades, a lot of efforts have been made to discover the molecular determinants involved in preconditioning-induced protective responses; although, the accurate mechanisms underlying this "tolerance" phenomenon are not fully understood in PD. In this review, we will summarize pathophysiology and current therapeutic approaches in PD and discuss about preconditioning in PD as a potential neuroprotective strategy. Also the role of gene reprogramming and mitochondrial biogenesis involved in the preconditioning-mediated neuroprotective events will be highlighted. Preconditioning may represent a promising therapeutic weapon to combat neurodegeneration.
  11. Hemmati F, Ghasemi R, Mohamed Ibrahim N, Dargahi L, Mohamed Z, Raymond AA, et al.
    Mol Neurobiol, 2014 Dec;50(3):797-810.
    PMID: 24464263 DOI: 10.1007/s12035-013-8631-3
    Neuroinflammation is known as a key player in a variety of neurodegenerative and/or neurological diseases. Brain Toll-like receptors (TLRs) are leading elements in the initiation and progression of neuroinflammation and the development of different neuronal diseases. Furthermore, TLR activation is one of the most important elements in the induction of insulin resistance in different organs such as the central nervous system. Involvement of insulin signaling dysregulation and insulin resistance are also shown to contribute to the pathology of neurological diseases. Considering the important roles of TLRs in neuroinflammation and central insulin resistance and the effects of these processes in the initiation and progression of neurodegenerative and neurological diseases, here we are going to review current knowledge about the potential crosstalk between TLRs and insulin signaling pathways in neuroinflammatory disorders of the central nervous system.
  12. Hemmati F, Dargahi L, Nasoohi S, Omidbakhsh R, Mohamed Z, Chik Z, et al.
    Behav Brain Res, 2013 Sep 1;252:415-21.
    PMID: 23777795 DOI: 10.1016/j.bbr.2013.06.016
    Alzheimer's disease (AD) as a neurodegenerative brain disorder is the most common cause of dementia. To date, there is no causative treatment for AD and there are few preventive treatments either. The sphingosine-1-phosphate receptor modulator FTY720 (fingolimod) prevents lymphocytes from contributing to an autoimmune reaction and has been approved for multiple sclerosis treatment. In concert with other studies showing the anti-inflammatory and protective effect of FTY720 in some neurodegenerative disorders like ischemia, we have recently shown that FTY720 chronic administration prevents from impairment of spatial learning and memory in AD rats. Here FTY720 was examined on AD rats in comparison to the only clinically approved NMDA receptor antagonist, Memantine. Passive avoidance task showed significant memory restoration in AD animals received FTY720 comparable to Memantine. Upon gene profiling by QuantiGene Plex, this behavioral outcomes was concurrent with considerable alterations in some genes transcripts like that of mitogen activated protein kinases (MAPKs) and some inflammatory markers that may particularly account for the detected decline in hippocampal neural damage or memory impairment associated with AD. From a therapeutic standpoint, our findings conclude that FTY720 may suggest new opportunities for AD management probably based on several modulatory effects on genes involved in cell death or survival.
  13. Tamijani SM, Karimi B, Amini E, Golpich M, Dargahi L, Ali RA, et al.
    Seizure, 2015 Sep;31:155-64.
    PMID: 26362394 DOI: 10.1016/j.seizure.2015.07.021
    Thyroid hormones (THs) L-thyroxine and L-triiodothyronine, primarily known as metabolism regulators, are tyrosine-derived hormones produced by the thyroid gland. They play an essential role in normal central nervous system development and physiological function. By binding to nuclear receptors and modulating gene expression, THs influence neuronal migration, differentiation, myelination, synaptogenesis and neurogenesis in developing and adult brains. Any uncorrected THs supply deficiency in early life may result in irreversible neurological and motor deficits. The development and function of GABAergic neurons as well as glutamatergic transmission are also affected by THs. Though the underlying molecular mechanisms still remain unknown, the effects of THs on inhibitory and excitatory neurons may affect brain seizure activity. The enduring predisposition of the brain to generate epileptic seizures leads to a complex chronic brain disorder known as epilepsy. Pathologically, epilepsy may be accompanied by mitochondrial dysfunction, oxidative stress and eventually dysregulation of excitatory glutamatergic and inhibitory GABAergic neurotransmission. Based on the latest evidence on the association between THs and epilepsy, we hypothesize that THs abnormalities may contribute to the pathogenesis of epilepsy. We also review gender differences and the presumed underlying mechanisms through which TH abnormalities may affect epilepsy here.
  14. Bakhtiyari E, Ahmadian-Attari MM, Salehi P, Khallaghi B, Dargahi L, Mohamed Z, et al.
    Nutr Neurosci, 2017 Oct;20(8):469-477.
    PMID: 27219682 DOI: 10.1080/1028415X.2016.1183986
    OBJECTIVES: Although grape has been recently the topic of many investigations, Maviz (a kind of dried one) has remained neglected. The aim of this study was to assess anti-Alzheimer activity of Maviz.

    METHODS: To reach this goal, total phenolic content (TPC) of ethanolic (Eth) and aqueous (Aq) extracts were determined and radical scavenging activity was assayed by 2,2-diphenyl-1-picrylhydrazyl. Chemical compositions of each extract were also determined via GC-Mass. Behavioral changes were studied via passive avoidance and Morris water maze in Aβ-induced model of Alzheimer's disease. Catalase (CAT) and superoxide dismutase (SOD) determination were also done on rats' hippocampus.

    RESULTS: The results showed that seed Eth extract has a high level of TPC and radical scavenging activity. However, this extract had surprisingly no effect on memory and CAT and SOD activities. In contrast, fruit Aq and Eth extracts (containing furfurals as major compounds) inhibited memory impairment (P 

  15. Golpich M, Amini E, Hemmati F, Ibrahim NM, Rahmani B, Mohamed Z, et al.
    Pharmacol Res, 2015 Jul;97:16-26.
    PMID: 25829335 DOI: 10.1016/j.phrs.2015.03.010
    Glycogen synthase kinase 3 (GSK-3) dysregulation plays an important role in the pathogenesis of numerous disorders, affecting the central nervous system (CNS) encompassing both neuroinflammation and neurodegenerative diseases. Several lines of evidence have illustrated a key role of the GSK-3 and its cellular and molecular signaling cascades in the control of neuroinflammation. Glycogen synthase kinase 3 beta (GSK-3β), one of the GSK-3 isomers, plays a major role in neuronal apoptosis and its inhibition decreases expression of alpha-Synuclein (α-Synuclein), which make this kinase an attractive therapeutic target for neurodegenerative disorders. Parkinson's disease (PD) is a chronic neurodegenerative movement disorder characterized by the progressive and massive loss of dopaminergic neurons by neuronal apoptosis in the substantia nigra pars compacta and depletion of dopamine in the striatum, which lead to pathological and clinical abnormalities. Thus, understanding the role of GSK-3β in PD will enhance our knowledge of the basic mechanisms underlying the pathogenesis of this disorder and facilitate the identification of new therapeutic avenues. In recent years, GSK-3β has been shown to play essential roles in modulating a variety of cellular functions, which have prompted efforts to develop GSK-3β inhibitors as therapeutics. In this review, we summarize GSK-3 signaling pathways and its association with neuroinflammation. Moreover, we highlight the interaction between GSK-3β and several cellular processes involved in the pathogenesis of PD, including the accumulation of α-Synuclein aggregates, oxidative stress and mitochondrial dysfunction. Finally, we discuss about GSK-3β inhibitors as a potential therapeutic strategy in PD.
  16. Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A
    Front Cell Neurosci, 2020;14:598453.
    PMID: 33551748 DOI: 10.3389/fncel.2020.598453
    Lipopolysacharide (LPS) pre-conditioning (PC), has been shown to exert protective effects against cytotoxic effects. Therefore, we hypothesized, the tolerance produced by LPS PC will be resulted by the alterations and modifications in gene and protein expression. With reference to the results of MTT assays, AO/PI staining, and Annexin V-FITC analyses of LPS concentration (0.7815-50 μg/mL) and time-dependent (12-72 h) experiments, the pre-exposure to 3 μg/mL LPS for 12 h protected the differentiated PC12 cells against 0.75 mg/mL LPS apoptotic concentration. LPS-treated cells secreted more inflammatory cytokines like IL-1α, IL-1β, IL-2, IL-3, IL-4, IL-6, IL-17, IFN-γ, and TNF-α than LPS-PC cells. The production of inflammatory mediators ROS and NO was also higher in the LPS-induced cells compared to LPS-PC cells. Conversely, anti-inflammatory cytokines (like IL-10, IL-13, CNTF, and IL-1Ra) were upregulated in the LPS-PC cells but not in the LPS-induced cells. Meanwhile, the LPS initiated caspase-8 which in turn activates effector caspase 3/7. When the activities of caspases in the LPS-induced cells were inhibited using z-VADfmk and z-DEVDfmk, the expressions of c-MYC and Hsp70 were increased, but p53 was reduced. The potential molecules associated with protective and destructive effect was measured by RT2 Profiler PCR array to elucidate the signaling pathways and suggested inhibition NF-κB/caspase-3 signaling pathway regulates the cytoprotective genes and proto-oncogenes. In conclusion, this study provides a basis for future research to better understand the molecular mechanism underlying LPS pre-conditioning /TLR4 pre-activation and its functional role in offering cytoprotective response in neuronal environment.
  17. Sangaran PG, Ibrahim ZA, Chik Z, Mohamed Z, Ahmadiani A
    Mol Neurobiol, 2021 May;58(5):2407-2422.
    PMID: 33421016 DOI: 10.1007/s12035-020-02227-3
    Neuroinflammation, an inflammatory response within the nervous system, has been shown to be implicated in the progression of various neurodegenerative diseases. Recent in vivo studies showed that lipopolysaccharide (LPS) preconditioning provides neuroprotection by activating Toll-like receptor 4 (TLR4), one of the members for pattern recognition receptor (PRR) family that play critical role in host response to tissue injury, infection, and inflammation. Pre-exposure to low dose of LPS could confer a protective state against cellular apoptosis following subsequent stimulation with LPS at higher concentration, suggesting a role for TLR4 pre-activation in the signaling pathway of LPS-induced neuroprotection. However, the precise molecular mechanism associated with this protective effect is not well understood. In this article, we provide an overall review of the current state of our knowledge about LPS preconditioning in attenuating apoptosis mechanism and conferring neuroprotection via TLR4 signaling pathway.
  18. Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A
    CNS Neurosci Ther, 2017 Jan;23(1):5-22.
    PMID: 27873462 DOI: 10.1111/cns.12655
    Neurodegenerative diseases are a heterogeneous group of disorders that are incurable and characterized by the progressive degeneration of the function and structure of the central nervous system (CNS) for reasons that are not yet understood. Neurodegeneration is the umbrella term for the progressive death of nerve cells and loss of brain tissue. Because of their high energy requirements, neurons are especially vulnerable to injury and death from dysfunctional mitochondria. Widespread damage to mitochondria causes cells to die because they can no longer produce enough energy. Several lines of pathological and physiological evidence reveal that impaired mitochondrial function and dynamics play crucial roles in aging and pathogenesis of neurodegenerative diseases. As mitochondria are the major intracellular organelles that regulate both cell survival and death, they are highly considered as a potential target for pharmacological-based therapies. The purpose of this review was to present the current status of our knowledge and understanding of the involvement of mitochondrial dysfunction in pathogenesis of neurodegenerative diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) and the importance of mitochondrial biogenesis as a potential novel therapeutic target for their treatment. Likewise, we highlight a concise overview of the key roles of mitochondrial electron transport chain (ETC.) complexes as well as mitochondrial biogenesis regulators regarding those diseases.
  19. Rahman FA, Naidu J, Ngiu CS, Yaakob Y, Mohamed Z, Othman H, et al.
    Asian Pac J Cancer Prev, 2016;17(8):4037-41.
    PMID: 27644658
    BACKGROUND: Hepatocellular carcinoma (HCC) is a common cancer that is frequently diagnosed at an advanced stage. Transarterial chemoembolisation (TACE) is an effective palliative treatment for patients who are not eligible for curative treatment. The two main methods for performing TACE are conventional (c-TACE) or with drug eluting beads (DEB-TACE). We sought to compare survival rates and tumour response between patients undergoing c-TACE and DEB-TACE at our centre.

    MATERIALS AND METHODS: A retrospective cohort study of patients undergoing either treatment was carried out from January 2009 to December 2014. Tumour response to the procedures was evaluated according to the modified Response Evaluation Criteria in Solid Tumors (mRECIST). Kaplan-Meier analysis was used to assess and compare the overall survival in the two groups.

    RESULTS: A total of 79 patients were analysed (34 had c-TACE, 45 had DEB-TACE) with a median follow-up of 11.8 months. A total of 20 patients in the c-TACE group (80%) and 12 patients in the DEB-TACE group (44%) died during the follow up period. The median survival durations in the c-TACE and DEB-TACE groups were 4.9 ± 3.2 months and 8.3 ± 2.0 months respectively (p=0.008). There was no statistically significant difference noted among the two groups with respect to mRECIST criteria.

    CONCLUSIONS: DEB-TACE demonstrated a significant improvement in overall survival rates for patients with unresectable HCC when compared to c-TACE. It is a safe and promising approach and should potentially be considered as a standard of care in the management of unresectable HCC.

  20. Md Zin SR, Kassim NM, Mohamed Z, Fateh AH, Alshawsh MA
    J Ethnopharmacol, 2019 Dec 05;245:112180.
    PMID: 31445135 DOI: 10.1016/j.jep.2019.112180
    ETHNOPHARMACOLOGICAL RELEVANCE: Anastatica hierochuntica (A. hierochuntica) is a plant consumed in folk medicine for the treatment of reproductive system related problems and metabolic disorders. It is of concern that the herb is commonly consumed by pregnant women towards the end of pregnancy to ease the process of labour, despite the lack of studies evaluating its safety.

    AIM OF THIS STUDY: This study aimed to investigate the potential toxicity effects of A. hierochuntica in pregnant Sprague-Dawley rats and their developing foetuses.

    MATERIALS AND METHODS: Experiments were conducted in accordance to the Organisation for Economic Co-operation and Development guideline 414. Animals were randomly divided into four groups (n = 10 females per group): negative control (received the vehicle only), experimental animals received 250, 500, and 1000 mg/kg A. hierochuntica aqueous extracts (AHAE), respectively. Treatment was administered daily by oral gavage from gestational day (GD) 6-20, and caesarian section performed on GD21.

    RESULTS: There were significant reduction in the corrected maternal weight gain of dams and body weight of foetuses in the lowest and highest dose of AHAE-treated animals compared to the control. These findings were associated with the increase in anogenital distance index and multiple congenital anomalies observed in some of the offspring. On the other hand, rats treated with 500 mg/kg showed higher embryonic survival rate with absence of significant treatment-related effect.

    CONCLUSION: Findings showed that highest and lowest doses of AHAE have prenatal toxicity effects in SD rats. Therefore, AHAE is potentially harmful to the developing foetuses especially when consumed during the period of implantation and organogenesis. As for the rats treated with 500 mg/kg AHAE, there was no significant treatment-related effect. Hence, we postulate that this finding suggests that the disruption on the hormonal regulation could have been compensated by negative feedback response. The compensated effects of AHAE at 500 mg/kg and the presence of lowest observed adverse effect level (LOAEL) at 250 mg/kg has resulted in a non-monotonous dose response curve (NMDRC), which complicates the determination of the value of no-observed-adverse effect level (NOAEL).

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links