Displaying publications 1 - 20 of 40 in total

Abstract:
Sort:
  1. Harun S, Abdullah-Zawawi MR, Goh HH, Mohamed-Hussein ZA
    J Agric Food Chem, 2020 Jul 15;68(28):7281-7297.
    PMID: 32551569 DOI: 10.1021/acs.jafc.0c01916
    Glucosinolates (GSLs) are plant secondary metabolites comprising sulfur and nitrogen mainly found in plants from the order of Brassicales, such as broccoli, cabbage, and Arabidopsis thaliana. The activated forms of GSL play important roles in fighting against pathogens and have health benefits to humans. The increasing amount of data on A. thaliana generated from various omics technologies can be investigated more deeply in search of new genes or compounds involved in GSL biosynthesis and metabolism. This review describes a comprehensive inventory of A. thaliana GSLs identified from published literature and databases such as KNApSAcK, KEGG, and AraCyc. A total of 113 GSL genes encoding for 23 transcription components, 85 enzymes, and five protein transporters were experimentally characterized in the past two decades. Continuous efforts are still on going to identify all molecules related to the production of GSLs. A manually curated database known as SuCCombase (http://plant-scc.org) was developed to serve as a comprehensive GSL inventory. Realizing lack of information on the regulation of GSL biosynthesis and degradation mechanisms, this review also includes relevant information and their connections with crosstalk among various factors, such as light, sulfur metabolism, and nitrogen metabolism, not only in A. thaliana but also in other crucifers.
  2. Tieng FYF, Abdullah-Zawawi MR, Md Shahri NAA, Mohamed-Hussein ZA, Lee LH, Mutalib NA
    Brief Bioinform, 2023 Nov 22;25(1).
    PMID: 38040490 DOI: 10.1093/bib/bbad421
    RNA biology has risen to prominence after a remarkable discovery of diverse functions of noncoding RNA (ncRNA). Most untranslated transcripts often exert their regulatory functions into RNA-RNA complexes via base pairing with complementary sequences in other RNAs. An interplay between RNAs is essential, as it possesses various functional roles in human cells, including genetic translation, RNA splicing, editing, ribosomal RNA maturation, RNA degradation and the regulation of metabolic pathways/riboswitches. Moreover, the pervasive transcription of the human genome allows for the discovery of novel genomic functions via RNA interactome investigation. The advancement of experimental procedures has resulted in an explosion of documented data, necessitating the development of efficient and precise computational tools and algorithms. This review provides an extensive update on RNA-RNA interaction (RRI) analysis via thermodynamic- and comparative-based RNA secondary structure prediction (RSP) and RNA-RNA interaction prediction (RIP) tools and their general functions. We also highlighted the current knowledge of RRIs and the limitations of RNA interactome mapping via experimental data. Then, the gap between RSP and RIP, the importance of RNA homologues, the relationship between pseudoknots, and RNA folding thermodynamics are discussed. It is hoped that these emerging prediction tools will deepen the understanding of RNA-associated interactions in human diseases and hasten treatment processes.
  3. Govender N, Senan S, Mohamed-Hussein ZA, Wickneswari R
    Sci Rep, 2018 Jun 15;8(1):9211.
    PMID: 29907786 DOI: 10.1038/s41598-018-27493-z
    The plant shoot system consists of reproductive organs such as inflorescences, buds and fruits, and the vegetative leaves and stems. In this study, the reproductive part of the Jatropha curcas shoot system, which includes the aerial shoots, shoots bearing the inflorescence and inflorescence were investigated in regard to gene-to-gene interactions underpinning yield-related biological processes. An RNA-seq based sequencing of shoot tissues performed on an Illumina HiSeq. 2500 platform generated 18 transcriptomes. Using the reference genome-based mapping approach, a total of 64 361 genes was identified in all samples and the data was annotated against the non-redundant database by the BLAST2GO Pro. Suite. After removing the outlier genes and samples, a total of 12 734 genes across 17 samples were subjected to gene co-expression network construction using petal, an R library. A gene co-expression network model built with scale-free and small-world properties extracted four vicinity networks (VNs) with putative involvement in yield-related biological processes as follow; heat stress tolerance, floral and shoot meristem differentiation, biosynthesis of chlorophyll molecules and laticifers, cell wall metabolism and epigenetic regulations. Our VNs revealed putative key players that could be adapted in breeding strategies for J. curcas shoot system improvements.
  4. Harun S, Rohani ER, Ohme-Takagi M, Goh HH, Mohamed-Hussein ZA
    J Plant Res, 2021 Mar;134(2):327-339.
    PMID: 33558947 DOI: 10.1007/s10265-021-01257-9
    Glucosinolates (GSLs) are plant secondary metabolites consisting of sulfur and nitrogen, commonly found in Brassicaceae crops, such as Arabidopsis thaliana. These compounds are known for their roles in plant defense mechanisms against pests and pathogens. 'Guilt-by-association' (GBA) approach predicts genes encoding proteins with similar function tend to share gene expression pattern generated from high throughput sequencing data. Recent studies have successfully identified GSL genes using GBA approach, followed by targeted verification of gene expression and metabolite data. Therefore, a GSL co-expression network was constructed using known GSL genes obtained from our in-house database, SuCComBase. DPClusO was used to identify subnetworks of the GSL co-expression network followed by Fisher's exact test leading to the discovery of a potential gene that encodes the ARIA-interacting double AP2-domain protein (ADAP) transcription factor (TF). Further functional analysis was performed using an effective gene silencing system known as CRES-T. By applying CRES-T, ADAP TF gene was fused to a plant-specific EAR-motif repressor domain (SRDX), which suppresses the expression of ADAP target genes. In this study, ADAP was proposed as a negative regulator in aliphatic GSL biosynthesis due to the over-expression of downstream aliphatic GSL genes (UGT74C1 and IPMI1) in ADAP-SRDX line. The significant over-expression of ADAP gene in the ADAP-SRDX line also suggests the behavior of the TF that negatively affects the expression of UGT74C1 and IPMI1 via a feedback mechanism in A. thaliana.
  5. Govender N, Senan S, Sage EE, Mohamed-Hussein ZA, Mackeen MM, Wickneswari R
    PLoS One, 2018;13(9):e0203441.
    PMID: 30240391 DOI: 10.1371/journal.pone.0203441
    Jatropha curcas is an oil-rich seed crop with huge potentials for bioenergy production. The inflorescence carries a number of processes that are likely to affect the overall yield potentials; floral development, male-to-female flower ratio, floral abscission and fruit set. In this study, a weighted gene co-expression network analysis which integrates the transcriptome, physical and simple sugar data of J. curcas inflorescence was performed and nine modules were identified by means of hierarchical clustering. Among them, four modules (green4, antiquewhite2, brown2 and lightskyblue4) showed significant correlation to yield factors at p≤0.01. The four modules are categorized into two clusters; cluster 1 of green4 and antiquewhite2 modules correspond to number of flowers/inflorescence, total seed weight/plant, number of seeds/plant, and number of fruits/plant, whereas cluster 2 of brown2 and lightskyblue4 modules correspond to glucose and fructose. Descriptive characterizations of cluster 1 show putative involvement in gibberellin signaling and responses, whereas cluster 2 may have been involved in sugar signaling, signal transductions and regulation of flowerings. Our findings present a list of hub genes for J. curcas yield improvement and reproductive biology enhancement strategies.
  6. Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT
    Phytother Res, 2023 Mar;37(3):1036-1056.
    PMID: 36343627 DOI: 10.1002/ptr.7671
    The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.
  7. Abdullah-Zawawi MR, Govender N, Karim MB, Altaf-Ul-Amin M, Kanaya S, Mohamed-Hussein ZA
    Plant Methods, 2022 Nov 05;18(1):118.
    PMID: 36335358 DOI: 10.1186/s13007-022-00951-6
    BACKGROUND: Phytochemicals or secondary metabolites are low molecular weight organic compounds with little function in plant growth and development. Nevertheless, the metabolite diversity govern not only the phenetics of an organism but may also inform the evolutionary pattern and adaptation of green plants to the changing environment. Plant chemoinformatics analyzes the chemical system of natural products using computational tools and robust mathematical algorithms. It has been a powerful approach for species-level differentiation and is widely employed for species classifications and reinforcement of previous classifications.

    RESULTS: This study attempts to classify Angiosperms using plant sulfur-containing compound (SCC) or sulphated compound information. The SCC dataset of 692 plant species were collected from the comprehensive species-metabolite relationship family (KNApSAck) database. The structural similarity score of metabolite pairs under all possible combinations (plant species-metabolite) were determined and metabolite pairs with a Tanimoto coefficient value > 0.85 were selected for clustering using machine learning algorithm. Metabolite clustering showed association between the similar structural metabolite clusters and metabolite content among the plant species. Phylogenetic tree construction of Angiosperms displayed three major clades, of which, clade 1 and clade 2 represented the eudicots only, and clade 3, a mixture of both eudicots and monocots. The SCC-based construction of Angiosperm phylogeny is a subset of the existing monocot-dicot classification. The majority of eudicots present in clade 1 and 2 were represented by glucosinolate compounds. These clades with SCC may have been a mixture of ancestral species whilst the combinatorial presence of monocot-dicot in clade 3 suggests sulphated-chemical structure diversification in the event of adaptation during evolutionary change.

    CONCLUSIONS: Sulphated chemoinformatics informs classification of Angiosperms via machine learning technique.

  8. Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Ho KL, Teh AH, Waterman J, et al.
    Acta Crystallogr F Struct Biol Commun, 2016 Mar;72(Pt 3):207-13.
    PMID: 26919524 DOI: 10.1107/S2053230X16002016
    C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (VM) value of 2.27 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%.
  9. Abdullah-Zawawi MR, Ahmad-Nizammuddin NF, Govender N, Harun S, Mohd-Assaad N, Mohamed-Hussein ZA
    Sci Rep, 2021 10 04;11(1):19678.
    PMID: 34608238 DOI: 10.1038/s41598-021-99206-y
    Transcription factors (TFs) form the major class of regulatory genes and play key roles in multiple plant stress responses. In most eukaryotic plants, transcription factor (TF) families (WRKY, MADS-box and MYB) activate unique cellular-level abiotic and biotic stress-responsive strategies, which are considered as key determinants for defense and developmental processes. Arabidopsis and rice are two important representative model systems for dicot and monocot plants, respectively. A comprehensive comparative study on 101 OsWRKY, 34 OsMADS box and 122 OsMYB genes (rice genome) and, 71 AtWRKY, 66 AtMADS box and 144 AtMYB genes (Arabidopsis genome) showed various relationships among TFs across species. The phylogenetic analysis clustered WRKY, MADS-box and MYB TF family members into 10, 7 and 14 clades, respectively. All clades in WRKY and MYB TF families and almost half of the total number of clades in the MADS-box TF family are shared between both species. Chromosomal and gene structure analysis showed that the Arabidopsis-rice orthologous TF gene pairs were unevenly localized within their chromosomes whilst the distribution of exon-intron gene structure and motif conservation indicated plausible functional similarity in both species. The abiotic and biotic stress-responsive cis-regulatory element type and distribution patterns in the promoter regions of Arabidopsis and rice WRKY, MADS-box and MYB orthologous gene pairs provide better knowledge on their role as conserved regulators in both species. Co-expression network analysis showed the correlation between WRKY, MADs-box and MYB genes in each independent rice and Arabidopsis network indicating their role in stress responsiveness and developmental processes.
  10. Afiqah-Aleng N, Mohamed-Hussein ZA
    Methods Mol Biol, 2021;2189:119-132.
    PMID: 33180298 DOI: 10.1007/978-1-0716-0822-7_10
    In this post-genomic era, protein network can be used as a complementary way to shed light on the growing amount of data generated from current high-throughput technologies. Protein network is a powerful approach to describe the molecular mechanisms of the biological events through protein-protein interactions. Here, we describe the computational methods used to construct the protein network using expression data. We provide a list of available tools and databases that can be used in constructing the network.
  11. Mohamed-Hussein ZA, Harun S
    PMID: 19723303 DOI: 10.1186/1742-4682-6-18
    Polycystic ovary syndrome (PCOS) is a complex but frequently occurring endocrine abnormality. PCOS has become one of the leading causes of oligo-ovulatory infertility among premenopausal women. The definition of PCOS remains unclear because of the heterogeneity of this abnormality, but it is associated with insulin resistance, hyperandrogenism, obesity and dyslipidaemia. The main purpose of this study was to identify possible candidate genes involved in PCOS. Several genomic approaches, including linkage analysis and microarray analysis, have been used to look for candidate PCOS genes. To obtain a clearer view of the mechanism of PCOS, we have compiled data from microarray analyses. An extensive literature search identified seven published microarray analyses that utilized PCOS samples. These were published between the year of 2003 and 2007 and included analyses of ovary tissues as well as whole ovaries and theca cells. Although somewhat different methods were used, all the studies employed cDNA microarrays to compare the gene expression patterns of PCOS patients with those of healthy controls. These analyses identified more than a thousand genes whose expression was altered in PCOS patients. Most of the genes were found to be involved in gene and protein expression, cell signaling and metabolism. We have classified all of the 1081 identified genes as coding for either known or unknown proteins. Cytoscape 2.6.1 was used to build a network of protein and then to analyze it. This protein network consists of 504 protein nodes and 1408 interactions among those proteins. One hypothetical protein in the PCOS network was postulated to be involved in the cell cycle. BiNGO was used to identify the three main ontologies in the protein network: molecular functions, biological processes and cellular components. This gene ontology analysis identified a number of ontologies and genes likely to be involved in the complex mechanism of PCOS. These include the insulin receptor signaling pathway, steroid biosynthesis, and the regulation of gonadotropin secretion among others.
  12. A Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Aizat WM, Ho KL, Teh AH, et al.
    PeerJ, 2018;6:e5377.
    PMID: 30280012 DOI: 10.7717/peerj.5377
    Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.
  13. Rosilan NF, Waiho K, Fazhan H, Sung YY, Zakaria NH, Afiqah-Aleng N, et al.
    Fish Shellfish Immunol, 2023 Nov;142:109171.
    PMID: 37858788 DOI: 10.1016/j.fsi.2023.109171
    Protein-protein interactions (PPIs) are essential for understanding cell physiology in normal and pathological conditions, as they might involve in all cellular processes. PPIs have been widely used to elucidate the pathobiology of human and plant diseases. Therefore, they can also be used to unveil the pathobiology of infectious diseases in shrimp, which is one of the high-risk factors influencing the success or failure of shrimp production. PPI network analysis, specifically host-pathogen PPI (HP-PPI), provides insights into the molecular interactions between the shrimp and pathogens. This review quantitatively analyzed the research trends within this field through bibliometric analysis using specific keywords, countries, authors, organizations, journals, and documents. This analysis has screened 206 records from the Scopus database for determining eligibility, resulting in 179 papers that were retrieved for bibliometric analysis. The analysis revealed that China and Thailand were the driving forces behind this specific field of research and frequently collaborated with the United States. Aquaculture and Diseases of Aquatic Organisms were the prominent sources for publications in this field. The main keywords identified included "white spot syndrome virus," "WSSV," and "shrimp." We discovered that studies on HP-PPI are currently quite scarce. As a result, we further discussed the significance of HP-PPI by highlighting various approaches that have been previously adopted. These findings not only emphasize the importance of HP-PPI but also pave the way for future researchers to explore the pathogenesis of infectious diseases in shrimp. By doing so, preventative measures and enhanced treatment strategies can be identified.
  14. Zainal-Abidin RA, Zainal Z, Mohamed-Hussein ZA, Sew YS, Simoh S, Ab Razak S, et al.
    Data Brief, 2020 Aug;31:105806.
    PMID: 32566707 DOI: 10.1016/j.dib.2020.105806
    The genomics and genetic data of pigmented and non-pigmented Malaysian rice varieties are still limited. Hence, we performed the genome resequencing of two black rice varieties (Bali, Pulut Hitam 9), two red rice varieties (MRM16, MRQ100) and two white rice varieties (MR297 and MRQ76) using Illumina HiSeq 4000 platform with 30x sequencing coverage. We aimed to identify and annotate single nucleotide polymorphisms (SNPs) from the genome of these four pigmented and two non-pigmented rice varieties. The potential SNPs will be used in developing the functional SNP markers related to nutritional (i.e. antioxidant, folate, amylose) and quality (i.e. aromatic) traits. Raw data of the pigmented and non-pigmented rice varieties have been deposited into the European Nucleotide Archive (ENA) database with accession number PRJEB29070 and PRJEB32344, respectively.
  15. Jantan I, Haque MA, Arshad L, Harikrishnan H, Septama AW, Mohamed-Hussein ZA
    J Nutr Biochem, 2021 07;93:108634.
    PMID: 33794330 DOI: 10.1016/j.jnutbio.2021.108634
    The high failure rate of the reductionist approach to discover effective and safe drugs to treat chronic inflammatory diseases has led scientists to seek alternative ways. Recently, targeting cell signaling pathways has been utilized as an innovative approach to discover drug leads from natural products. Cell signaling mechanisms have been identified playing key role in diverse diseases by inducing proliferation, cell survival and apoptosis. Phytochemicals are known to be able to modulate the cellular and molecular networks which are associated to chronic diseases including cancer-associated inflammation. In this review, the roles of dietary polyphenols (apigenin, kaempferol, quercetin, curcumin, genistein, isoliquiritigenin, resveratrol and gallic acid) in modulating multiple inflammation-associated cell signaling networks are deliberated. Scientific databases on suppressive effects of the polyphenols on chronic inflammation via modulation of the pathways especially in the recent five years are gathered and critically analyzed. The polyphenols are able to modulate several inflammation-associated cell signaling pathways, namely nuclear factor-kappa β, mitogen activated protein kinases, Wnt/β-catenin and phosphatidylinositol 3-kinase and protein kinase B via selective actions on various components of the networks. The suppressive effects of the polyphenols on the multiple cell signaling pathways reveal their potential use in prevention and treatment of chronic inflammatory disorders. Understanding the mechanistic effects involved in modulation of the signaling pathways by the polyphenols is necessary for lead identification and development of future functional foods for prevention and treatment of chronic inflammatory diseases.
  16. Zainal-Abidin RA, Abu-Bakar N, Sew YS, Simoh S, Mohamed-Hussein ZA
    Int J Genomics, 2019;2019:4168045.
    PMID: 31687375 DOI: 10.1155/2019/4168045
    Recently, rice breeding program has shown increased interests on the pigmented rice varieties due to their benefits to human health. However, the genetic variation of pigmented rice varieties is still scarce and remains unexplored. Hence, we performed genome-wide SNP analysis from the genome resequencing of four Malaysian pigmented rice varieties, representing two black and two red rice varieties. The genome of four pigmented varieties was mapped against Nipponbare reference genome sequences, and 1.9 million SNPs were discovered. Of these, 622 SNPs with polymorphic sites were identified in 258 protein-coding genes related to metabolism, stress response, and transporter. Comparative analysis of 622 SNPs with polymorphic sites against six rice SNP datasets from the Ensembl Plants variation database was performed, and 70 SNPs were identified as novel SNPs. Analysis of SNPs in the flavonoid biosynthetic genes revealed 40 nonsynonymous SNPs, which has potential as molecular markers for rice seed colour identification. The highlighted SNPs in this study show effort in producing valuable genomic resources for application in the rice breeding program, towards the genetic improvement of new and improved pigmented rice varieties.
  17. Neoh HM, Mohamed-Hussein ZA, Tan XE, B Raja Abd Rahman RM, Hussin S, Mohamad Zin N, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23405328 DOI: 10.1128/genomeA.00103-12
    Here, we report the draft genome sequences of four nosocomial methicillin-resistant Staphylococcus aureus strains (PPUKM-261-2009, PPUKM-332-2009, PPUKM-377-2009, and PPUKM-775-2009) isolated from a university teaching hospital in Malaysia. Three of the strains belong to sequence type 239 (ST239), which has been associated with sustained hospital epidemics worldwide.
  18. Low CF, Shamsir MS, Mohamed-Hussein ZA, Baharum SN
    PeerJ, 2019;7:e6568.
    PMID: 30984478 DOI: 10.7717/peerj.6568
    Pathologically relevant behaviors of Vibrio, such as the expression of virulence factors, biofilm production, and swarming motility, have been shown to be controlled by quorum sensing. The autoinducer-2 quorum sensing receptor protein LuxP is one of the target proteins for drug development to suppress the virulence of Vibrio. Here, we reported the potential molecular interaction of fatty acids identified in vibriosis-resistant grouper with LuxP. Fatty acid, 4-oxodocosahexaenoic acid (4R8) showed significant binding affinity toward LuxP (-6.0 kcal/mol) based on molecular docking analysis. The dynamic behavior of the protein-ligand complex was illustrated by molecular dynamic simulations. The fluctuation of the protein backbone, the stability of ligand binding, and hydrogen bond interactions were assessed, suggesting 4R8 possesses potential interaction with LuxP, which was supported by the low binding free energy (-29.144 kJ/mol) calculated using the molecular mechanics Poisson-Boltzmann surface area.
  19. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
  20. Ee SF, Mohamed-Hussein ZA, Othman R, Shaharuddin NA, Ismail I, Zainal Z
    ScientificWorldJournal, 2014;2014:840592.
    PMID: 24678279 DOI: 10.1155/2014/840592
    Polygonum minus is an aromatic plant, which contains high abundance of terpenoids, especially the sesquiterpenes C15H24. Sesquiterpenes were believed to contribute to the many useful biological properties in plants. This study aimed to functionally characterize a full length sesquiterpene synthase gene from P. minus. P. minus sesquiterpene synthase (PmSTS) has a complete open reading frame (ORF) of 1689 base pairs encoding a 562 amino acid protein. Similar to other sesquiterpene synthases, PmSTS has two large domains: the N-terminal domain and the C-terminal metal-binding domain. It also consists of three conserved motifs: the DDXXD, NSE/DTE, and RXR. A three-dimensional protein model for PmSTS built clearly distinguished the two main domains, where conserved motifs were highlighted. We also constructed a phylogenetic tree, which showed that PmSTS belongs to the angiosperm sesquiterpene synthase subfamily Tps-a. To examine the function of PmSTS, we expressed this gene in Arabidopsis thaliana. Two transgenic lines, designated as OE3 and OE7, were further characterized, both molecularly and functionally. The transgenic plants demonstrated smaller basal rosette leaves, shorter and fewer flowering stems, and fewer seeds compared to wild type plants. Gas chromatography-mass spectrometry analysis of the transgenic plants showed that PmSTS was responsible for the production of β -sesquiphellandrene.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links