Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Elderdery AY, Alzerwi NAN, Alzahrani B, Alsrhani A, Alsultan A, Rayzah M, et al.
    Int J Biol Macromol, 2024 Jan;256(Pt 2):127490.
    PMID: 37979758 DOI: 10.1016/j.ijbiomac.2023.127490
    Hepatic cancer is among the most recurrently detected malignancies worldwide and one of the main contributors to cancer-associated mortality. With few available therapeutic choices, there is an instant necessity to explore suitable options. In this aspect, Nanotechnology has been employed to explore prospective chemotherapeutic approaches, especially for cancer treatment. Nanotechnology is concerned with the biological and physical properties of nanoparticles in the therapeutic use of drugs. In the current work, formulation, and characterization of α-Fe2O3-Sodium Alginate-Eugenol nanocomposites (FSE NCs) using several approaches like SEM and TEM, UV-visible, FTIR, and PL spectroscopy, XRD, EDAX, and DLS studies have been performed. With an average size of 50 nm, the rhombohedral structure of NCs was identified. Further, their anticancer activity against Hep3B liver cancer cell lines has been performed by cell viability, dual staining, DCFH-DA, Annexin-V/-FITC/PI, cell cycle analysis methods, and PI3K/Akt/mTOR signaling proteins were studied to assess the anticancer effects of the NCs in Hep3B cells. Also, anti-cancer activity on animal modeling in-vivo using zebra fishes to hematological parameters, liver enzymes, and histopathology study effectiveness was noticed. Moreover, the NCs reduced the viability, elevated the ROS accumulation, diminished the membrane integrity, reduced the antioxidants, blocked the cell cycle, and triggered the PI3K/Akt/mTOR signaling axis that eventually resulted in cell death. As a result, FSE NCs possess huge potential for use as a possible anticancer candidate.
  2. Rayzah M, Elderdery AY, Alzerwi NAN, Alzahrani B, Alsrhani A, Alsultan A, et al.
    Plants (Basel), 2023 Sep 05;12(18).
    PMID: 37765338 DOI: 10.3390/plants12183174
    An aqueous extract of Syzygium cumini seeds was utilized to green synthesize titanium dioxide nanoparticles (TiO2 NPs). UV-Visible, DLS, FTIR, XRD, FESEM, TEM, SAED, EDAX, and photoluminescence spectroscopy techniques were employed to characterize the prepared TiO2 nanoparticles. The rutile crystal structure of TiO2 NPs was revealed by XRD study. The TEM and FESEM images of the TiO2 NPs revealed an average particle size of 50-100 nm. We employed EDAX to investigate the elemental compositions of TiO2 NPs. The O-Ti-O stretching bands appeared in the FTIR spectrum of TiO2 NPs at wavenumbers of 495 cm-1. The absorption edge peaks of TiO2 NPs were found in the UV-vis spectra at 397 nm. The MTT study revealed that TiO2 NPs effectively inhibited the growth of liver cancer Hep3 and Hep-G2 cells. The results of the corresponding fluorescent staining assays showed that TiO2 NPs significantly increased ROS generation, decreased MMP, and induced apoptosis in both liver cancer Hep3 and Hep-G2 cells. TiO2 nanoparticles lessened SOD, CAT, and GSH levels while augmenting MDA contents in Hep3 and Hep-G2 cells. In both Hep3 and Hep-G2 cells treated with TiO2 NPs, the Bax, CytC, p53, caspase-3, -8, and -9 expressions were remarkably augmented, while Bcl-2 expression was reduced. Overall, these findings revealed that formulated TiO2 NPs treatment considerably inhibited growth and triggered apoptosis in Hep3 and HepG2 cells.
  3. Alzahrani B, Elderdery AY, Alsrhani A, Alzerwi NAN, Althobiti MM, Elkhalifa AME, et al.
    Int J Biol Macromol, 2023 Jul 31;244:125054.
    PMID: 37245766 DOI: 10.1016/j.ijbiomac.2023.125054
    The present study investigated the cytotoxicity and proapoptotic properties of iron oxide-sodium-alginate-thymoquinone nanocomposites against breast cancer MDA-MB-231 cells in vitro and in silico. This study used chemical synthesis to formulate the nanocomposite. Electron microscopies such as scanning (SEM) and transmission (TEM), Fourier transform infrared (FT-IR), Ultraviolet-Visible, Photoluminescence spectroscopy, selected area (electron) diffraction (SAED), energy dispersive X-ray analysis (EDX), and X-ray diffraction studies (XRD) were used to characterize the synthesized ISAT-NCs and the average size of them was found to be 55 nm. To evaluate the cytotoxic, antiproliferative, and apoptotic potentials of ISAT-NCs on MDA-MB-231 cells, MTT assays, FACS-based cell cycle studies, annexin-V-PI staining, ELISA, and qRT-PCR were used. PI3K-Akt-mTOR receptors and thymoquinone were predicted using in-silico docking studies. Cell proliferation is reduced in MDA-MB-231 cells due to ISAT-NC cytotoxicity. As a result of FACS analysis, ISAT-NCs had nuclear damage, ROS production, and elevated annexin-V levels, which resulted in cell cycle arrest in the S phase. The ISAT-NCs in MDA-MB-231 cells were found to downregulate PI3K-Akt-mTOR regulatory pathways in the presence of inhibitors of PI3K-Akt-mTOR, showing that these regulatory pathways are involved in apoptotic cell death. We also predicted the molecular interaction between thymoquinone and PI3K-Akt-mTOR receptor proteins using in-silico docking studies which also support PI3K-Akt-mTOR signaling inhibition by ISAT-NCs in MDA-MB-231 cells. As a result of this study, we can conclude that ISAT-NCs inhibit the PI3K-Akt-mTOR pathway in breast cancer cell lines, causing apoptotic cell death.
  4. Tong JB, Sanjiv R, Elderdery A, Wu X, Rajesh R, Suresh Kumar S, et al.
    Med J Malaysia, 2023 Jul;78(4):534-540.
    PMID: 37518929
    INTRODUCTION: The meniscus plays an important role in maintaining homeostasis to facilitate the normal function of the knee joint. It is one of the most commonly injured areas of the knee joint. Meniscal-related injuries can lead to significantly decreased athletic ability, and their incidence has increased yearly. It has been found that most meniscal injuries are irreparable, and meniscectomy can increase the predisposition to knee osteoarthritis. Tissue engineering technology on meniscus repairing and transplantation has received widespread attention recently. This review aimed to analyse the scientific literature regarding the potential applications of tissue engineering on meniscus repairing and transplantation procedures.

    METHOD AND MATERIALS: The electronic search was carried out using PubMed/MEDLINEⓇdatabases with the keywords "tissue engineering AND meniscus" spanning the period of publications from Jan 1980 until Dec 2022.

    RESULTS: The literature search identified 405 references in PubMed/MEDLINE, and 179 were selected following the eligibility requirements. The research analysis showed that the existing meniscal tissue engineering studies used a wide variety of seed cells, cytokines, bioactive materials and 3D structures. Each showed distinct advantages and disadvantages in terms of biocompatibility, degradability, mechanical strength, porosity, and etc. It was noted that 3D printing technology is promising for tissue engineering meniscus research. In addition, the optimal use of compression and hydrostatic pressure to markedly improve the functional properties of tissue-engineering meniscal can serve as an useful strategy.

    CONCLUSION: This review analysed the different approaches employed for meniscus tissue engineering and regeneration. Meniscal tissue engineering still faces several major challenges in terms of seed cells, choice of materials and 3D printing strategies, which should be effectively overcome to harness the full potential of this technology.

  5. Alsrhani A, Elderdery AY, Alzahrani B, Alzerwi NAN, Althobiti MM, Rayzah M, et al.
    Molecules, 2023 Apr 04;28(7).
    PMID: 37049991 DOI: 10.3390/molecules28073228
    Breast cancer is among the most recurrent malignancies, and its prevalence is rising. With only a few treatment options available, there is an immediate need to search for better alternatives. In this regard, nanotechnology has been applied to develop potential chemotherapeutic techniques, particularly for cancer therapy. Specifically, albumin-based nanoparticles are a developing platform for the administration of diverse chemotherapy drugs owing to their biocompatibility and non-toxicity. Visnagin, a naturally derived furanochromone, treats cancers, epilepsy, angina, coughs, and inflammatory illnesses. In the current study, the synthesis and characterization of albumin visnagin (AV) nanoparticles (NPs) using a variety of techniques such as transmission electron microscopy, UV-visible, Fourier transform infrared, energy dispersive X-ray composition analysis, field emission scanning electron microscopy, photoluminescence, X-Ray diffraction, and dynamic light scattering analyses have been carried out. The MTT test, dual AO/EB, DCFH-DA, Annexin-V-FITC/PI, Propidium iodide staining techniques as well as analysis of apoptotic proteins, antioxidant enzymes, and PI3K/Akt/mTOR signaling analysis was performed to examine the NPs' efficacy to suppress MDA-MB-468 cell lines. The NPs decreased cell viability increased the amount of ROS in the cells, disrupted membrane integrity, decreased the level of antioxidant enzymes, induced cell cycle arrest, and activated the PI3K/Akt/mTOR signaling cascade, ultimately leading to cell death. Thus, AV NPs possesses huge potential to be employed as a strong anticancer therapy alternative.
  6. Teh SW, Elderdery A, Rampal S, Subbiah SK, Mok PL
    Contemp Oncol (Pozn), 2023;27(4):255-262.
    PMID: 38405210 DOI: 10.5114/wo.2023.135364
    INTRODUCTION: Cutaneous squamous cell carcinoma (SCC) is the second most common form of skin malignancy, representing around 20% of all skin cancers. It is the main cause of death due to non-melanoma skin cancer every year. Metastatic cutaneous SCC is associated with poor prognosis in patients and warrants a more effective and specific approach such as disruption of genes associated with cancer metastasis.

    MATERIAL AND METHODS: Matrix metalloproteinases (MMPs) are enzymes involved in cancer progression and are regarded as major oncotargets. Among others, MMP9 plays critical roles in tumour progression, angiogenesis, and invasion of cutaneous SCC. We aimed to determine whether the MMP9 gene is a suitable gene target for anti-cancer therapy for cutaneous SCC. We performed clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 transfection of guide RNA (gRNA) targeting the MMP9 gene into human cutaneous SCC cell line A431.

    RESULTS: Following CRISPR transfection treatment, the viability (p < 0.01) and migratory activities (p < 0.0001) of in vitro cutaneous SCC cells were found to be reduced significantly. The use of quantitative polymerase chain reaction (qPCR) also revealed downregulation of the mRNA expression levels of cancer-promoting genes TGF-β, FGF, PI3K, VEGF-A, and vimentin. Direct inhibition of the MMP9 gene was shown to decrease survivability and metastasis of cutaneous SCC cell line A431.

    CONCLUSIONS: Our findings provided direct evidence that MMP9 is important in the viability, proliferation, and metastasis of cutaneous SCC cells. It serves as a positive foundation for future CRISPR-based targeted anti-cancer therapies in treating skin cancer and other forms of malignancies that involve MMPs as the key determinants.

  7. Elderdery AY, Alhamidi AH, Elkhalifa AME, Althobiti MM, Eltayeb Omer N, Alsugoor MH, et al.
    Nanomaterials (Basel), 2022 Oct 26;12(21).
    PMID: 36364538 DOI: 10.3390/nano12213753
    Nanocomposites comprised of CuO-TiO2-chitosan-escin, which has adjustable physicochemical properties, provide a solution for therapeutic selectivity in cancer treatment. By controlling the intrinsic signaling primarily through the mitochondrial signaling pathway, we desired nanocomposites with enhanced anticancer activity by containing CuO-TiO2-chitosan-escin. The metal oxides CuO and TiO2, the natural polymer chitosan, and a phytochemical compound escin were combined to form CuO-TiO2-chitosan-escin nanocomposites. The synthesized nanocomposites were confirmed and characterized using FTIR spectroscopy, TEM, and UV-Vis absorption spectroscopy. A human leukemia cell line (MOLT-4) was used to assess the efficacy and selectivity of nanocomposites. Based on a cytotoxicity study, CuO-TiO2-chitosan-escin nanocomposites had inhibition concentrations (IC50) of 13.68, 8.9, and 7.14 µg/mL against human T lymphoblast cells after 24, 48, and 72 h of incubation, respectively. Compared with untreated MOLT-4 cells, CuO-TiO2-chitosan-escin nanocomposite-treated cells significantly increased (p < 0.05) caspase-3, -8, and -9 and decreased the levels of antioxidant enzymes GR, SOD, and GSH. Furthermore, MDA for lipid peroxidase and ROS levels significantly increased (p < 0.05) in the treated cells than in the untreated cells. Remarkably, CuO-TiO2-chitosan-escin nanocomposite-mediated control of cell cycles were mainly achieved through the activation of caspase-3, -8, and -9.
  8. Elkhalifa AME, Elderdery AY, Al Bataj IA, Tamomh AG, Alyami MM, Almakrami HA, et al.
    Biomed Res Int, 2022;2022:4620037.
    PMID: 35224093 DOI: 10.1155/2022/4620037
    COVID-19 is a global pandemic viral infection that has affected millions worldwide. Limited data is available on the effect of COVID-19 on hematological parameters in Saudi Arabia. This study is aimed at examining the role of hematological parameters among COVID-19 patients admitted to King Khalid Hospital in Najran, Saudi Arabia. This is a retrospective, hospital-based study of 514 cases who were recruited during August to October 2020. 257 COVID-19 patients formed the study group, and a further 257 negative subjects formed the control group. Anemia was significantly elevated in positive subjects over controls (respectively, 64.2% and 35.8%), with patients 2.5 times more likely to be anemic (p < 0.01). Thrombocytopenia was higher in patients over controls (respectively, 62% and 38%), with patients ~1.7 times more likely to be thrombocytopenic (p < 0.01). Moreover, leukopenia was significantly higher in patients over controls (respectively, 71% and 29%), with positive subjects ~2.6 times more likely to be leukopenic. Our study results indicate that mild anemia associated with leukopenia may have diagnostic value for COVID-19. Careful assessment of hematological parameters, at baseline and throughout the disease path, will assist physicians in formulating personalized approaches to treatment and promptly offer intensive care to those in greater need.
  9. Elderdery AY, Alzahrani B, Hamza SMA, Mostafa-Hedeab G, Mok PL, Subbiah SK
    Bioinorg Chem Appl, 2022;2022:9602725.
    PMID: 36164585 DOI: 10.1155/2022/9602725
    In this study, cells from human Chronic Myelogenous Leukemia (K562) were cultivated with CuO-TiO2-Chitosan-Berbamine nanocomposites. We examined nanocomposites using XRD, DLS, FESEM, TEM, PL, EDAX, and FTIR spectroscopy, as well as MTT for cytotoxicity, and AO/EtBr for apoptotic morphology assessment. The rate of apoptosis and cell cycle arrests was determined using flow cytometry. Flow cytometry was also employed to identify pro- and antiapoptotic proteins such as Bcl2, Bad, Bax, P53, and Cyt C. The FTIR spectrum revealed that the CuO-TiO2-Chitosan-Berbamine nanocomposites were electrostatically interlocked. The nanocomposites' XRD signals revealed a hexagonal shape. In the DLS spectrum, nanocomposites were found to have a hydrodynamic diameter. As a result of their cytotoxic action, nanocomposites displayed concentration-dependent cytotoxicity. The nanocomposites, like Doxorubicin, caused cell cycle phase arrest in K562 cells. After treatment with IC50 concentrations of CuO-TiO2-Chitosan-Berbamine nanocomposites and Doxorubicin, a substantial percentage of cells were in G2/M stage arrest. Caspase-3, -7, -8, -9, Bax, Bad, Cyt C, and P53 expression were considerably enhanced in K562 cells, whereas Bcl2 expression was decreased, indicating that these cells may have therapeutic potential against human blood cancer/leukemia-derived disorders. As a result, the nanocomposites demonstrated outstanding anticancer potential against leukemic cells. CuO-TiO2-Chitosan-Berbamine, according to our findings.
  10. Elderdery AY, Alzahrani B, Hamza SMA, Mostafa-Hedeab G, Mok PL, Subbiah SK
    Bioinorg Chem Appl, 2022;2022:5949086.
    PMID: 36212987 DOI: 10.1155/2022/5949086
    Leukemia is the most prevalent cancer in children and one of the most common and deadly cancers that affect adults. Several metal oxide nanoparticles, biopolymers, and phytochemicals have been discovered to target cancer cells selectively while inflicting low to no damage to healthy cells. Among the existing nanoparticle synthesis methodologies, biologically synthesized nanoparticles using phytochemicals have emerged as a straightforward, economical, and environmentally sound strategy. The synergistic antitumor potential of ZnO-TiO2-chitosan-farnesol nanocomposites (NCs) against leukemia MOLT-4 cells was investigated in the current study. After synthesizing the NCs, characterization of the same was carried out using XRD, DLS, FESEM, TEM, PL, EDX, and FTIR spectroscopy. To analyze its anticancer activity, MOLT-4 cells were cultured and treated at diverse dosages of NCs. The cell viability upon treatment was examined by MTT assay. The morphological and nuclear modifications were observed by dual staining. ROS and MMP levels were observed by DCFH-DA staining and Rh-123 dye, respectively. Furthermore, the caspase 3, 8, and 9 levels were examined by performing ELISA. The XRD patterns exhibited a hexagonal structure of the NCs. In the DLS spectrum, the hydrodynamic diameter of the NCs was observed to be 126.2 nm. The electrostatic interface between the ZnO-TiO2-chitosan-farnesol NCs was confirmed by the FTIR spectra. A significant loss of cell viability in a dosage-dependent trend confirmed the cytotoxic effect of the NCs. An elevated ROS level and MMP depletion suggested apoptosis-associated cell death via the intrinsic pathway, which was confirmed by elevated expressions of caspase 3, 8, and 9 markers. Thus, the results showed that the synthesized NCs demonstrated a remarkable anticancer potential against leukemic cells and can be potentially valuable in cancer treatments. The findings from this study conclude that this is a new approach for modifying the physicochemical characteristics of ZnO-TiO2-chitosan-farnesol composites to increase their properties and synergistically exhibit anticancer properties in human leukemic cancer cells.
  11. Farhana A, Koh AE, Kothandan S, Alsrhani A, Mok PL, Subbiah SK
    Int J Mol Sci, 2021 Nov 13;22(22).
    PMID: 34830168 DOI: 10.3390/ijms222212286
    Cancer cells are able to proliferate in an unregulated manner. There are several mechanisms involved that propel such neoplastic transformations. One of these processes involves bypassing cell death through changes in gene expression and, consequently, cell growth. This involves a complex epigenetic interaction within the cell, which drives it towards oncogenic transformations. These epigenetic events augment cellular growth by potentially altering chromatin structures and influencing key gene expressions. Therapeutic mechanisms have been developed to combat this by taking advantage of the underlying oncogenic mechanisms through chemical modulation. Camptothecin (CPT) is an example of this type of drug. It is a selective topoisomerase I inhibitor that is effective against many cancers, such as colorectal cancer. Previously, we successfully formulated a magnetic nanocarrier-conjugated CPT with β-cyclodextrin and iron NPs (Fe3O4) cross-linked using EDTA (CPT-CEF). Compared to CPT alone, it boasts higher efficacy due to its selective targeting and increased solubility. In this study, we treated HT29 colon cancer cells with CPT-CEF and attempted to investigate the cytotoxic effects of the formulation through an epigenetic perspective. By using RNA-Seq, several differentially expressed genes were obtained (p < 0.05). Enrichr was then used for the over-representation analysis, and the genes were compared to the epigenetic roadmap and histone modification database. The results showed that the DEGs had a high correlation with epigenetic modifications involving histone H3 acetylation. Furthermore, a subset of these genes was shown to be associated with the Wnt/β-catenin signaling pathway, which is highly upregulated in a large number of cancer cells. These genes could be investigated as downstream therapeutic targets against the uncontrolled proliferation of cancer cells. Further interaction analysis of the identified genes with the key genes of the Wnt/β-catenin signaling pathway in colorectal cancer identified the direct interactors and a few transcription regulators. Further analysis in cBioPortal confirmed their genetic alterations and their distribution across patient samples. Thus, the findings of this study reveal that colorectal cancer could be reversed by treatment with the CPT-CEF nanoparticle-conjugated nanocarrier through an epigenetic mechanism.
  12. Farhana A, Koh AE, Tong JB, Alsrhani A, Kumar Subbiah S, Mok PL
    Molecules, 2021 Sep 06;26(17).
    PMID: 34500845 DOI: 10.3390/molecules26175414
    Molecular crosstalk between the cellular epigenome and genome converge as a synergistic driver of oncogenic transformations. Besides other pathways, epigenetic regulatory circuits exert their effect towards cancer progression through the induction of DNA repair deficiencies. We explored this mechanism using a camptothecin encapsulated in β-cyclodextrin-EDTA-Fe3O4 nanoparticles (CPT-CEF)-treated HT29 cells model. We previously demonstrated that CPT-CEF treatment of HT29 cells effectively induces apoptosis and cell cycle arrest, stalling cancer progression. A comparative transcriptome analysis of CPT-CEF-treated versus untreated HT29 cells indicated that genes controlling mismatch repair, base excision repair, and homologues recombination were downregulated in these cancer cells. Our study demonstrated that treatment with CPT-CEF alleviated this repression. We observed that CPT-CEF exerts its effect by possibly affecting the DNA repair mechanism through epigenetic modulation involving genes of HMGB1, APEX1, and POLE3. Hence, we propose that CPT-CEF could be a DNA repair modulator that harnesses the cell's epigenomic plasticity to amend DNA repair deficiencies in cancer cells.
  13. Cui YC, Qiu YS, Wu Q, Bu G, Peli A, Teh SW, et al.
    Exp Biol Med (Maywood), 2021 May;246(10):1177-1183.
    PMID: 33535809 DOI: 10.1177/1535370220985468
    Osteoblasts play an important role in bone regeneration and repair. The hypoxia condition in bone occurs when bone undergoes fracture, and this will trigger a series of biochemical and mechanical changes to enable bone repair. Hence, it is interesting to observe the metabolites and metabolism changes when osteoblasts are exposed to hypoxic condition. This study has looked into the response of human osteoblast hFOB 1.19 under normoxic and hypoxic conditions by observing the cell growth and utilization of metabolites via Phenotype MicroArrays™ under these two different oxygen concentrations. The cell growth of hFOB 1.19 under hypoxic condition showed better growth compared to hFOB 1.19 under normal condition. In this study, osteoblast used glycolysis as the main pathway to produce energy as hFOB 1.19 in both hypoxic and normoxic conditions showed cell growth in well containing dextrin, glycogen, maltotriose, D-maltose, D-glucose-6-phospate, D-glucose, D-mannose, D-Turanose, D-fructose-6-phosphate, D-galactose, uridine, adenosine, inosine and α-keto-glutaric acid. In hypoxia, the cells have utilized additional metabolites such as α-D-glucose-1-phosphate and D-fructose, indicating possible activation of glycogen synthesis and glycogenolysis to metabolize α-D-glucose-1-phosphate. Meanwhile, during normoxia, D-L-α-glycerol phosphate was used, and this implies that the osteoblast may use glycerol-3-phosphate shuttle and oxidative phosphorylation to metabolize glycerol-3-phosphate.
  14. Mok PL, Koh AE, Farhana A, Alsrhani A, Alam MK, Suresh Kumar S
    Saudi J Biol Sci, 2021 Apr;28(4):2502-2509.
    PMID: 33551661 DOI: 10.1016/j.sjbs.2021.01.051
    COVID-19 is a rapidly emerging infectious disease caused by the SARS-CoV-2 virus currently spreading throughout the world. To date, there are no specific drugs formulated for it, and researchers around the globe are racing against the clock to investigate potential drug candidates. The repurposing of existing drugs in the market represents an effective and economical strategy commonly utilized in such investigations. In this study, we used a multiple-sequence alignment approach for preliminary screening of commercially-available drugs on SARS-CoV sequences from the Kingdom of Saudi Arabia (KSA) isolates. The viral genomic sequences from KSA isolates were obtained from GISAID, an open access repository housing a wide variety of epidemic and pandemic virus data. A phylogenetic analysis of the present 164 sequences from the KSA provinces was carried out using the MEGA X software, which displayed high similarity (around 98%). The sequence was then analyzed using the VIGOR4 genome annotator to construct its genomic structure. Screening of existing drugs was carried out by mining data based on viral gene expressions from the ZINC database. A total of 73 hits were generated. The viral target orthologs were mapped to the SARS-CoV-2 KSA isolate sequence by multiple sequence alignment using CLUSTAL OMEGA, and a list of 29 orthologs with purchasable drug information was generated. The results showed that the SARS CoV replicase polyprotein 1a had the highest sequence similarity at 79.91%. Through ZINC data mining, tanshinones were found to have high binding affinities to this target. These compounds could be ideal candidates for SARS-CoV-2. Other matches ranged between 27 and 52%. The results of this study would serve as a significant endeavor towards drug discovery that would increase our chances of finding an effective treatment or prevention against COVID19.
  15. Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-Drasekaran S, Palanisamy R, et al.
    Pathogens, 2021 Feb 01;10(2).
    PMID: 33535649 DOI: 10.3390/pathogens10020145
    Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
  16. Lam C, Alsaeedi HA, Koh AE, Harun MHN, Hwei ANM, Mok PL, et al.
    Tissue Eng Regen Med, 2021 02;18(1):143-154.
    PMID: 33415670 DOI: 10.1007/s13770-020-00312-1
    BACKGROUND: Different methods have been used to inject stem cells into the eye for research. We previously explored the intravitreal route. Here, we investigate the efficacy of intravenous and subretinal-transplanted human dental pulp stem cells (DPSCs) in rescuing the photoreceptors of a sodium iodate-induced retinal degeneration model.

    METHODS: Three groups of Sprague Dawley rats were used: intervention, vehicle group and negative control groups (n = 6 in each). Intravenous injection of 60 mg/kg sodium iodate (day 0) induced retinal degeneration. On day 4 post-injection of sodium iodate, the rats in the intervention group received intravenous DPSC and subretinal DPSC in the right eye; rats in the vehicle group received subretinal Hank's balance salt solution and intravenous normal saline; while negative control group received nothing. Electroretinogram (ERG) was performed to assess the retinal function at day 0 (baseline), day 4, day 11, day 18, day 26, and day 32. By the end of the study at day 32, the rats were euthanized, and both their enucleated eyes were sent for histology.

    RESULTS: No significant difference in maximal ERG a-wave (p = 0.107) and b-wave, (p = 0.153) amplitude was seen amongst the experimental groups. However, photopic 30 Hz flicker amplitude of the study eye showed significant differences in the 3 groups (p = 0.032). Within the intervention group, there was an improvement in 30 Hz flicker ERG response of all 6 treated right eyes, which was injected with subretinal DPSC; while the 30 Hz flicker ERG of the non-treated left eyes remained flat. Histology showed improved outer nuclear layer thickness in intervention group; however, findings were not significant compared to the negative and vehicle groups.

    CONCLUSION: Combination of subretinal and intravenous injection of DPSCs may have potential to rescue cone function from a NaIO3-induced retinal injury model.

  17. Alam MK, Alfawzan AA, Haque S, Mok PL, Marya A, Venugopal A, et al.
    Front Pediatr, 2021;9:651951.
    PMID: 34026687 DOI: 10.3389/fped.2021.651951
    To investigate whether the craniofacial sagittal jaw relationship in patients with non-syndromic cleft differed from non-cleft (NC) individuals by artificial intelligence (A.I.)-driven lateral cephalometric (Late. Ceph.) analysis. The study group comprised 123 subjects with different types of clefts including 29 = BCLP (bilateral cleft lip and palate), 41 = UCLP (unilateral cleft lip and palate), 9 = UCLA (unilateral cleft lip and alveolus), 13 = UCL (unilateral cleft lip) and NC = 31. The mean age was 14.77 years. SNA, SNB, ANB angle and Wits appraisal was measured in lateral cephalogram using a new innovative A.I driven Webceph software. Two-way ANOVA and multiple-comparison statistics tests were applied to see the differences between gender and among different types of clefts vs. NC individuals. A significant decrease (p < 0.005) in SNA, ANB, Wits appraisal was observed in different types of clefts vs. NC individuals. SNB (p > 0.005) showed insignificant variables in relation to type of clefts. No significant difference was also found in terms of gender in relation to any type of clefts and NC group. The present study advocates a decrease in sagittal development (SNA, ANB and Wits appraisal) in different types of cleft compared to NC individuals.
  18. Teh SW, Koh AE, Tong JB, Wu X, Samrot AV, Rampal S, et al.
    Front Cell Dev Biol, 2021;9:634131.
    PMID: 34490233 DOI: 10.3389/fcell.2021.634131
    Bone fractures have a high degree of severity. This is usually a result of the physical trauma of diseases that affect bone tissues, such as osteoporosis. Due to its highly vascular nature, the bone is in a constant state of remodeling. Although those of younger ages possess bones with high regenerative potential, the impact of a disrupted vasculature can severely affect the recovery process and cause osteonecrosis. This is commonly seen in the neck of femur, scaphoid, and talus bone. In recent years, mesenchymal stem cell (MSC) therapy has been used to aid in the regeneration of afflicted bone. However, the cut-off in blood supply due to bone fractures can lead to hypoxia-induced changes in engrafted MSCs. Researchers have designed several oxygen-generating biomaterials and yielded varying degrees of success in enhancing tissue salvage and preserving cellular metabolism under ischemia. These can be utilized to further improve stem cell therapy for bone repair. In this review, we touch on the pathophysiology of these bone fractures and review the application of oxygen-generating biomaterials to further enhance MSC-mediated repair of fractures in the three aforementioned parts of the bone.
  19. Koh AE, Alsaeedi HA, Rashid MBA, Lam C, Harun MHN, Ng MH, et al.
    Front Cell Dev Biol, 2021;9:652017.
    PMID: 33987180 DOI: 10.3389/fcell.2021.652017
    Mesenchymal stem cells (MSC) are highly regarded as a potential treatment for retinal degenerative disorders like retinitis pigmentosa and age-related macular degeneration. However, donor cell heterogeneity and inconsistent protocols for transplantation have led to varied outcomes in clinical trials. We previously showed that genetically-modifying MSCs to express erythropoietin (MSCEPO) improved its regenerative capabilities in vitro. Hence, in this study, we sought to prove its potential in vivo by transplanting MSCsEPO in a rat retinal degeneration model and analyzing its retinal transcriptome using RNA-Seq. Firstly, MSCsEPO were cultured and expanded before being intravitreally transplanted into the sodium iodate-induced model. After the procedure, electroretinography (ERG) was performed bi-weekly for 30 days. Histological analyses were performed after the ERG assessment. The retina was then harvested for RNA extraction. After mRNA-enrichment and library preparation, paired-end RNA-Seq was performed. Salmon and DESeq2 were used to process the output files. The generated dataset was then analyzed using over-representation (ORA), functional enrichment (GSEA), and pathway topology analysis tools (SPIA) to identify enrichment of key pathways in the experimental groups. The results showed that the MSCEPO-treated group had detectable ERG waves (P <0.05), which were indicative of successful phototransduction. The stem cells were also successfully detected by immunohistochemistry 30 days after intravitreal transplantation. An initial over-representation analysis revealed a snapshot of immune-related pathways in all the groups but was mainly overexpressed in the MSC group. A subsequent GSEA and SPIA analysis later revealed enrichment in a large number of biological processes including phototransduction, regeneration, and cell death (P adj <0.05). Based on these pathways, a set of pro-survival gene expressions were extracted and tabulated. This study provided an in-depth transcriptomic analysis on the MSCEPO-treated retinal degeneration model as well as a profile of pro-survival genes that can be used as candidates for further genetic enhancement studies on stem cells.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links