Displaying publications 1 - 20 of 64 in total

Abstract:
Sort:
  1. Moniruzzaman M, Islam MT, Hossain I, Soliman MS, Samsuzzaman M, Almalki SHA
    Sci Rep, 2021 Nov 08;11(1):21842.
    PMID: 34750440 DOI: 10.1038/s41598-021-01266-7
    In this paper, a tuned metamaterial (MTM) consisting of a symmetric split ring resonator is presented that exhibits epsilon negative (ENG), near zero permeability and refractive index properties for multiband microwave applications. The proposed metamaterial is constituted on a Rogers (RT-5880) substrate with 1.57 mm thickness and the electrical dimension of 0.14λ × 0.14λ, where wavelength, λ is calculated at 4.2 GHz. The symmetric resonating patch is subdivided into four equal and similar quartiles with two interconnecting split rings in each quartile. The quartiles are connected at the center of the substrate with a square metal strip with which four tuning metal strips are attached. These tuning metal strips are acted as spacers between four quartiles of the resonator patch. Numerical simulation of the proposed design is executed in CST microwave studio. The proposed MTM provides four resonances of transmission coefficient (S21) at 4.20 GHz, 10.14 GHz, 13.15 GHz, and 17.1 GHz covering C, X and Ku bands with negative permittivity, near zero permeability and refractive index. The calculated effective medium ratio (EMR) is 7.14 at 4.2 GHz indicates its compactness. The resonance frequencies are selective in nature which can be easily tuned by varying the length of the tuning metal stubs. The equivalent circuit of the proposed MTM is modelled in Advanced Design Software (ADS) that exhibits a similar S21 compared with CST simulation. Surface current, electric and magnetic fields are analyzed to explain the frequency tuning property and other performances of the MTM. Compact size, ENG with near zero permeability and refractive index along with frequency selectivity through tuning provides flexibility for frequency selective applications of this MTM in wireless communications.
  2. Islam MT, Moniruzzaman M, Alam T, Samsuzzaman M, Razouqi QA, Almutairi AF
    Sci Rep, 2021 Aug 19;11(1):16898.
    PMID: 34413377 DOI: 10.1038/s41598-021-96228-4
    In this paper, a meander-lines-based epsilon negative (ENG) metamaterial (MTM) with a high effective medium ratio (EMR) and near-zero refractive index (NZI) is designed and investigated for multiband microwave applications. The metamaterial unit cell is a modification of the conventional square split-ring resonator in which the meander line concept is utilized. The meander line helps to increase the electrical length of the rings and provides strong multiple resonances within a small dimension. The unit cell of proposed MTM is initiated on a low-cost FR4 substrate of 1.5 mm thick and electrical dimension of 0.06λ × 0.06λ, where wavelength, λ is calculated at the lowest resonance frequency (2.48 GHz). The MTM provides four major resonances of transmission coefficient (S21) at 2.48, 4.28, 9.36, and 13.7 GHz covering S, C, X, and Ku bands. It shows negative permittivity, near-zero permeability, and near-zero refractive index in the vicinity of these resonances. The equivalent circuit is designed and modeled in Advanced Design System (ADS) software. The simulated S21 of the MTM unit cell is compared with the measured one and both show close similarity. The array performance of the MTM is also evaluated by using 2 × 2, 4 × 4, and 8 × 8 arrays that show close resemblance with the unit cell. The MTM offers a high effective medium ratio (EMR) of 15.1, indicating the design's compactness. The frequency hopping characteristics of the proposed MTM is investigated by open and short-circuited the three outer rings split gaps by using three switches. Eight different combinations of the switching states provide eight different sets of multiband resonances within 2-18 GHz; those give the flexibility of using the proposed MTM operating in various frequency bands. For its small dimension, NZI, high EMR, and frequency hopping characteristics through switching, this metamaterial can be utilized for multiband microwave applications, especially to enhance the gain of multiband antennas.
  3. Islam MR, Islam MT, Moniruzzaman M, Samsuzzaman M, Arshad H
    Sci Rep, 2021 Apr 22;11(1):8784.
    PMID: 33888759 DOI: 10.1038/s41598-021-87958-6
    This paper represents a penta band square enclosed star-shaped modified split ring resonator (SRR) based single negative meta-atom absorber (MAA) for multi-band microwave regime applications. FR-4 low-cost material has been used as a substrate to make the MAA unit cell with 0.101λ0 × 0.101λ0 of electrical size, where λ0 is the wavelength calculated at the lower resonance frequency of 3.80 GHz. There are two outer square split ring and one inner star ring shape resonator of 0.035 mm thickness of copper placed on the one side, and another side of the substrate has full copper to construct the desired unit cell. The MAA unit cell provides five absorption peaks of 97.87%, 93.65%, 92.66%, 99.95%, and 99.86% at the frequencies of 3.80, 5.65, 8.45, 10.82, and 15.92 GHz, respectively, which covers S-, C-, X-, and Ku- bands. The properties of MAA have been investigated and analyzed in the E-, H-fields and surface current. The EMR and highest Q factor of the designed MAA is 9.87 and 30.41, respectively, and it shows a single negative (SNG) property. Different types of parametric analysis have been done to show the better performance of absorption. Advanced Designed System (ADS) software has been used for equivalent circuit to verify the simulated S11 result obtained from the CST-2019 software. Experimental outcomes of the MAA unit cell have a good deal with the simulated result and measured result of the 24 × 20 array of unit cells also shown. Since the unit cell provides superior EMR, excellent Q-factor, and highest absorption so the recommended MAA can be effectively used as a penta band absorber in microwave applications, like notch filtering, sensing, reducing the unintended noise generated with the copper component of the satellite and radar antennas.
  4. Ahmad T, Bustam MA, Irfan M, Moniruzzaman M, Asghar HMA, Bhattacharjee S
    Biotechnol Appl Biochem, 2019 Jul;66(4):698-708.
    PMID: 31172593 DOI: 10.1002/bab.1787
    Phytosynthesis of gold nanoparticles (AuNPs) has achieved an indispensable significance due to the diverse roles played by biomolecules in directing the physiochemical characteristics of biosynthesized nanoparticles. Therefore, the precise identification of key bioactive compounds involved in producing AuNPs is vital to control their tunable characteristics for potential applications. Herein, qualitative and quantitative determination of key biocompounds contributing to the formation of AuNPs using aqueous Elaeis guineensis leaves extract is reported. Moreover, roles of phenolic compounds and flavonoids in reduction of Au3+ and stabilization of AuNPs have been elucidated by establishing a reaction mechanism. Fourier-transform infrared spectroscopy (FTIR) showed shifting of O─H stretching vibrations toward longer wavenumbers and C═O toward shorter wavenumbers due to involvement of polyphenolic compounds in biosynthesis and oxidation of polyphenolic into carboxylic compounds, respectively, which cape nanoparticles to inhibit the aggregation. Congruently, pyrolysis-gas chromatography-mass spectrometry revealed the major contribution of polyphenolic compounds in the synthesis of AuNPs, which was further endorsed by reduction of total phenolic and total flavonoids contents from 48.08 ± 1.98 to 9.59 ± 0.92 mg GAE/g and 32.02 ± 1.31 to 13.8 ± 0.97 mg CE/g within 60 Min, respectively. Based on experimental results, reaction mechanism explained the roles of phenolic compounds and flavonoids in producing spherical-shaped AuNPs.
  5. Warsi Khan H, Kaif Khan M, Moniruzzaman M, Al Mesfer MK, Danish M, Irshad K, et al.
    Environ Res, 2023 Aug 15;231(Pt 1):116058.
    PMID: 37178749 DOI: 10.1016/j.envres.2023.116058
    An emerging contaminant of concern in aqueous streams is naproxen. Due to its poor solubility, non-biodegradability, and pharmaceutically active nature, the separation is challenging. Conventional solvents employed for naproxen are toxic and harmful. Ionic liquids (ILs) have attracted great attention as greener solubilizing and separating agent for various pharmaceuticals. ILs have found extensive usage as solvents in nanotechnological processes involving enzymatic reactions and whole cells. The employment of ILs can enhance the effectiveness and productivity of such bioprocesses. To avoid cumbersome experimental screening, in this study, conductor like screening model for real solvents (COSMO-RS) was used to screen ILs. Thirty anions and eight cations from various families were chosen. Activity coefficient at infinite dilution, capacity, selectivity, performance index, molecular interactions using σ-profiles and interaction energies were used to make predictions about solubility. According to the findings, quaternary ammonium cations, highly electronegative, and food-grade anions will form excellent ionic liquid combinations for solubilizing naproxen and hence will be better separating agents. This research will contribute easy designing of ionic liquid-based separation technologies for naproxen. In different separation technologies, ionic liquids can be employed as extractants, carriers, adsorbents, and absorbents.
  6. Moniruzzaman M, Islam MT, Misran N, Samsuzzaman M, Alam T, Chowdhury MEH
    Sci Rep, 2021 Jun 07;11(1):11950.
    PMID: 34099814 DOI: 10.1038/s41598-021-91432-8
    An inductively tuned modified split-ring resonator-based metamaterial (MTM) is presented in this article that provides multiple resonances covering S, C, X, and Ku-bands. The MTM is designed on an FR-4 substrate with a thickness of 1.5 mm and an electrical dimension of 0.063λ × 0.063λ where wavelength, λ is calculated at 2.38 GHz. The resonator part is a combination of three squared copper rings and one circular ring in which all the square rings are modified shaped, and the inner two rings are interconnected. The resonance frequency is tuned by adding inductive metal strips in parallel two vertical splits of the outer ring that causes a significant shift of resonances towards the lower frequencies and a highly effective medium ratio (EMR) of 15.75. Numerical simulation software CST microwave studio is used for the simulation and performance analysis of the proposed unit cell. The MTM unit cell exhibits six resonances of transmission coefficient (S21) at 2.38, 4.24, 5.98, 9.55, 12.1, and 14.34 GHz covering S, C, X, and Ku-bands with epsilon negative (ENG), near-zero permeability, and near-zero refractive index (NZI). The simulated result is validated by experiment with good agreement between them. The performance of the array of the unit cells is also investigated in both simulation and measurement. The equivalent circuit modeling has been accomplished using Advanced Design Software (ADS) that shows a similar S21 response compared to CST simulation. Noteworthy to mention that with the copper backplane, the same unit cell provides multiband absorption properties with four major absorption peaks of 99.6%, 95.7%, 99.9%, 92.7% with quality factors(Q-factor) of 28.4, 34.4, 23, and 32 at 3.98, 5.5, 11.73 and 13.47 GHz, respectively which can be applied for sensing and detecting purposes. The application of an array of the unit cells is investigated using it as a superstrate of an antenna that provides a 73% (average) increase of antenna gain. Due to its simple design, compact dimension with high EMR, ENG property with near-zero permeability, this multiband NZI metamaterial can be used for microwave applications, especially for multiband antenna gain enhancement.
  7. Chowdhury MA, Jahan I, Karim N, Alam MK, Abdur Rahman M, Moniruzzaman M, et al.
    Biomed Res Int, 2014;2014:145159.
    PMID: 24711991 DOI: 10.1155/2014/145159
    In the present study, the residual pesticide levels were determined in eggplants (Solanum melongena) (n = 16), purchased from four different markets in Dhaka, Bangladesh. The carbamate and organophosphorus pesticide residual levels were determined by high performance liquid chromatography (HPLC), and the efficiency of gamma radiation on pesticide removal in three different types of vegetables was also studied. Many (50%) of the samples contained pesticides, and three samples had residual levels above the maximum residue levels determined by the World Health Organisation. Three carbamates (carbaryl, carbofuran, and pirimicarb) and six organophosphates (phenthoate, diazinon, parathion, dimethoate, phosphamidon, and pirimiphos-methyl) were detected in eggplant samples; the highest carbofuran level detected was 1.86 mg/kg, while phenthoate was detected at 0.311 mg/kg. Gamma radiation decreased pesticide levels proportionately with increasing radiation doses. Diazinon, chlorpyrifos, and phosphamidon were reduced by 40-48%, 35-43%, and 30-45%, respectively, when a radiation strength of 0.5 kGy was utilized. However, when the radiation dose was increased to 1.0 kGy, the levels of the pesticides were reduced to 85-90%, 80-91%, and 90-95%, respectively. In summary, our study revealed that pesticide residues are present at high amounts in vegetable samples and that gamma radiation at 1.0 kGy can remove 80-95% of some pesticides.
  8. Sarker N, Chowdhury MA, Fakhruddin AN, Fardous Z, Moniruzzaman M, Gan SH
    Biomed Res Int, 2015;2015:720341.
    PMID: 26618176 DOI: 10.1155/2015/720341
    The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness.
  9. Moniruzzaman M, Rodríguez I, Rodríguez-Cabo T, Cela R, Sulaiman SA, Gan SH
    J Chromatogr A, 2014 Nov 14;1368:26-36.
    PMID: 25441341 DOI: 10.1016/j.chroma.2014.09.057
    The suitability of the dispersive liquid-liquid microextraction (DLLME) technique for gas chromatography (GC) characterization of minor organic compounds in honey samples is evaluated. Under optimized conditions, samples were pre-treated by liquid-liquid extraction with acetonitrile followed by DLLME using carbon tetrachloride (CCl4, 0.075 mL) as extractant. The yielded settled phase was analyzed by GC using high resolution time-of-flight (TOF) mass spectrometry (MS). The whole sample preparation process is completed in approximately 10 min, with a total consumption of organic solvents below 4 mL, relative standard deviations lower than 12% and with more than 70 organic compounds, displaying linear retention index in the range from 990 to 2900, identified in the obtained extracts. In comparison with HS SPME extraction, higher peak intensities were attained for most volatile and semi-volatile compounds amenable to both extraction techniques. Furthermore, other species such as highly polar and water soluble benzene acids, long chain fatty acids, esters and flavonoids, which are difficult to concentrate by HS SPME, could be identified in DLLME extracts. Some of the compounds identified in DLLME extracts have been proposed as useful for samples classification and/or they are recognized as markers of honeys from certain geographic areas.
  10. Moniruzzaman M, Yung An C, Rao PV, Hawlader MN, Azlan SA, Sulaiman SA, et al.
    Biomed Res Int, 2014;2014:737490.
    PMID: 25045696 DOI: 10.1155/2014/737490
    The aim of the present study was to characterize the phenolic acids, flavonoids, and antioxidant properties of monofloral honey collected from five different districts in Bangladesh. A new high performance liquid chromatography (HPLC) equipped with a UV detector method was developed for the identification of the phenolic acids and flavonoids. A total of five different phenolic acids were identified, with the most abundant being caffeic acid, benzoic acid, gallic acid, followed by chlorogenic acid and trans-cinnamic acid. The flavonoids, kaempferol, and catechin were most abundant, followed by myricetin and naringenin. The mean moisture content, total sugar content, and color characteristics of the honey samples were 18.36 ± 0.95%, 67.40 ± 5.63 g/100 g, and 129.27 ± 34.66 mm Pfund, respectively. The mean total phenolic acids, total flavonoid content, and proline content were 199.20 ± 135.23, 46.73 ± 34.16, and 556.40 ± 376.86 mg/kg, respectively, while the mean FRAP values and DPPH radical scavenging activity were 327.30 ± 231.87 μM Fe (II)/100 g and 36.95 ± 20.53%, respectively. Among the different types of honey, kalijira exhibited the highest phenolics and antioxidant properties. Overall, our study confirms that all the investigated honey samples are good sources of phenolic acids and flavonoids with good antioxidant properties.
  11. Moniruzzaman M, Chowdhury MA, Rahman MA, Sulaiman SA, Gan SH
    Biomed Res Int, 2014;2014:359890.
    PMID: 24982869 DOI: 10.1155/2014/359890
    The present study was undertaken to determine the content of six minerals, five trace elements, and ten pesticide residues in honeys originating from different regions of Malaysia. Calcium (Ca), magnesium (Mg), iron (Fe), and zinc (Zn) were analyzed by flame atomic absorption spectrometry (FAAS), while sodium (Na) and potassium (K) were analyzed by flame emission spectrometry (FAES). Trace elements such as arsenic (As), lead (Pb), cadmium (Cd), copper (Cu), and cobalt (Co) were analyzed by graphite furnace atomic absorption spectrometry (GFAAS) following the microwave digestion of honey. High mineral contents were observed in the investigated honeys with K, Na, Ca, and Fe being the most abundant elements (mean concentrations of 1349.34, 236.80, 183.67, and 162.31 mg/kg, resp.). The concentrations of the trace elements were within the recommended limits, indicating that the honeys were of good quality. Principal component analysis reveals good discrimination between the different honey samples. The pesticide analysis for the presence of organophosphorus and carbamates was performed by high performance liquid chromatography (HPLC). No pesticide residues were detected in any of the investigated honey samples, indicating that the honeys were pure. Our study reveals that Malaysian honeys are rich sources of minerals with trace elements present within permissible limits and that they are free from pesticide contamination.
  12. Moniruzzaman M, Rodríguez I, Ramil M, Cela R, Sulaiman SA, Gan SH
    Talanta, 2014 Nov;129:505-15.
    PMID: 25127626 DOI: 10.1016/j.talanta.2014.06.019
    The performance of gas chromatography (GC) combined with a hybrid quadrupole time-of-flight (QTOF) mass spectrometry (MS) system for the determination of volatile and semi-volatile compounds in honey samples is evaluated. After headspace (HS) solid-phase microextraction (SPME) of samples, the accurate mass capabilities of the above system were evaluated for compounds identification. Accurate scan electron impact (EI) MS spectra allowed discriminating compounds displaying the same nominal masses, but having different empirical formulae. Moreover, the use of a mass window with a width of 0.005 Da provided highly specific chromatograms for selected ions, avoiding the contribution of interferences to their peak areas. Additional information derived from positive chemical ionization (PCI) MS spectra and ion product scan MS/MS spectra permitted confirming the identity of novel compounds. The above possibilities are illustrated with examples of honey aroma compounds, belonging to different chemical classes and containing different elements in their molecules. Examples of compounds whose structures could not be described are also provided. Overall, 84 compounds, from a total of 89 species, could be identified in 19 honey samples from 3 different geographic areas in the world. The suitability of responses measured for selected ions, corresponding to above species, for authentication purposes is assessed through principal components analysis.
  13. Moniruzzaman M, Sulaiman SA, Azlan SA, Gan SH
    Molecules, 2013;18(12):14694-710.
    PMID: 24287998 DOI: 10.3390/molecules181214694
    Honey is a good source of several important chemical compounds and antioxidants and is harvested throughout the year. However, no study has determined how their contents change over the years. The aim of the present research was to investigate the changes in the phenolics, flavonoids and antioxidant properties, as well as other physicochemical properties, of Malaysian acacia honey collected during different months during a two year period. The DPPH (1,1-diphenyl-2-picrylhydrazyl) and FRAP (ferric reducing antioxidant power) methods were used to determine the total antioxidant activity of the honey samples. Generally, honey samples collected in the beginning and the middle of the year tended to have higher sugar content, which may be attributed to its high acidic nature and low moisture content. There was a gradual increase in the phenolic content of the acacia honey samples collected between September 2010 and December 2010. The honey sample collected at the beginning of the year (January) showed the highest color intensity and was dark amber in color. It also contained the highest concentration of phenolic compounds (341.67 ± 2.94 mg(gallic acid)/kg), the highest flavonoid content (113.06 ± 6.18 mg(catechin)/kg) and the highest percentage of DPPH inhibition and the highest FRAP value, confirming its high antioxidant potential. There was a positive correlation between DPPH and total phenolic content, suggesting that phenolic compounds are the strongest contributing factor to the radical scavenging activity of Malaysian acacia honeys. Overall, our results indicated that there were significant seasonal variations in the antioxidant potentials of honey over the two year period and the time of honey collection affects its physicochemical properties. Therefore, acacia honey from Malaysia should ideally be collected during the dry season, particularly in the months of January, May and June.
  14. Moniruzzaman M, Sulaiman SA, Khalil MI, Gan SH
    Chem Cent J, 2013;7:138.
    PMID: 23938192 DOI: 10.1186/1752-153X-7-138
    The aim of the present study was to evaluate the physical, biochemical and antioxidant properties of four Malaysian monofloral types of honey (gelam, longan, rubber tree and sourwood honeys) compared to manuka honey. Several physical parameters of honey, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and sucrose content, were measured. A number of biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. Hydroxymethylfurfural (HMF) levels were determined using high performance liquid chromatography.
  15. Islam A, Khalil I, Islam N, Moniruzzaman M, Mottalib A, Sulaiman SA, et al.
    PMID: 23043497 DOI: 10.1186/1472-6882-12-177
    There is no available information on physicochemical and antioxidant properties on Bangladeshi honey. We investigated five different monofloral and three different multifloral honey samples collected from different parts of Bangladesh.
  16. Khalil MI, Alam N, Moniruzzaman M, Sulaiman SA, Gan SH
    J Food Sci, 2011 Aug;76(6):C921-8.
    PMID: 22417491 DOI: 10.1111/j.1750-3841.2011.02282.x
    The phenolic acid and flavonoid contents of Malaysian Tualang, Gelam, and Borneo tropical honeys were compared to those of Manuka honey. Ferric reducing/antioxidant power assay (FRAP) and the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical-scavenging activities were also quantified. All honey extracts exhibited high phenolic contents (15.21 ± 0.51- 42.23 ± 0.64 mg/kg), flavonoid contents (11.52 ± 0.27- 25.31 ± 0.37 mg/kg), FRAP values (892.15 ± 4.97- 363.38 ± 10.57 μM Fe[II]/kg), and high IC₅₀ of DPPH radical-scavenging activities (5.24 ± 0.40- 17.51 ± 0.51 mg/mL). Total of 6 phenolic acids (gallic, syringic, benzoic, trans-cinnamic, p-coumaric, and caffeic acids) and 5 flavonoids (catechin, kaempferol, naringenin, luteolin, and apigenin) were identified. Among the Malaysian honey samples, Tualang honey had the highest contents of phenolics, and flavonoids, and DPPH radical-scavenging activities. We conclude that among Malaysian honey samples, Tualang honey is the richest in phenolic acids, and flavonoid compounds, which have strong free radical-scavenging activities.
  17. Khalil I, Moniruzzaman M, Boukraâ L, Benhanifia M, Islam A, Islam N, et al.
    Molecules, 2012 Sep 20;17(9):11199-215.
    PMID: 22996344
    The aim of the present study was to characterize the physical, biochemical and antioxidant properties of Algerian honey samples (n = 4). Physical parameters, such as pH, moisture content, electrical conductivity (EC), total dissolved solids (TDS), color intensity, total sugar and sucrose content were measured. Several biochemical and antioxidant tests were performed to determine the antioxidant properties of the honey samples. The mean pH was 3.84 ± 0.01, and moisture the content was 13.21 ± 0.16%. The mean EC was 0.636 ± 0.001, and the mean TDS was 316.92 ± 0.92. The mean color was 120.58 ± 0.64 mm Pfund, and the mean 5-hydroxymethylfurfural (HMF) content was 21.49 mg/kg. The mean total sugar and reducing sugar contents were 67.03 ± 0.68 g/mL and 64.72 ± 0.52 g/g, respectively. The mean sucrose content was 2.29 ± 0.65%. High mean values of phenolic (459.83 ± 1.92 mg gallic acid/kg), flavonoid (54.23 ± 0.62 mg catechin/kg), ascorbic acid (159.70 ± 0.78 mg/kg), AEAC (278.15 ± 4.34 mg/kg), protein (3381.83 ± 6.19 mg/kg) and proline (2131.47 ± 0.90) contents, as well as DPPH (39.57% ± 4.18) and FRAP activities [337.77 ± 1.01 µM Fe (II)/100 g], were also detected, indicating that Algerian honey has a high antioxidant potential. Strong positive correlations were found between flavonoid, proline and ascorbic acid contents and color intensity with DPPH and FRAP values. Thus, the present study revealed that Algerian honey is a good source of antioxidants.
  18. Moniruzzaman M, Khalil MI, Sulaiman SA, Gan SH
    PMID: 23983317
    Free radicals and reactive oxygen species (ROS) have been implicated in contributing to the processes of aging and disease. In an effort to combat free radical activity, scientists are studying the effects of increasing individuals' antioxidant levels through diet and dietary supplements. Honey appears to act as an antioxidant in more ways than one. In the body, honey can mop up free radicals and contribute to better health. Various antioxidant activity methods have been used to measure and compare the antioxidant activity of honey. In recent years, DPPH (Diphenyl-1-picrylhydrazyl), FRAP (Ferric Reducing Antioxidant Power), ORAC (The Oxygen Radical Absorbance Capacity), ABTS [2, 2-azinobis (3ehtylbenzothiazoline-6-sulfonic acid) diamonium salt], TEAC [6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid (Trolox)-equivalent antioxidant capacity] assays have been used to evaluate antioxidant activity of honey. The antioxidant activity of honey is also measured by ascorbic acid content and different enzyme assays like Catalase (CAT), Glutathione Peroxidase (GPO), Superoxide Dismutase (SOD). Among the different methods available, methods that have been validated, standardized and widely reported are recommended.
  19. Alam N, Hossain M, Khalil MI, Moniruzzaman M, Sulaiman SA, Gan SH
    PMID: 21854608 DOI: 10.1186/1472-6882-11-65
    Withania somnifera is an important medicinal plant traditionally used in the treatment of many diseases. The present study was carried out to characterize the phenolic acids, flavonoids and 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) scavenging activities in methanolic extracts of W. somnifera fruits, roots and leaves (WSFEt, WSREt and WSLEt).
  20. Khalil MI, Sulaiman SA, Alam N, Moniruzzaman M, Bai'e S, Man CN, et al.
    Molecules, 2012 Jan 11;17(1):674-87.
    PMID: 22237682 DOI: 10.3390/molecules17010674
    This study was conducted to evaluate the effects of evaporation, gamma irradiation and temperature on the total polyphenols, flavonoids and 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical-scavenging activities of Tualang honey samples (n = 14) following storage over three, six or twelve months. The mean polyphenol concentrations of the six gamma irradiated honey samples at three, six and twelve months, respectively, were 96.13%, 98.01% and 102.03% higher than the corresponding values of the eight non-gamma irradiated samples. Similarly, the mean values for flavonoids at three, six and twelve months were 111.52%, 114.81% and 110.04% higher, respectively, for the gamma irradiated samples. The mean values for DPPH radical-scavenging activities at three, six and twelve months were also 67.09%, 65.26% and 44.65% higher, respectively, for the gamma irradiated samples. These data indicate that all gamma irradiated honey samples had higher antioxidant potential following gamma irradiation, while evaporation and temperature had minor effects on antioxidant potential.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links