Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Yew SM, Chan CL, Ngeow YF, Toh YF, Na SL, Lee KW, et al.
    Sci Rep, 2016 05 31;6:27008.
    PMID: 27243961 DOI: 10.1038/srep27008
    Cladosporium sphaerospermum, a dematiaceous saprophytic fungus commonly found in diverse environments, has been reported to cause allergy and other occasional diseases in humans. However, its basic biology and genetic information are largely unexplored. A clinical isolate C. sphaerospermum genome, UM 843, was re-sequenced and combined with previously generated sequences to form a model 26.89 Mb genome containing 9,652 predicted genes. Functional annotation on predicted genes suggests the ability of this fungus to degrade carbohydrate and protein complexes. Several putative peptidases responsible for lung tissue hydrolysis were identified. These genes shared high similarity with the Aspergillus peptidases. The UM 843 genome encodes a wide array of proteins involved in the biosynthesis of melanin, siderophores, cladosins and survival in high salinity environment. In addition, a total of 28 genes were predicted to be associated with allergy. Orthologous gene analysis together with 22 other Dothideomycetes showed genes uniquely present in UM 843 that encode four class 1 hydrophobins which may be allergens specific to Cladosporium. The mRNA of these hydrophobins were detected by RT-PCR. The genomic analysis of UM 843 contributes to the understanding of the biology and allergenicity of this widely-prevalent species.
  2. Yew SM, Chan CL, Lee KW, Na SL, Tan R, Hoh CC, et al.
    PLoS One, 2014;9(8):e104352.
    PMID: 25098697 DOI: 10.1371/journal.pone.0104352
    Dematiaceous fungi (black fungi) are a heterogeneous group of fungi present in diverse environments worldwide. Many species in this group are known to cause allergic reactions and potentially fatal diseases in humans and animals, especially in tropical and subtropical climates. This study represents the first survey of dematiaceous fungi in Malaysia and provides observations on their diversity as well as in vitro response to antifungal drugs. Seventy-five strains isolated from various clinical specimens were identified by morphology as well as an internal transcribed spacer (ITS)-based phylogenetic analysis. The combined molecular and conventional approach enabled the identification of three classes of the Ascomycota phylum and 16 genera, the most common being Cladosporium, Cochliobolus and Neoscytalidium. Several of the species identified have not been associated before with human infections. Among 8 antifungal agents tested, the azoles posaconazole (96%), voriconazole (90.7%), ketoconazole (86.7%) and itraconazole (85.3%) showed in vitro activity (MIC ≤ 1 µg/mL) to the largest number of strains, followed by anidulafungin (89.3%), caspofungin (74.7%) and amphotericin B (70.7%). Fluconazole appeared to be the least effective with only 10.7% of isolates showing in vitro susceptibility. Overall, almost half (45.3%) of the isolates showed reduced susceptibility (MIC >1 µg/mL) to at least one antifungal agent, and three strains (one Pyrenochaeta unguis-hominis and two Nigrospora oryzae) showed potential multidrug resistance.
  3. Yew SM, Chan CL, Soo-Hoo TS, Na SL, Ong SS, Hassan H, et al.
    Genome Announc, 2013;1(3).
    PMID: 23723391 DOI: 10.1128/genomeA.00158-13
    Pyrenochaeta, classified under the order Pleosporales, is known to cause diseases in plants and humans. Here, we report a draft genome sequence of a Pyrenochaeta sp. isolated from a skin scraping, with an estimated genome size of 39.4 Mb. Genes associated with the synthesis of proteases, toxins, plant cell wall degradation, and multidrug resistance were found.
  4. Yew SM, Chan CL, Kuan CS, Toh YF, Ngeow YF, Na SL, et al.
    BMC Genomics, 2016 Feb 03;17:91.
    PMID: 26842951 DOI: 10.1186/s12864-016-2409-8
    Ochroconis mirabilis, a recently introduced water-borne dematiaceous fungus, is occasionally isolated from human skin lesions and nails. We identified an isolate of O. mirabilis from a skin scraping with morphological and molecular studies. Its genome was then sequenced and analysed for genetic features related to classification and biological characteristics.
  5. Toh YF, Yew SM, Chan CL, Na SL, Lee KW, Hoh CC, et al.
    PLoS One, 2016;11(9):e0162095.
    PMID: 27626635 DOI: 10.1371/journal.pone.0162095
    Pyrenochaeta unguis-hominis is a rare human pathogen that causes infection in human skin and nail. P. unguis-hominis has received little attention, and thus, the basic biology and pathogenicity of this fungus is not fully understood. In this study, we performed in-depth analysis of the P. unguis-hominis UM 256 genome that was isolated from the skin scraping of a dermatitis patient. The isolate was identified to species level using a comprehensive multilocus phylogenetic analysis of the genus Pyrenochaeta. The assembled UM 256 genome has a size of 35.5 Mb and encodes 12,545 putative genes, and 0.34% of the assembled genome is predicted transposable elements. Its genomic features propose that the fungus is a heterothallic fungus that encodes a wide array of plant cell wall degrading enzymes, peptidases, and secondary metabolite biosynthetic enzymes. Antifungal drug resistance genes including MDR, CDR, and ERG11/CYP51 were identified in P. unguis-hominis UM 256, which may confer resistance to this fungus. The genome analysis of P. unguis-hominis provides an insight into molecular and genetic basis of the fungal lifestyles, understanding the unrevealed biology of antifungal resistance in this fungus.
  6. Tay ST, Lotfalikhani A, Sabet NS, Ponnampalavanar S, Sulaiman S, Na SL, et al.
    Mycopathologia, 2014 Oct;178(3-4):307-14.
    PMID: 25022264 DOI: 10.1007/s11046-014-9778-9
    BACKGROUND: Candida nivariensis and C. bracarensis have been recently identified as emerging yeast pathogens which are phenotypically indistinguishable from C. glabrata. However, there is little data on the prevalence and antifungal susceptibilities of these species.

    OBJECTIVE: This study investigated the occurrence of C. nivariensis and C. bracarensis in a culture collection of 185 C. glabrata isolates at a Malaysian teaching hospital.

    METHODS: C. nivariensis was discriminated from C. glabrata using a PCR assay as described by Enache-Angoulvant et al. (J Clin Microbiol 49:3375-9, 2011). The identity of the isolates was confirmed by sequence analysis of the D1D2 domain and internal transcribed spacer region of the yeasts. The isolates were cultured on Chromogenic CHROMagar Candida (®) agar (Difco, USA), and their biochemical and enzymic profiles were determined. Antifungal susceptibilities of the isolates against amphotericin B, fluconazole, voriconazole and caspofungin were determined using E tests. Clotrimazole MICs were determined using a microbroth dilution method.

    RESULTS: There was a low prevalence (1.1 %) of C. nivariensis in our culture collection of C. glabrata. C. nivariensis was isolated from a blood culture and vaginal swab of two patients. C. nivariensis grew as white colonies on Chromogenic agar and demonstrated few positive reactions using biochemical tests. Enzymatic profiles of the C. nivariensis isolates were similar to that of C. glabrata. The isolates were susceptible to amphotericin B, fluconazole, voriconazole and caspofungin. Clotrimazole resistance is suspected in one isolate.

    CONCLUSION: This study reports for the first time the emergence of C. nivariensis in our clinical setting.

  7. Tay ST, Chai HC, Na SL, Hamimah H, Rohani MY, Soo-Hoo TS
    Mycopathologia, 2005 Jun;159(4):509-13.
    PMID: 15983736
    The occurrence of Cryptococcus neoformans in bird excreta in Klang valley, Malaysia was determined in this study. Of 544 samples of bird excreta collected from a local zoo, pet shops and public areas, 20 strains of C. neoformans were isolated. All C. neoformans strains were serotype A and thus identified as C. neoformans variety grubii. All did not produce color changes on canavanine-glycine-bromothymol blue agar. All were of alpha-mating types, as determined by a pheromone-specific PCR assay. The antifungal susceptibility testing using agar diffusion method Neo-sensitabs showed that all were susceptible to amphotericin B, fluconazole and itraconazole.
  8. Tay ST, Chai HC, Na SL, Ng KP
    Mycopathologia, 2005 Apr;159(3):325-9.
    PMID: 15883714
    The genotypes of 221 recent isolates of Candida albicans from various clinical specimens of 213 patients admitted to the University Malaya Medical Centre, Malaysia was determined based on the amplification of a transposable intron region in the 25 S rRNA gene. The analyses of 178 C. albicans isolated from nonsterile clinical specimens showed that they could be classified into three genotypes: genotype A (138 isolates), genotype B (38 isolates) and genotype C (2 isolates). The genotyping of 43 clinical isolates from sterile specimens showed that they belonged to genotype A (29 isolates), genotype B (10 isolates), genotype C (2 isolates) and genotype D (2 isolates). The overall distribution of C. albicans genotypes in sterile and nonsterile specimens appeared similar, with genotype A being the most predominant type. This study reported the identification of C. dubliniensis (genotype D) in 2 HIV-negative patients with systemic candidiasis, which were missed by the routine mycological procedure. The study demonstrated the genetic diversity of clinical isolates of C. albicans in Malaysia.
  9. Tay ST, Na SL, Chong J
    J Med Microbiol, 2009 Feb;58(Pt 2):185-191.
    PMID: 19141735 DOI: 10.1099/jmm.0.004242-0
    The genetic heterogeneity and antifungal susceptibility patterns of Candida parapsilosis isolated from blood cultures of patients were investigated in this study. Randomly amplified polymorphic DNA (RAPD) analysis generated 5 unique profiles from 42 isolates. Based on the major DNA fragments of the RAPD profiles, the isolates were identified as RAPD type P1 (29 isolates), P2 (6 isolates), P3 (4 isolates), P4 (2 isolates) and P5 (1 isolate). Sequence analysis of the internal transcribed spacer (ITS) gene of the isolates identified RAPD type P1 as C. parapsilosis, P2 and P3 as Candida orthopsilosis, P4 as Candida metapsilosis, and P5 as Lodderomyces elongisporus. Nucleotide variations in ITS gene sequences of C. orthopsilosis and C. metapsilosis were detected. Antifungal susceptibility testing using Etests showed that all isolates tested in this study were susceptible to amphotericin B, fluconazole, ketoconazole, itraconazole and voriconazole. C. parapsilosis isolates exhibited higher MIC(50) values than those of C. orthopsilosis for all of the drugs tested in this study; however, no significant difference in the MICs for these two Candida species was observed. The fact that C. orthopsilosis and C. metapsilosis were responsible for 23.8 and 4.8 % of the cases attributed to C. parapsilosis bloodstream infections, respectively, indicates the clinical relevance of these newly described yeasts. Further investigations of the ecological niche, mode of transmission and virulence of these species are thus essential.
  10. Tay ST, Tan HW, Na SL, Lim SL
    J Med Microbiol, 2011 Nov;60(Pt 11):1591-1597.
    PMID: 21700741 DOI: 10.1099/jmm.0.032854-0
    In this study, six clinical isolates (two from blood, two from urine and one each from a bronchoalveolar lavage and a vaginal swab) were identified as Candida rugosa based on carbohydrate assimilation profiles using API 20C AUX and ID32 C kits (bioMérieux). Sequence analysis of the D1/D2 domain of the yeasts differentiated the isolates into two subgroups, A and B (three isolates per subgroup), which were closely related (99.1-99.6 % nucleotide similarity) to C. rugosa strain ATCC 10571. Compared with the C. rugosa type strain, the intergenic transcribed spacer (ITS) nucleotide similarity for subgroup A was only 89.2 % (29 mismatches and one deletion) and for subgroup B was 93.7 % (20 mismatches). All isolates grew green colonies on Oxoid Chromogenic Candida Agar, with darker pigmentation observed for subgroup A. All isolates were able to grow at 25-42 °C but not at 45 °C. The isolates had identical enzymic profiles, as determined by API ZYM (bioMérieux) analysis, and produced proteinase. High amphotericin MICs (≥1 µg ml(-1)) were noted for two isolates from each subgroup. Dose-dependent susceptibility to fluconazole (MIC 32 µg ml(-1)) was noted in a blood isolate. The biofilms of the isolates demonstrated increased resistance to amphotericin and fluconazole. The greater ITS sequence variability of subgroup A isolates is in support of this yeast being recognized as a distinct species; however, further verification using more sophisticated molecular approaches is required. A sequence comparison study suggested the association of subgroup A with environmental sources and subgroup B with clinical sources. Accurate identification and antifungal susceptibility testing of C. rugosa are important in view of its decreased susceptibility to amphotericin and fluconazole. The ITS region has been shown to be a valuable region for differentiation of closely related subgroups of C. rugosa.
  11. Tay ST, Na SL, Tajuddin TH
    Mycoses, 2008 Nov;51(6):515-9.
    PMID: 18498307 DOI: 10.1111/j.1439-0507.2008.01516.x
    Cryptococcus albidus and C. laurentii were the predominant non-neoformans cryptococci isolated during an environmental sampling study for C. gattii at Klang Valley, Malaysia. Cryptococcus gattii was not isolated from any of the environmental samples. Cryptococcus albidus and C. laurentii were isolated mainly from vegetative samples of Eucalyptus trees and bird droppings. Upon testing on canavanine-glycine-bromothymol blue (CGB) agar, all the C. albidus isolates remained unchanged. Interestingly, a total of 29 (76.3%) C. laurentii isolates formed blue colours on the CGB agar. Sequence analysis of ITS1-5.8rDNA-ITS2 gene sequences (468 bp) of four CGB-blue C. laurentii isolates demonstrated the closest match (99%) with that of C. laurentii CBS 7140. This study demonstrated the diverse environmental niche of C. albidus and C. laurentii in Malaysia.
  12. Tan R, Ng KP, Gan GG, Na SL
    Med J Malaysia, 2013 Dec;68(6):479-80.
    PMID: 24632920 MyJurnal
    In the past two decades, Fusarium species have been increasingly recognized as serious pathogens in immunocompromised patients. The outcome of fusariosis in the context of severe persistent neutropaenia has been almost universally fatal. The treatment of fusariosis in immunocompromised patients remains a challenge and the prognosis of systemic fusariosis in this population remains poor. This report presents a case of fatal fusariosis in a 37- year-old patient who was diagnosed with precursor-B cell Acute Lymphoblastic Leukaemia (ALL).
  13. Ng KP, Yew SM, Chan CL, Soo-Hoo TS, Na SL, Hassan H, et al.
    Eukaryotic Cell, 2012 Jun;11(6):828.
    PMID: 22645233 DOI: 10.1128/EC.00133-12
    Pleosporales is the largest order in the fungal class Dothideomycetes. We report the 36,814,818-bp draft genome sequence and gene annotation of UM1110, a Pleosporales isolate associated with unclassified genera that is potentially a new fungal species. Analysis of the genome sequence led to the finding of genes associated with fungal adhesive proteins, secreted proteases, allergens, and pseudohyphal development.
  14. Ng KP, Ngeow YF, Yew SM, Hassan H, Soo-Hoo TS, Na SL, et al.
    Eukaryotic Cell, 2012 May;11(5):703-4.
    PMID: 22544898 DOI: 10.1128/EC.00074-12
    Daldinia eschscholzii is an invasive endophyte that is most commonly found in plant tissues rich in secondary metabolites. We report the draft genome sequence of D. eschscholzii isolated from blood culture. The draft genome is 35,494,957 bp in length, with 42,898,665 reads, 61,449 contigs, and a G+C content of 46.8%. The genome was found to contain a high abundance of genes associated with plant cell wall degradation enzymes, mycotoxin production, and antifungal drug resistance.
  15. Ng KP, Yew SM, Chan CL, Soo-Hoo TS, Na SL, Hassan H, et al.
    Eukaryotic Cell, 2012 May;11(5):705-6.
    PMID: 22544899 DOI: 10.1128/EC.00081-12
    Cladosporium sphaerospermum is one of the most widely distributed allergens causing serious problems in patients with respiratory tract disease. We report the 26,644,473-bp draft genome sequence and gene annotation of C. sphaerospermum UM843. Analysis of the genome sequence led to the finding of genes associated with C. sphaerospermum's melanin biosynthesis, allergens, and antifungal drug resistance.
  16. Ng KP, Yew SM, Chan CL, Tan R, Soo-Hoo TS, Na SL, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23409267 DOI: 10.1128/genomeA.00148-12
    Herpotrichiellaceae spp. are known to be opportunistic human pathogens. Here, we report the ~28.46-Mb draft genome of Herpotrichiellaceae sp. UM 238, isolated from human skin scraping. The UM 238 genome was found to contain many classes of protective genes that are responsible for fungal adaptation under adverse environmental conditions.
  17. Ng KP, Yew SM, Chan CL, Chong J, Tang SN, Soo-Hoo TS, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23405310 DOI: 10.1128/genomeA.00056-12
    The emergence of the global threat of extensively drug-resistant (XDR) Mycobacterium tuberculosis reveals weaknesses in tuberculosis management and diagnostic services. We report the draft genome sequence of the first extensively drug-resistant Mycobacterium tuberculosis strain isolated in Malaysia. The sequence was also compared against a reference strain to elucidate the polymorphism that is related to their extensive resistance.
  18. Ng KP, Soo-Hoo TS, Na SL, Tay ST, Hamimah H, Lim PC, et al.
    Mycopathologia, 2005 Jun;159(4):495-500.
    PMID: 15983734
    Hortaea werneckii is an environmental dematiaceous fungus found in the halophilic environment. It causes tinea nigra. We report the isolation of H. werneckii from blood and splenic abscess of two patients with acute myelomonocytic leukaemia. H. werneckii grew at room temperature but not at 37 degrees C, it was identified by biochemical tests, growth characteristics and the presence of conspicuous collarette intercalary on dividing yeast cells. The use of specific oligonucleotide primer Hor-F (5'-TGGACACCTTCA TAACTCTTG-3') and Hor-R (5'-TCACAACGCTTAGAGACGG-3') confirmed the two isolates were H. werneckii. The sequence for 281 nucleotide of HW299 and HW403 were 99% identical but differed only in one nucleotide. In vitro anti-fungal susceptibility testing showed that the isolates were resistant to amphotericin B and flucytosine.
  19. Ng KP, Soo-Hoo TS, Na SL, Ang LS
    Mycopathologia, 2002;155(4):203-6.
    PMID: 12650596
    A total of 576 dermatophytes were isolated from patients with a variety of skin infections from January 1993 to May 2000. Ten species of dermatophytes were identified: Epidermophyton floccosum (0.7%), Microsporum audouinii (1.1%), M. canis (3.1%), M. gypseum (0.3%), Trichophyton concentricum (3.5%), T. equinum (0.2%), T. mentagrophytes (36.1%), T. rubrum (53.8%), T. verrucosum (0.2) and T. violaceum (1.0%). The body sites most frequently affected by dermatophytes were the buttocks, nails and trunk. Anthropophilic dermatophytes made up 60.1% of the isolates; the most common species was T. rubrum, T. mentagrophytes and M. canis were the two main zoophilic dermatophytes. T. mentagrophytes was isolated from all body sites except the scalp. M. canis was found to be associated with domestic dogs and was not isolated from ethnic Malays. The only geophilic dermatophyte was M. gypseum, an uncommon dermatophyte associated with tinea pedis.
  20. Ng KP, Saw TL, Na SL, Soo-Hoo TS
    Mycopathologia, 2001;149(3):141-6.
    PMID: 11307597
    A total of 102 Candida species were isolated from blood cultures from January 1997 to October 1999. Using assimilation of carbohydrate test, 52 (51.0%) of the Candida sp. were identified as C. parapsilosis, 25.5% (26) were C. tropicalis. C. albicans made up 11.8% (12), 6.9% (7) were C. rugosa, 3.8% (4) C. glabrata and 1% (1) C. guilliermondii. No C. dubliniensis was found in the study. In vitro antifungal susceptibility tests showed that all Candida species were sensitive to nystatin, amphotericin B and ketoconazole. Although all isolates remained sensitive to fluconazole, intermediate susceptibility was found in 3 C. rugosa isolates. Antifungal agents with high frequency of resistance were econazole, clotrimazole, miconazole and 5-fluorocytosine. Candida species found to have resistance to these antifungal agents were non-C. albicans.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links