Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Remali J, Loke KK, Ng CL, Aizat WM, Tiong J, Zin NM
    Genom Data, 2017 Sep;13:7-10.
    PMID: 28580299 DOI: 10.1016/j.gdata.2017.05.015
    Streptomyces sp. produces bioactive compounds with a broad spectrum of activities. Streptomyces kebangsaanesis SUK12 has been identified as a novel endophytic bacteria isolated from ethnomedicinal plant Portulaca olerace, and was found to produce the phenazine class of biologically active antimicrobial metabolites. The potential use of the phenazines has led to our research interest in determining the genome sequence of Streptomyces kebangsaanensis SUK12. This Whole Genome Shotgun project has been deposited at DDBJ/ENA/GenBank under the accession number PRJNA269542. The raw sequence data are available [https://www.ncbi.nlm.nih.gov/Traces/study/?acc=SRP105770].
  2. Remali J, Sarmin N'M, Ng CL, Tiong JJL, Aizat WM, Keong LK, et al.
    PeerJ, 2017;5:e3738.
    PMID: 29201559 DOI: 10.7717/peerj.3738
    Background: Streptomyces are well known for their capability to produce many bioactive secondary metabolites with medical and industrial importance. Here we report a novel bioactive phenazine compound, 6-((2-hydroxy-4-methoxyphenoxy) carbonyl) phenazine-1-carboxylic acid (HCPCA) extracted from Streptomyces kebangsaanensis, an endophyte isolated from the ethnomedicinal Portulaca oleracea.

    Methods: The HCPCA chemical structure was determined using nuclear magnetic resonance spectroscopy. We conducted whole genome sequencing for the identification of the gene cluster(s) believed to be responsible for phenazine biosynthesis in order to map its corresponding pathway, in addition to bioinformatics analysis to assess the potential of S. kebangsaanensis in producing other useful secondary metabolites.

    Results: The S. kebangsaanensis genome comprises an 8,328,719 bp linear chromosome with high GC content (71.35%) consisting of 12 rRNA operons, 81 tRNA, and 7,558 protein coding genes. We identified 24 gene clusters involved in polyketide, nonribosomal peptide, terpene, bacteriocin, and siderophore biosynthesis, as well as a gene cluster predicted to be responsible for phenazine biosynthesis.

    Discussion: The HCPCA phenazine structure was hypothesized to derive from the combination of two biosynthetic pathways, phenazine-1,6-dicarboxylic acid and 4-methoxybenzene-1,2-diol, originated from the shikimic acid pathway. The identification of a biosynthesis pathway gene cluster for phenazine antibiotics might facilitate future genetic engineering design of new synthetic phenazine antibiotics. Additionally, these findings confirm the potential of S. kebangsaanensis for producing various antibiotics and secondary metabolites.

  3. Tan CS, Hassan M, Mohamed Hussein ZA, Ismail I, Ho KL, Ng CL, et al.
    Plant Physiol Biochem, 2018 Feb;123:359-368.
    PMID: 29304481 DOI: 10.1016/j.plaphy.2017.12.033
    Geraniol degradation pathway has long been elucidated in microorganisms through bioconversion studies, yet weakly characterised in plants; enzyme with specific nerol-oxidising activity has not been reported. A novel cDNA encodes nerol dehydrogenase (PmNeDH) was isolated from Persicaria minor. The recombinant PmNeDH (rPmNeDH) is a homodimeric enzyme that belongs to MDR (medium-chain dehydrogenases/reductases) superfamily that catalyses the first oxidative step of geraniol degradation pathway in citral biosynthesis. Kinetic analysis revealed that rPmNeDH has a high specificity for allylic primary alcohols with backbone ≤10 carbons. rPmNeDH has ∼3 fold higher affinity towards nerol (cis-3,7-dimethyl-2,6-octadien-1-ol) than its trans-isomer, geraniol. To our knowledge, this is the first alcohol dehydrogenase with higher preference towards nerol, suggesting that nerol can be effective substrate for citral biosynthesis in P. minor. The rPmNeDH crystal structure (1.54 Å) showed high similarity with enzyme structures from MDR superfamily. Structure guided mutation was conducted to describe the relationships between substrate specificity and residue substitutions in the active site. Kinetics analyses of wild-type rPmNeDH and several active site mutants demonstrated that the substrate specificity of rPmNeDH can be altered by changing any selected active site residues (Asp280, Leu294 and Ala303). Interestingly, the L294F, A303F and A303G mutants were able to revamp the substrate preference towards geraniol. Furthermore, mutant that exhibited a broader substrate range was also obtained. This study demonstrates that P. minor may have evolved to contain enzyme that optimally recognise cis-configured nerol as substrate. rPmNeDH structure provides new insights into the substrate specificity and active site plasticity in MDR superfamily.
  4. Selvaraj BA, Mariatulqabtiah AR, Ho KL, Ng CL, Yong CY, Tan WS
    Int J Mol Sci, 2021 Aug 13;22(16).
    PMID: 34445426 DOI: 10.3390/ijms22168725
    The causative agent of white tail disease (WTD) in the giant freshwater prawn is Macrobrachium rosenbergii nodavirus (MrNV). The recombinant capsid protein (CP) of MrNV was previously expressed in Escherichia coli, and it self-assembled into icosahedral virus-like particles (VLPs) with a diameter of approximately 30 nm. Extensive studies on the MrNV CP VLPs have attracted widespread attention in their potential applications as biological nano-containers for targeted drug delivery and antigen display scaffolds for vaccine developments. Despite their advantageous features, the recombinant MrNV CP VLPs produced in E. coli are seriously affected by protease degradations, which significantly affect the yield and stability of the VLPs. Therefore, the aim of this study is to enhance the stability of MrNV CP by modulating the protease degradation activity. Edman degradation amino acid sequencing revealed that the proteolytic cleavage occurred at arginine 26 of the MrNV CP. The potential proteases responsible for the degradation were predicted in silico using the Peptidecutter, Expasy. To circumvent proteolysis, specific protease inhibitors (PMSF, AEBSF and E-64) were tested to reduce the degradation rates. Modulation of proteolytic activity demonstrated that a cysteine protease was responsible for the MrNV CP degradation. The addition of E-64, a cysteine protease inhibitor, remarkably improved the yield of MrNV CP by 2.3-fold compared to the control. This innovative approach generates an economical method to improve the scalability of MrNV CP VLPs using individual protease inhibitors, enabling the protein to retain their structural integrity and stability for prominent downstream applications including drug delivery and vaccine development.
  5. Nieland S, Barig S, Salzmann J, Gehrau F, Zamani AI, Richter A, et al.
    Microb Biotechnol, 2021 Jul;14(4):1422-1432.
    PMID: 33421319 DOI: 10.1111/1751-7915.13739
    To set a benchmark in fungal growth rate, a differential analysis of prototrophic Aspergillus fumigatus AR04 with three ascomycetes applied in > 103 t year-1 scale was performed, i.e. Ashbya gosspyii (riboflavin), Aspergillus niger (citric acid) and Aspergillus oryzae (food-processing). While radial colony growth decreased 0.5-fold when A. gossypii was cultivated at 40°C instead of 28°C, A. fumigatus AR04 responded with 1.7-fold faster hyphal growth. A. niger and A. oryzae formed colonies at 40°C, but not at 43°C. Moreover, all A. fumigatus strains tested grew even at 49°C. In chemostat experiments, A. fumigatus AR04 reached steady state at a dilution rate of 0.7 h-1 at 40°C, 120% more than reported for A. gossypii at 28°C. To study mycelial growth rates under unlimited conditions, carbon dioxide increase rates were calculated from concentrations detected online in the exhaust of batch fermentations for 3 h only. All rates calculated suggest that A. fumigatus AR04 approximates Arrhenius' rule when comparing short cultivations at 30°C with those at 40°C. Linearization of the exponential phase and comparison of the slopes revealed an increase to 192% by the 10°C up-shift.
  6. Ng CL, Reaz MB
    Sensors (Basel), 2017 Mar 12;17(3).
    PMID: 28287493 DOI: 10.3390/s17030574
    Capacitive biosensors are an emerging technology revolutionizing wearable sensing systems and personal healthcare devices. They are capable of continuously measuring bioelectrical signals from the human body while utilizing textiles as an insulator. Different textile types have their own unique properties that alter skin-electrode capacitance and the performance of capacitive biosensors. This paper aims to identify the best textile insulator to be used with capacitive biosensors by analysing the characteristics of 6 types of common textile materials (cotton, linen, rayon, nylon, polyester, and PVC-textile) while evaluating their impact on the performance of a capacitive biosensor. A textile-insulated capacitive (TEX-C) biosensor was developed and validated on 3 subjects. Experimental results revealed that higher skin-electrode capacitance of a TEX-C biosensor yields a lower noise floor and better signal quality. Natural fabric such as cotton and linen were the two best insulating materials to integrate with a capacitive biosensor. They yielded the lowest noise floor of 2 mV and achieved consistent electromyography (EMG) signals measurements throughout the performance test.
  7. Hashim OH, Ng CL, Gendeh S, Nik Jaafar MI
    Mol Immunol, 1991 4 1;28(4-5):393-8.
    PMID: 2062319
    The discovery of jacalin, a group of lectins from jackfruit seeds (Artocarpus heterophyllus), has attracted considerable attention due to its numerous interesting immunological properties as well as its usefulness in the isolation of various serum proteins. We have further identified a similar lectin from the seeds of Champedak (Artocarpus integer) which we refer to as lectin-C and performed comparative studies with two types of jacalin isolated from different batches of the Malaysian jackfruit seeds (jacalin-M1 and jacalin-M2). The three purified lectins demonstrated equivalent apparent Mr of about 52,500, each of which comprised of a combination of two types of non-covalently-linked subunits with apparent Mr of approximately 13,300 and 16,000. The lectins demonstrated equal haemagglutinating activity against human erythrocytes of blood groups A, B, AB and O. Our data also demonstrated that lectin-C, jacalin-M1 and jacalin-M2 are similar by selectively precipitating human serum IgA1 and colostral sIgA but not IgA2, IgD, IgG and IgM. When immunoelectrophoresis was performed on normal human sera and reacted with the lectins, single precipitin arcs corresponding to IgA immunoprecipitates were detected with lectin-C and jacalin-MI. Jacalin-M2, however, exhibited two closely associated precipitin arcs. The binding of these lectins with IgA was pronouncedly inhibited in the presence of p-nitrophenyl-beta-D-galactopyranoside, 1-o-methyl-alpha-D-galactopyranoside, D-melibiose, N-acetyl-D-galactosamine and D-galactose. The data therefore provide evidence on the differential specificity of IgA binding lectins isolated from seeds of similar as well as distinct Artocarpus species.
  8. Pang SL, Ho KL, Waterman J, Teh AH, Chew FT, Ng CL
    Acta Crystallogr F Struct Biol Commun, 2015 Nov;71(Pt 11):1396-400.
    PMID: 26527267 DOI: 10.1107/S2053230X1501818X
    Dermatophagoides farinae is one of the major house dust mite (HDM) species that cause allergic diseases. N-terminally His-tagged recombinant Der f 21 (rDer f 21), a group 21 allergen, with the signal peptide truncated was successfully overexpressed in an Escherichia coli expression system. The purified rDer f 21 protein was initially crystallized using the sitting-drop vapour-diffusion method. Well diffracting protein crystals were obtained after optimization of the crystallization conditions using the hanging-drop vapour-diffusion method with a reservoir solution consisting of 0.19 M Tris-HCl pH 8.0, 32% PEG 400 at 293 K. X-ray diffraction data were collected to 1.49 Å resolution using an in-house X-ray source. The crystal belonged to the C-centered monoclinic space group C2, with unit-cell parameters a = 123.46, b = 27.71, c = 90.25 Å, β = 125.84°. The calculated Matthews coefficient (VM) of 2.06 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with a solvent content of 40.3%. Despite sharing high sequence identity with Blo t 5 (45%) and Blo t 21 (41%), both of which were determined to be monomeric in solution, size-exclusion chromatography, static light scattering and self-rotation function analysis indicate that rDer f 21 is likely to be a dimeric protein.
  9. Chai KP, Othman NF, Teh AH, Ho KL, Chan KG, Shamsir MS, et al.
    Sci Rep, 2016 Mar 15;6:23126.
    PMID: 26975884 DOI: 10.1038/srep23126
    A new subfamily of glycosyl hydrolase family GH13 was recently proposed for α-amylases from Anoxybacillus species (ASKA and ADTA), Geobacillus thermoleovorans (GTA, Pizzo, and GtamyII), Bacillus aquimaris (BaqA), and 95 other putative protein homologues. To understand this new GH13 subfamily, we report crystal structures of truncated ASKA (TASKA). ASKA is a thermostable enzyme capable of producing high levels of maltose. Unlike GTA, biochemical analysis showed that Ca(2+) ion supplementation enhances the catalytic activities of ASKA and TASKA. The crystal structures reveal the presence of four Ca(2+) ion binding sites, with three of these binding sites are highly conserved among Anoxybacillus α-amylases. This work provides structural insights into this new GH13 subfamily both in the apo form and in complex with maltose. Furthermore, structural comparison of TASKA and GTA provides an overview of the conformational changes accompanying maltose binding at each subsite.
  10. Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Ho KL, Teh AH, Waterman J, et al.
    Acta Crystallogr F Struct Biol Commun, 2016 Mar;72(Pt 3):207-13.
    PMID: 26919524 DOI: 10.1107/S2053230X16002016
    C1ORF123 is a human hypothetical protein found in open reading frame 123 of chromosome 1. The protein belongs to the DUF866 protein family comprising eukaryote-conserved proteins with unknown function. Recent proteomic and bioinformatic analyses identified the presence of C1ORF123 in brain, frontal cortex and synapses, as well as its involvement in endocrine function and polycystic ovary syndrome (PCOS), indicating the importance of its biological role. In order to provide a better understanding of the biological function of the human C1ORF123 protein, the characterization and analysis of recombinant C1ORF123 (rC1ORF123), including overexpression and purification, verification by mass spectrometry and a Western blot using anti-C1ORF123 antibodies, crystallization and X-ray diffraction analysis of the protein crystals, are reported here. The rC1ORF123 protein was crystallized by the hanging-drop vapor-diffusion method with a reservoir solution comprised of 20% PEG 3350, 0.2 M magnesium chloride hexahydrate, 0.1 M sodium citrate pH 6.5. The crystals diffracted to 1.9 Å resolution and belonged to an orthorhombic space group with unit-cell parameters a = 59.32, b = 65.35, c = 95.05 Å. The calculated Matthews coefficient (VM) value of 2.27 Å(3) Da(-1) suggests that there are two molecules per asymmetric unit, with an estimated solvent content of 45.7%.
  11. Ker DS, Pang SL, Othman NF, Kumaran S, Tan EF, Krishnan T, et al.
    PeerJ, 2017;5:e2961.
    PMID: 28265494 DOI: 10.7717/peerj.2961
    BACKGROUND: Sesquiterpenes are 15-carbon terpenes synthesized by sesquiterpene synthases using farnesyl diphosphate (FPP) as a substrate. Recently, a sesquiterpene synthase gene that encodes a 65 kDa protein was isolated from the aromatic plant Persicaria minor. Here, we report the expression, purification and characterization of recombinant P. minor sesquiterpene synthase protein (PmSTS). Insights into the catalytic active site were further provided by structural analysis guided by multiple sequence alignment.

    METHODS: The enzyme was purified in two steps using affinity and size exclusion chromatography. Enzyme assays were performed using the malachite green assay and enzymatic product was identified using gas chromatography-mass spectrometry (GC-MS) analysis. Sequence analysis of PmSTS was performed using multiple sequence alignment (MSA) against plant sesquiterpene synthase sequences. The homology model of PmSTS was generated using I-TASSER server.

    RESULTS: Our findings suggest that the recombinant PmSTS is mainly expressed as inclusion bodies and soluble aggregate in the E. coli protein expression system. However, the addition of 15% (v/v) glycerol to the protein purification buffer and the removal of N-terminal 24 amino acids of PmSTS helped to produce homogenous recombinant protein. Enzyme assay showed that recombinant PmSTS is active and specific to the C15 substrate FPP. The optimal temperature and pH for the recombinant PmSTS are 30 °C and pH 8.0, respectively. The GC-MS analysis further showed that PmSTS produces β-sesquiphellandrene as a major product and β-farnesene as a minor product. MSA analysis revealed that PmSTS adopts a modified conserved metal binding motif (NSE/DTE motif). Structural analysis suggests that PmSTS may binds to its substrate similarly to other plant sesquiterpene synthases.

    DISCUSSION: The study has revealed that homogenous PmSTS protein can be obtained with the addition of glycerol in the protein buffer. The N-terminal truncation dramatically improved the homogeneity of PmSTS during protein purification, suggesting that the disordered N-terminal region may have caused the formation of soluble aggregate. We further show that the removal of the N-terminus disordered region of PmSTS does not affect the product specificity. The optimal temperature, optimal pH, Km and kcat values of PmSTS suggests that PmSTS shares similar enzyme characteristics with other plant sesquiterpene synthases. The discovery of an altered conserved metal binding motif in PmSTS through MSA analysis shows that the NSE/DTE motif commonly found in terpene synthases is able to accommodate certain level of plasticity to accept variant amino acids. Finally, the homology structure of PmSTS that allows good fitting of substrate analog into the catalytic active site suggests that PmSTS may adopt a sesquiterpene biosynthesis mechanism similar to other plant sesquiterpene synthases.

  12. Veeramohan R, Azizan KA, Aizat WM, Goh HH, Mansor SM, Yusof NSM, et al.
    Data Brief, 2018 Jun;18:1212-1216.
    PMID: 29900296 DOI: 10.1016/j.dib.2018.04.001
    Mitragyna speciosa is a psychoactive plant known as "ketum" in Malaysia and "kratom" in Thailand. This plant is distinctly known to produce two important alkaloids, namely mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG) that can bind to opioid receptors [1]. MG was reported to exhibit antidepressant properties in animal studies [2]. These compounds were also proposed to have the potential to replace opioid analgesics with much lower risks of side effects [3]. To date, there are only over 40 metabolites identified in M. speciosa [4,5]. To obtain a more complete profile of secondary metabolites in ketum, we performed metabolomics study using mature leaves of the green M. speciosa variety. The leaf samples were extracted using methanol prior to liquid chromatography-electrospray ionization-time of flight-mass spectrometry (LC-ESI-TOF-MS) analysis. This data can be useful to for the identification of unknown metabolites that are associated with alkaloid biosynthesis pathway in M. speciosa.
  13. Mohd-Sharif N, Shaibullah S, Givajothi V, Tan CS, Ho KL, Teh AH, et al.
    Acta Crystallogr F Struct Biol Commun, 2017 02 01;73(Pt 2):109-115.
    PMID: 28177322 DOI: 10.1107/S2053230X17001212
    TylP is one of five regulatory proteins involved in the regulation of antibiotic (tylosin) production, morphological and physiological differentiation in Streptomyces fradiae. Its function is similar to those of various γ-butyrolactone receptor proteins. In this report, N-terminally His-tagged recombinant TylP protein (rTylP) was overproduced in Escherichia coli and purified to homogeneity. The rTylP protein was crystallized from a reservoir solution comprising 34%(v/v) ethylene glycol and 5%(v/v) glycerol. The protein crystals diffracted X-rays to 3.05 Å resolution and belonged to the trigonal space group P3121, with unit-cell parameters a = b = 126.62, c = 95.63 Å.
  14. A Rahaman SN, Mat Yusop J, Mohamed-Hussein ZA, Aizat WM, Ho KL, Teh AH, et al.
    PeerJ, 2018;6:e5377.
    PMID: 30280012 DOI: 10.7717/peerj.5377
    Proteins of the DUF866 superfamily are exclusively found in eukaryotic cells. A member of the DUF866 superfamily, C1ORF123, is a human protein found in the open reading frame 123 of chromosome 1. The physiological role of C1ORF123 is yet to be determined. The only available protein structure of the DUF866 family shares just 26% sequence similarity and does not contain a zinc binding motif. Here, we present the crystal structure of the recombinant human C1ORF123 protein (rC1ORF123). The structure has a 2-fold internal symmetry dividing the monomeric protein into two mirrored halves that comprise of distinct electrostatic potential. The N-terminal half of rC1ORF123 includes a zinc-binding domain interacting with a zinc ion near to a potential ligand binding cavity. Functional studies of human C1ORF123 and its homologue in the fission yeast Schizosaccharomyces pombe (SpEss1) point to a role of DUF866 protein in mitochondrial oxidative phosphorylation.
  15. Pang SL, Ho KL, Waterman J, Rambo RP, Teh AH, Mathavan I, et al.
    Sci Rep, 2019 Mar 20;9(1):4933.
    PMID: 30894561 DOI: 10.1038/s41598-019-40879-x
    Group 21 and 5 allergens are homologous house dust mite proteins known as mid-tier allergens. To reveal the biological function of group 21 allergens and to understand better the allergenicity of the rDer f 21 allergen, we determined the 1.5 Å crystal structure of rDer f 21 allergen from Dermatophagoides farinae. The rDer f 21 protein consists of a three helical bundle, similar to available structures of group 21 and homologous group 5 allergens. The rDer f 21 dimer forms a hydrophobic binding pocket similar to the one in the Der p 5 allergen, which indicates that both of the homologous groups could share a similar function. By performing structure-guided mutagenesis, we mutated all 38 surface-exposed polar residues of the rDer f 21 allergen and carried out immuno-dot blot assays using 24 atopic sera. Six residues, K10, K26, K42, E43, K46, and K48, which are located in the region between the N-terminus and the loop 1 of rDer f 21 were identified as the major IgE epitopes of rDer f 21. Epitope mapping of all potential IgE epitopes on the surface of the rDer f 21 crystal structure revealed heterogeneity in the sIgE recognition of the allergen epitopes in atopic individuals. The higher the allergen-sIgE level of an individual, the higher the number of epitope residues that are found in the allergen. The results illustrate the clear correlation between the number of specific major epitope residues in an allergen and the sIgE level of the atopic population.
  16. Ker DS, Chan KG, Othman R, Hassan M, Ng CL
    Phytochemistry, 2020 May;173:112286.
    PMID: 32059132 DOI: 10.1016/j.phytochem.2020.112286
    The chemical formation of terpenes in nature is carried out by terpene synthases as the main biocatalysts to guide the carbocation intermediate to form structurally diverse compounds including acyclic, mono- and multiple cyclic products. Despite intensive study of the enzyme active site, the mechanism of specific terpene biosynthesis remains unclear. Here we demonstrate that a single mutation of the amino acid L454G or L454A in the active site of Persicaria minor β-sesquiphellandrene synthase leads to a more promiscuous enzyme that is capable of producing additional hydroxylated sesquiterpenes such as sesquicineole, sesquisabinene hydrate and α-bisabolol. Furthermore, the same L454 residue mutation (L454G or L454A) in the active site also improves the protein homogeneity compared to the wild type protein. Taken together, our results demonstrate that residue Leucine 454 in the active site of β-sesquiphellandrene synthase is important for sesquiterpene product diversity as well as the protein homogeneity in solution.
  17. Ker DS, Sha HX, Jonet MA, Hwang JS, Ng CL
    Sci Rep, 2021 10 19;11(1):20649.
    PMID: 34667248 DOI: 10.1038/s41598-021-99879-5
    Actinoporins are a family of α-pore-forming toxins (α-PFTs) that have been identified in sea anemones. Recently, a freshwater Hydra Actinoporin-Like Toxin (HALT) gene family was found in Hydra magnipapillata. Unlike sea anemone actinoporins that use sphingomyelin as their main recognition target, the HALTs proteins may recognise alternative lipid molecules as their target. To unveil the structural insights into lipid preference of HALTs protein as compared to sea anemone actinoporins, we have determined the first crystal structure of actinoporin-like toxin, HALT-1 at 1.43 Å resolution with an acetylated lysine residue K76. Despite the overall structure of HALT-1 sharing a high structural similarity to sea anemone actinoporins, the atomic resolution structure revealed several unique structural features of HALT-1 that may influence the lipid preference and oligomerisation interface. The HALT-1 contains a RAG motif in place of the highly conserved RGD motif found in sea anemone actinoporins. The RAG motif contributed to a sharper β9-β10 turn, which may sway its oligomerisation interface in comparison to sea anemone actinoporins. In the lipid-binding region, the HALT-1 contains a shorter α2 helix and a longer α2-β9 loop due to deletion and subsequently an insertion of five amino acid residues in comparison to the sea anemone actinoporins. Structure comparison and molecular docking analysis further revealed that the HALT-1 lipid-binding site may favour sphingolipids with sulfate or phosphate head group more than the sphingomyelin. The structure of HALT-1 reported here provides a new insight for a better understanding of the evolution and lipid recognition mechanism of actinoporin.
  18. Nyanasegran PK, Nathan S, Firdaus-Raih M, Muhammad NAN, Ng CL
    J Microbiol Biotechnol, 2023 Jan 28;33(1):15-27.
    PMID: 36451302 DOI: 10.4014/jmb.2207.07032
    The incidence of melioidosis cases caused by the gram-negative pathogen Burkholderia pseudomallei (BP) is seeing an increasing trend that has spread beyond its previously known endemic regions. Biofilms produced by BP have been associated with antimicrobial therapy limitation and relapse melioidosis, thus making it urgently necessary to understand the mechanisms of biofilm formation and their role in BP biology. Microbial cells aggregate and enclose within a self-produced matrix of extracellular polymeric substances (EPSs) to form biofilm. The transition mechanism of bacterial cells from planktonic state to initiate biofilm formation, which involves the formation of surface attachment microcolonies and the maturation of the biofilm matrix, is a dynamic and complex process. Despite the emerging findings on the biofilm formation process, systemic knowledge on the molecular mechanisms of biofilm formation in BP remains fractured. This review provides insights into the signaling systems, matrix composition, and the biosynthesis regulation of EPSs (exopolysaccharide, eDNA and proteins) that facilitate the formation of biofilms in order to present an overview of our current knowledge and the questions that remain regarding BP biofilms.
  19. Shaibullah S, Shuhaimi N, Ker DS, Mohd-Sharif N, Ho KL, Teh AH, et al.
    Commun Biol, 2023 Sep 08;6(1):920.
    PMID: 37684342 DOI: 10.1038/s42003-023-05265-4
    Burkholderia pseudomallei is a highly versatile pathogen with ~25% of its genome annotated to encode hypothetical proteins. One such hypothetical protein, BPSL1038, is conserved across seven bacterial genera and 654 Burkholderia spp. Here, we present a 1.55 Å resolution crystal structure of BPSL1038. The overall structure folded into a modified βαββαβα ferredoxin fold similar to known Cas2 nucleases. The Cas2 equivalent catalytic aspartate (D11) pairs are conserved in BPSL1038 although B. pseudomallei has no known CRISPR associated system. Functional analysis revealed that BPSL1038 is a nuclease with endonuclease activity towards double-stranded DNA. The DNase activity is divalent ion independent and optimum at pH 6. The concentration of monovalent ions (Na+ and K+) is crucial for nuclease activity. An active site with a unique D11(X20)SST motif was identified and proposed for BPSL1038 and its orthologs. Structure modelling indicates the catalytic role of the D11(X20)SST motif and that the arginine residues R10 and R30 may interact with the nucleic acid backbone. The structural similarity of BPSL1038 to Cas2 proteins suggests that BPSL1038 may represent a sub-family of nucleases that share a common ancestor with Cas2.
  20. Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, et al.
    PLoS One, 2023;18(3):e0283147.
    PMID: 36943850 DOI: 10.1371/journal.pone.0283147
    The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links