Displaying publications 1 - 20 of 116 in total

Abstract:
Sort:
  1. Puvanesuaran VR, Nowroji K, Sreenivasan S, Noordin R, Balakrishnan V
    Eur Rev Med Pharmacol Sci, 2012 Aug;16(8):1028-32.
    PMID: 22913152
    AIM: To determine the usefulness of prednisolone in increasing the number of Toxoplasma (T.) gondii tachyzoites and bradyzoites in mice.
    MATERIALS AND METHODS: The mice were water-fasted prior to being immunosuppressed with oral inoculation of prednisolone. Tachyzoites of 7T gondii RH strain were inoculated into mice and the number of the parasites in the intraperitoneal fluids was then determined at 96 hs post-infection. In addition, tachyzoites of T. gondii ME49 strains were orally introduced into mice and the number of brain cysts formed was observed by microscopic observation at 45 days post-infection.
    RESULTS: T. gondii propagation was found to be significantly improved by introduction of the prednisolone (p = 0.0004); and the number of parasite showed positive correlation with the increment in dosage of prednisolone (r = 0.9051).
    CONCLUSIONS: The use of prednisolone greatly improved the number of parasite formed in mice: both tachyzoite and cyst forms.
  2. Saidin S, Othman N, Noordin R
    Eur J Clin Microbiol Infect Dis, 2019 Jan;38(1):15-38.
    PMID: 30255429 DOI: 10.1007/s10096-018-3379-3
    Amoebiasis, an enteric protozoan disease caused by Entamoeba histolytica, is a public health problem in many developing countries, causing up to 100,000 fatal cases annually. Detection of the pathogenic E. histolytica and its differentiation from the non-pathogenic Entamoeba spp. play a crucial role in the clinical management of patients. Laboratory diagnosis of intestinal amoebiasis in developing countries still relies on labour-intensive and insensitive methods involving staining of stool sample and microscopy. Newer and more sensitive methods include a variety of antigen detection ELISAs and rapid tests; however, their diagnostic sensitivity and specificity seem to vary between studies, and some tests do not distinguish among the Entamoeba species. Molecular detection techniques are highly sensitive and specific and isothermal amplification approaches may be developed into field-applicable tests; however, cost is still a barrier for their use as a routine laboratory test method in most endemic areas. Laboratory diagnosis of extraintestinal amoebiasis faces challenges of lack of definitive detection of current infection and commercially available point-of-care tests. For both types of amoebiasis, there is still a need for highly sensitive and specific tests that are rapid and cost-effective for use in developing countries where the disease is prevalent. In recent years, new molecules of diagnostic value are being discovered and new tests developed. The advances in 'omics' technologies are enabling discoveries of new biomarkers that may help distinguish between different infection stages.
  3. Rahumatullah A, Khoo BY, Noordin R
    Exp Parasitol, 2012 Jun;131(2):231-8.
    PMID: 22561042 DOI: 10.1016/j.exppara.2012.04.009
    Molecular methods are used increasingly for the detection of Toxoplasma gondii infection. This study developed a rapid, sensitive, and specific conventional triplex PCR for the detection of the B1 gene and ITS1 region of T. gondii using newly designed primers and an internal control based on the Vibrio cholerae HemM gene. The annealing temperature and concentrations of the primers, MgCl(2), and dNTPs were optimized. Two sets of primers (set 1 and 2) were tested, which contained different segments of the T. gondii B1 gene, 529 repeat region and ITS1 region. A series of sensitivity tests were performed using parasite DNA, whole parasites, and spiked human body fluids. Specificity tests were performed using DNA from common protozoa and bacteria. The newly developed assay based on set 2 primers was found to be specific and sensitive. The test was capable of detecting as little as 10 pg T. gondii DNA, 10(4) tachyzoites in spiked body fluids, and T. gondii DNA in the organ tissues of experimentally infected mice. The assay developed in this study will be useful for the laboratory detection of T. gondii infection.
  4. Saadatnia G, Mohamed Z, Ghaffarifar F, Osman E, Moghadam ZK, Noordin R
    APMIS, 2012 Jan;120(1):47-55.
    PMID: 22151308 DOI: 10.1111/j.1600-0463.2011.02810.x
    Infection with Toxoplasma gondii is widespread and important in humans, especially pregnant women and immunosuppressed patients. A panel of tests is usually required for diagnosis toxoplasmosis. Excretory secretory antigen (ESA) is highly immunogenic, and thus it is a good candidate for investigation into new infection markers. ESA was prepared from tachyzoites of RH strain of T. gondii by mice intraperitoneal infection. Sera were obtained from several categories of individuals who differed in their status of anti-Toxoplasma IgM, IgG and IgG avidity antibodies. The ESA was subjected to SDS-PAGE, two-dimensional gel electrophoresis and Western blot analysis. Antigenic bands of approximate molecular weights of 12, 20 and 30 kDa, when probed with anti-human IgM-HRP and IgA-HRP, showed good potential as infection markers. The highest sensitivity of the bands was 98.7% with combination of IgM and IgA blots with sera of patients with anti-Toxoplasma IgM+ IgG+. The specificities were 84% and 70% with sera from other infections and healthy controls in IgM blots and IgA blots respectively. By mass spectrometry, the 12 kDa protein was identified as thioredoxin. The two top proteins identified for 20 kDa molecule were microneme protein 10 and dense granule protein 7; whereas that for 30 kDa were phosphoglycerate mutase 1 and phosphoglycerate mutase.
  5. Tommy YB, Lim TS, Noordin R, Saadatnia G, Choong YS
    BMC Struct Biol, 2012 Nov 27;12:30.
    PMID: 23181504 DOI: 10.1186/1472-6807-12-30
    BACKGROUND: Toxoplasma gondii is an intracellular coccidian parasite that causes toxoplasmosis. It was estimated that more than one third of the world population is infected by T. gondii, and the disease is critical in fetuses and immunosuppressed patients. Thus, early detection is crucial for disease diagnosis and therapy. However, the current available toxoplasmosis diagnostic tests vary in their accuracy and the better ones are costly.

    RESULTS: An earlier published work discovered a highly antigenic 12 kDa excretory-secretory (ES) protein of T. gondii which may potentially be used for the development of an antigen detection test for toxoplasmosis. However, the three-dimensional structure of the protein is unknown. Since epitope identification is important prior to designing of a specific antibody for an antigen-detection based diagnostic test, the structural elucidation of this protein is essential. In this study, we constructed a three dimensional model of the 12 kDa ES protein. The built structure possesses a thioredoxin backbone which consists of four α-helices flanking five β-strands at the center. Three potential epitopes (6-8 residues) which can be combined into one "single" epitope have been identified from the built structure as the most potential antibody binding site.

    CONCLUSION: Together with specific antibody design, this work could contribute towards future development of an antigen detection test for toxoplasmosis.

  6. Khor BY, Tye GJ, Lim TS, Noordin R, Choong YS
    Int J Mol Sci, 2014 Jun 19;15(6):11082-99.
    PMID: 24950179 DOI: 10.3390/ijms150611082
    Brugia malayi is a filarial nematode, which causes lymphatic filariasis in humans. In 1995, the disease has been identified by the World Health Organization (WHO) as one of the second leading causes of permanent and long-term disability and thus it is targeted for elimination by year 2020. Therefore, accurate filariasis diagnosis is important for management and elimination programs. A recombinant antigen (BmR1) from the Bm17DIII gene product was used for antibody-based filariasis diagnosis in "Brugia Rapid". However, the structure and dynamics of BmR1 protein is yet to be elucidated. Here we study the three dimensional structure and dynamics of BmR1 protein using comparative modeling, threading and ab initio protein structure prediction. The best predicted structure obtained via an ab initio method (Rosetta) was further refined and minimized. A total of 5 ns molecular dynamics simulation were performed to investigate the packing of the protein. Here we also identified three epitopes as potential antibody binding sites from the molecular dynamics average structure. The structure and epitopes obtained from this study can be used to design a binder specific against BmR1, thus aiding future development of antigen-based filariasis diagnostics to complement the current diagnostics.
  7. Makhsin SR, Razak KA, Noordin R, Zakaria ND, Chun TS
    Nanotechnology, 2012 Dec 14;23(49):495719.
    PMID: 23164811 DOI: 10.1088/0957-4484/23/49/495719
    This study describes the properties of colloidal gold nanoparticles (AuNPs) with sizes of 20, 30 and 40 nm, which were synthesized using citrate reduction or seeding-growth methods. Likewise, the conjugation of these AuNPs to mouse anti-human IgG(4) (MαHIgG(4)) was evaluated for an immunochromatographic (ICG) strip test to detect brugian filariasis. The morphology of the AuNPs was studied based on the degree of ellipticity (G) of the transmission electron microscopy images. The AuNPs produced using the seeding-growth method showed lower ellipticity (G ≤ 1.11) as compared with the AuNPs synthesized using the citrate reduction method (G ≤ 1.18). Zetasizer analysis showed that the AuNPs that were synthesized using the seeding-growth method were almost monodispersed with a lower polydispersity index (PDI; PDI≤0.079), as compared with the AuNPs synthesized using the citrate reduction method (PDI≤0.177). UV-visible spectroscopic analysis showed a red-shift of the absorbance spectra after the reaction with MαHIgG(4), which indicated that the AuNPs were successfully conjugated. The optimum concentration of the BmR1 recombinant antigen that was immobilized on the surface of the ICG strip on the test line was 1.0 mg ml(-1). When used with the ICG test strip assay and brugian filariasis serum samples, the conjugated AuNPs-MαHIgG(4) synthesized using the seeding-growth method had faster detection times, as compared with the AuNPs synthesized using the citrate reduction method. The 30 nm AuNPs-MαHIgG(4), with an optical density of 4 from the seeding-growth method, demonstrated the best performance for labelling ICG strips because it displayed the best sensitivity and the highest specificity when tested with serum samples from brugian filariasis patients and controls.
  8. Khor BY, Lim TS, Noordin R, Choong YS
    J Mol Graph Model, 2017 09;76:543-550.
    PMID: 28811153 DOI: 10.1016/j.jmgm.2017.07.004
    De novo approach was applied to design single chain fragment variable (scFv) for BmR1, a recombinant antigen from Bm17DIII gene which is the primary antigen used for the detection of anti-BmR1 IgG4 antibodies in the diagnostic of lymphatic filariasis. Three epitopes of the BmR1 was previously predicted form an ab initio derived three-dimensional structure. A collection of energetically favourable conformations was generated via hot-spot-centric approach. This resulted in a set of three different scFv scaffolds used to compute the high shape complementary conformations via dock-and-design approach with the predicted epitopes of BmR1. A total of 4227 scFv designs were generated where 200 scFv designs produced binding energies of less than -20 R.E.U with shape complementarity higher than 0.5. We further selected the design with at least one hydrogen bond and one salt bridge with the epitope, thus resulted in a total of 10, 1 and 19 sFv designs for epitope 1, 2 and 3, respectively. The results thus showed that de novo design can be an alternative approach to yield high affinity in silico scFv designs as a starting point for antibody or specific binder discovery processes.
  9. Khan AH, Noordin R
    Biotechnol Prog, 2019 03;35(2):e2752.
    PMID: 30457225 DOI: 10.1002/btpr.2752
    Homogeneously glycosylated proteins are essential for analyzing the structure of N-glycans, studying their consequences inside cells, and developing therapeutic glycoproteins. However, the isolation of glycoproteins with homogeneous glycans from human is difficult since glycoforms slightly differ from each other with respect to molecular weight and charge. Microbial expression systems have numerous benefits in expression technology and have gained great attention, because they are more adaptable to the biotechnology industry. While selecting an expression host, the glycosylation pattern must be taken into account, because glycosylation strongly depends on cellular production system and selected production clone. This review discussed the technological developments in glycoengineering of microbial expression systems for humanizing the glycosylation profile and highlighted the expression potential of Leishmania expression system. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2752, 2019.
  10. Wong MTJ, Anuar NS, Noordin R, Tye GJ
    Acta Trop, 2023 Mar;239:106796.
    PMID: 36586174 DOI: 10.1016/j.actatropica.2022.106796
    It has been tested and proven that vaccination is still the best strategy to combat infectious diseases. However, to date, there are still no vaccines against human soil-transmitted helminthic diseases, despite their high prevalence globally, particularly in developing countries and rural areas with tropical climates and poor sanitation. The development of vaccines against helminths is riddled with obstacles. Helminths have a complex life cycle, multiple stages within the same host with stage-specific antigen expression, and the ability to regulate host immune reactions to evade the immune response. These elements contribute to the main challenge of helminthic vaccines: the identification of effective vaccine candidates. Therefore, this article reviews the current progress and potential future direction of soil-transmitted helminthic vaccines, particularly against Trichuris trichiura, Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. The study design employed was a systematic review, using qualitative meta-summary synthesis. Preclinical studies and clinical trials on the development of protein subunit vaccines against the five soil-transmitted helminths were searched on PubMed and Scopus. Effectiveness was indicated by a reduction in worm burden or larval output, an increase in specific IgG levels, or an increase in cytokine production. Our findings show that only the hookworm vaccine against N. americanus is in the clinical trial phase, while the rest is still in exploratory research and pre-clinical development phase.
  11. Sahimin N, Lim YAL, Ariffin F, Behnke JM, Basáñez MG, Walker M, et al.
    Parasit Vectors, 2017 May 15;10(1):238.
    PMID: 28506241 DOI: 10.1186/s13071-017-2167-8
    BACKGROUND: The number of migrants working in Malaysia has increased sharply since the 1970's and there is concern that infectious diseases endemic in other (e.g. neighbouring) countries may be inadvertently imported. Compulsory medical screening prior to entering the workforce does not include parasitic infections such as toxoplasmosis. Therefore, this study aimed to evaluate the seroprevalence of T. gondii infection among migrant workers in Peninsular Malaysia by means of serosurveys conducted on a voluntary basis among low-skilled and semi-skilled workers from five working sectors, namely, manufacturing, food service, agriculture and plantation, construction and domestic work.

    METHODS: A total of 484 migrant workers originating from rural locations in neighbouring countries, namely, Indonesia (n = 247, 51.0%), Nepal (n = 99, 20.5%), Bangladesh (n = 72, 14.9%), India (n = 52, 10.7%) and Myanmar (n = 14, 2.9%) were included in this study.

    RESULTS: The overall seroprevalence of T. gondii was 57.4% (n = 278; 95% CI: 52.7-61.8%) with 52.9% (n = 256; 95% CI: 48.4-57.2%) seropositive for anti-Toxoplasma IgG only, 0.8% (n = 4; 95% CI: 0.2-1.7%) seropositive for anti-Toxoplasma IgM only and 3.7% (n = 18; 95% CI: 2.1-5.4%) seropositive with both IgG and IgM antibodies. All positive samples with both IgG and IgM antibodies showed high avidity (> 40%), suggesting latent infection. Age (being older than 45 years), Nepalese nationality, manufacturing occupation, and being a newcomer in Malaysia (excepting domestic work) were positively and statistically significantly associated with seroprevalence (P 

  12. Noordin R, Osman E, Anuar NS, Juri NM, Rahumatullah A, Ahmad Hilmi NA
    Am J Trop Med Hyg, 2021 08 30;105(5):1214-1217.
    PMID: 34460427 DOI: 10.4269/ajtmh.21-0674
    A lateral flow rapid test for strongyloidiasis will greatly facilitate the control and elimination of the disease. Previously SsRapid prototype rapid test showed high diagnostic specificity to detect Strongyloides infection, determined using non-Strongyloides sera negative by IgG-ELISAs. Since high specificity is crucial before a test is used for public health control activities, further validation of its specificity is needed. Also, it needs to be ascertained whether non-Strongyloides sera positive by IgG-ELISAs and SsRapid are truly positive for Strongyloides or are cases of cross-reactivity. We performed 84 rapid tests (two types of dipsticks and cassettes) using 34 serum samples. They were divided into four groups based on Strongyloides infection and coinfection with other parasites and the availability of recombinant proteins and rapid tests for the latter. Sera was adsorbed using polystyrene microspheres beads separately coated with four recombinant parasite proteins. The small sample size is a limitation of this study; however, the overall results showed that the sera adsorption procedure was successful, and the SsRapid test is specific.
  13. Noordin R, Mohd Zain SN, Yunus MH, Sahimin N
    Trans R Soc Trop Med Hyg, 2017 08 01;111(8):370-372.
    PMID: 29206992 DOI: 10.1093/trstmh/trx062
    Background: Malaysia aims to eliminate lymphatic filariasis (LF) by the year 2020, thus the potential threat of LF from migrant workers needs to be investigated.

    Methods: Brugian and bancroftian filariasis among 484 migrant workers from six countries were investigated using rapid tests based on detection of specific IgG4 antibodies against BmR1 (Brugia Rapid) and BmSXP recombinant antigens.

    Results: The seroprevalence of brugian filariasis was very low; however, bancroftian filariasis was notable among workers from India, Nepal and Myanmar.

    Conclusion: Malaysia is not endemic for Wuchereria bancrofti, but harbors the vectors for the parasite, thus the results showed that migrant workers should be monitored for this infection.

  14. Khan AH, Khanbabaie S, Yunus MH, Mohd Zain SN, Mohd Baharudeen Z, Sahimin N, et al.
    J Immigr Minor Health, 2020 Oct;22(5):1105-1108.
    PMID: 32445161 DOI: 10.1007/s10903-020-01029-y
    Hydatid disease is not endemic in Malaysia; however, its migrant workers originate from neighboring countries where the disease is prevalent. Thus, this study was aimed at investigating the seroprevalence of hydatid disease among the workers. A total of 479 migrant workers were screened for hydatid disease. The sociodemographic information was collected, and serum samples were tested with a rapid dipstick test for hydatid disease called Hyd Rapid™. The present study showed that 13.6% of the migrant workers were found to be seropositive for hydatid disease. The highest seroprevalence was seen among Indian workers (29.41%), followed by Myanmarese (21.43%), Bangladeshis (14.92%), Nepalese (10.68%), and Indonesian (10.66%). This is the first study that highlights the likely presence of hydatid disease among the migrant workers in Malaysia, which may be of interest to the health authorities.
  15. Khan AH, Noordin R
    Eur J Clin Microbiol Infect Dis, 2020 Jan;39(1):19-30.
    PMID: 31428897 DOI: 10.1007/s10096-019-03680-2
    Infection by Toxoplasma gondii is prevalent worldwide. The parasite can infect a broad spectrum of vertebrate hosts, but infection of fetuses and immunocompromised patients is of particular concern. Easy-to-perform, robust, and highly sensitive and specific methods to detect Toxoplasma infection are important for the treatment and management of patients. Rapid diagnostic methods that do not sacrifice the accuracy of the assay and give reproducible results in a short time are highly desirable. In this context, rapid diagnostic tests (RDTs), especially with point-of-care (POC) features, are promising diagnostic methods in clinical microbiology laboratories, especially in areas with minimal laboratory facilities. More advanced methods using microfluidics and sensor technology will be the future trend. In this review, we discuss serological and molecular-based rapid diagnostic tests for detecting Toxoplasma infection in humans as well as animals.
  16. Noordin R, Yunus MH, Tan Farrizam SN, Arifin N
    Adv Parasitol, 2020;109:131-152.
    PMID: 32381194 DOI: 10.1016/bs.apar.2020.01.003
    Toxocariasis is a human infection primarily caused by larvae of Toxocara canis from dogs, and also by T. cati from cats. Children have a more significant risk of acquiring the infection due to their closer contact with pets, and greater chances of ingesting soil. Diagnosis of toxocariasis is based on clinical, epidemiological, and serological data. Indirect IgG ELISA is a widely used serodiagnostic method for toxocariasis, with native T. canis TES most commonly used as the antigen. Western blots, using the same antigen, can be used to confirm positive ELISA findings to reduce false-positive results. Improvements in Toxocara serodiagnosis include the use of recombinant TES antigens, simpler and more rapid assay formats, and IgG4 subclass detection. Also, incorporation of recombinant T. cati TES protein increases the diagnostic sensitivity. Development of antigen detection tests using polyclonal and monoclonal antibodies, nanobodies, or aptamers can complement the antibody detection assays, and enhance the effectiveness of the serodiagnosis.
  17. Arifin N, Hanafiah KM, Ahmad H, Noordin R
    J Microbiol Immunol Infect, 2019 Jun;52(3):371-378.
    PMID: 30482708 DOI: 10.1016/j.jmii.2018.10.001
    Strongyloidiasis is a major neglected tropical disease with the potential of causing lifelong infection and mortality. One of the ways for effective control of this disease is developing improved diagnostics, particularly using serological approaches. A serological test can achieve high diagnostic sensitivity and specificity, has the potential for point-of-care translation, and can be used as a screening tool for early detection. More research is needed to find clinically important antibody biomarkers for early disease detection, mapping, and epidemiological surveillance. This article summarizes human strongyloidiasis and the available diagnostic tools for the disease, focusing on describing the current antibody assays for strongyloidiasis. Finally, prospects of developing a more effective serodiagnostic tool for strongyloidiasis are discussed.
  18. Kotresha D, Noordin R
    APMIS, 2010 Aug;118(8):529-42.
    PMID: 20666734 DOI: 10.1111/j.1600-0463.2010.02629.x
    Toxoplasma gondii is an important human pathogen with a worldwide distribution. It is primarily of medical importance for pregnant women and immunocompromised patients. Primary infection of the former is often associated with fetal infection, which can lead to abortion or severe neonatal malformation. Immunocompromised patients are at risk of contracting the severe form of the disease that may be fatal. Thus, detection of T. gondii infection with high sensitivity and specificity is crucial in the management of the disease. Toxoplasmosis is generally diagnosed by demonstrating specific immunoglobulin M (IgM) and IgG antibodies to toxoplasma antigens in the patient's serum sample. Most of the commercially available tests use T. gondii native antigens and display wide variations in test accuracy. Recombinant antigens have great potential as diagnostic reagents for use in assays to detect toxoplasmosis. Thus in this review, we address recent advances in the use of Toxoplasma recombinant proteins for serodiagnosis of toxoplasmosis.
  19. Kavitha N, Noordin R, Kit-Lam C, Sasidharan S
    Molecules, 2012 Aug 02;17(8):9207-19.
    PMID: 22858841 DOI: 10.3390/molecules17089207
    The inhibitory effect of active fractions of Eurycoma longifolia (E. longifolia) root, namely TAF355 and TAF401, were evaluated against Toxoplasma gondii (T. gondii). In our previous study, we demonstrated that T. gondii was susceptible to TAF355 and TAF401 with IC₅₀ values of 1.125 µg/mL and 1.375 µg/mL, respectively. Transmission (TEM) and scanning electron microscopy (SEM) observations were used to study the in situ antiparasitic activity at the IC₅₀ value. Clindamycin was used as positive control. SEM examination revealed cell wall alterations with formation of invaginations followed by completely collapsed cells compared to the normal T. gondii cells in response to the fractions. The main abnormality noted via TEM study was decreased cytoplasmic volume, leaving a state of structural disorganization within the cell cytoplasm and destruction of its organelles as early as 12 h of treatment, which indicated of rapid antiparasitic activity of the E. longifolia fractions. The significant antiparasitic activity shown by the TAF355 and TAF401 active fractions of E. longifolia suggests their potential as new anti-T. gondii agent candidates.
  20. Khoo TK, Noordin R, Santhanam A
    Indian J Exp Biol, 2012 Apr;50(4):256-64.
    PMID: 22611913
    A rapid antibody detection test is very useful for the detection of lymphatic filariasis, especially for certification and surveillance of post-mass drug administration. panLF Rapid kit is suitable for this purpose since it can detect all species of lymphatic filaria. It is based on the detection of anti-filarial IgG4 antibodies that react with recombinant B. malayi antigens, BmR1 and BmSXP. There is an increase demand for the test due to its attributes of being rapid, sensitive and specific results, as well as its field-applicability. The main aim of this paper is to obtain high recovery and purity of recombinant antigen BmSXP via a modified method of immobilized metal affinity chromatography (IMAC). The highest product yield of 11.82 mg/g dry cell weight (DCW) was obtained when IMAC was performed using the optimized protocol of 10 mM imidazole concentration in lysis buffer, 30 mM imidazole concentration in wash buffer, and 10 column volume wash buffer containing 300 mM salt concentration. This gave a 54% protein recovery improvement over the manufacturer's protocol which recorded a product yield of only 7.68 mg/g DCW. The recovered BmSXP recombinant antigen showed good western blot reactivity, high sensitivity (31/32, 97%) and specificity (32/32, 100%) in ELISA, thus attesting to its good purity and quality.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links