Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Ang XY, Chung FY, Lee BK, Azhar SNA, Sany S, Roslan NS, et al.
    J Appl Microbiol, 2021 May 22.
    PMID: 34022103 DOI: 10.1111/jam.15158
    AIMS: The aim of this study was to investigate the effects of lactobacilli strains in preventing the recurrences of vaginal candidiasis (VC) in 78 pregnant women with VC (lactobacilli, n = 39; placebo, n = 39) and the potential benefits on quality of life.

    METHODS AND RESULTS: The lactobacilli putative probiotic (SynForU-HerCare; two capsules/day of 9·5 log CFU per capsule) or placebo was administered for 8-weeks in a randomized, double-blind, placebo-controlled study. Subjects were assessed for vaginal and gut health conditions at baseline, week-4 and week-8 via questionnaires. The vulvovaginal symptom questionnaire not only covered aspects pertaining to vulvovaginal symptoms but also the quality of life impacts such as emotional, social and sexual. The administration of lactobacilli reduced symptoms of irritation (P = 0·023) and discharge (P = 0·011) starting week-4 and continued after week-8 (P 

  2. Nisaa AA, Oon CE, Sreenivasan S, Balakrishnan V, Rajendran D, Tan JJ, et al.
    Prev Nutr Food Sci, 2023 Mar 31;28(1):1-9.
    PMID: 37066035 DOI: 10.3746/pnf.2023.28.1.1
    We previously reported that breast milk from women with (W) or without (WO) vaginal yeast infection during pregnancy differs in its immunological and antimicrobial properties, especially against pathogenic vaginal Candida sp.. Here, we investigated the differences in microbiota profiles of breast milk from these groups. Seventy-two breast milk samples were collected from lactating mothers (W, n=37; WO, n=35). The DNA of bacteria was extracted from each breast milk sample for microbiota profiling by 16S rRNA gene sequencing. Breast milk from the W-group exhibited higher alpha diversity than that from the WO-group across different taxonomic levels of class (P=0.015), order (P=0.011), family (P=0.020), and genus (P=0.030). Compositional differences between groups as determined via beta diversity showed marginal differences at taxonomic levels of phylum (P=0.087), family (P=0.064), and genus (P=0.067). The W-group showed higher abundances of families Moraxellaceae (P=0.010) and Xanthomonadaceae (P=0.008), and their genera Acinetobacter (P=0.015), Enhydrobacter (P=0.015), and Stenotrophomonas (P=0.007). Meanwhile, the WO-group showed higher abundances of genus Staphylococcus (P=0.046) and species Streptococcus infantis (P=0.025). This study shows that, although breast milk composition is affected by vaginal infection during pregnancy, this may not pose a threat to infant growth and development.
  3. Asif M, Shafaei A, Jafari SF, Mohamed SB, Ezzat MO, Majid AS, et al.
    Toxicol Lett, 2016 Jun 3.
    PMID: 27268964 DOI: 10.1016/j.toxlet.2016.05.027
    Colorectal cancer (CRC) is one of the most common human malignant tumors worldwide. Arising from the transformation of epithelial cells in the colon and/or rectum into malignant cells, the foundation of CRC pathogenesis lies in the progressive accumulation of mutations in oncogenes and tumor-suppressor genes, such as APC and KRAS. Resistance to apoptosis is one of the key mechanisms in the development of CRC as it is for any other kind of cancer. Natural products have been shown to induce the expression of apoptosis regulators that are blocked in cancer cells. In the present study, a series of in vitro assays were employed to study the apoptosis inducing attributes of Isoledene rich sub-fraction (IR-SF) collected from the oleo-gum resin of M. ferrea. Data obtained, shows that IR-SF inhibited cell proliferation and induced typical apoptotic changes in the overall morphology of all the CRC cell lines tested. Fluorescent staining assays revealed characteristic nuclear condensation, and marked decrease in mitochondrial outer membrane potential in treated cells. In addition, an increment in the levels of ROS, caspase-8,-9 and -3 was observed. Proteomic analysis revealed that IR-SF up-regulated the expression of pro-apoptotic proteins, i.e., Bid, Bid and cytochrome c. Cytochrome c in turn activated caspases cascade resulting in the induction of apoptosis. Moreover, IR-SF significantly down-regulated Bcl-2, Bcl-w, survivin, xIAP and HSPs pro-proteins and induced DNA fragmentation and G0/G1-phase arrest in HCT 116 cells. Chemical characterization of IR-SF by GC-MS and HPLC methods identified Isoledene as one of the major compounds. Altogether, the results of the present study demonstrate that IR-SF may induce apoptosis in human colorectal carcinoma cells through activation of ROS-mediated apoptotic pathways.
  4. Hor YY, Ooi CH, Khoo BY, Choi SB, Seeni A, Shamsuddin S, et al.
    J Med Food, 2019 Jan;22(1):1-13.
    PMID: 30592688 DOI: 10.1089/jmf.2018.4229
    Aging is an inevitable and ubiquitous progress that affects all living organisms. A total of 18 strains of lactic acid bacteria (LAB) were evaluated on the activation of adenosine monophosphate-activated protein kinase (AMPK), an intracellular energy sensor mediating lifespan extension. The cell-free supernatant (CFS) of Lactobacillus fermentum DR9 (LF-DR9), Lactobacillus paracasei OFS 0291 (LP-0291), and Lactobacillus helveticus OFS 1515 (LH-1515) showed the highest activation of AMPK and was further evaluated. The phosphorylation of AMPK by these three LAB strains was more evident in U2OS and C2C12 cells, compared to the other cell lines and control (P 
  5. Asif M, Yehya AHS, Dahham SS, Mohamed SK, Shafaei A, Ezzat MO, et al.
    Biomed Pharmacother, 2019 Jan;109:1620-1629.
    PMID: 30551416 DOI: 10.1016/j.biopha.2018.10.127
    Proven the great potential of essential oils as anticancer agents, the current study intended to explore molecular mechanisms responsible for in vitro and in vivo anti-colon cancer efficacy of essential oil containing oleo-gum resin extract (RH) of Mesua ferrea. MTT cell viability studies showed that RH had broad spectrum cytotoxic activities. However, it induced more profound growth inhibitory effects towards two human colon cancer cell lines i.e., HCT 116 and LIM1215 with an IC50 values of 17.38 ± 0.92 and 18.86 ± 0.80 μg/mL respectively. RH induced relatively less toxicity in normal human colon fibroblasts i.e., CCD-18co. Cell death studies conducted, revealed that RH induced characteristic morphological and biochemical changes in HCT 116. At protein level it down-regulated expression of multiple pro-survival proteins i.e., survivin, xIAP, HSP27, HSP60 and HSP70 and up-regulated expression of ROS, caspase-3/7 and TRAIL-R2 in HCT 116. Furthermore, significant reduction in invasion, migration and colony formation potential was observed in HCT 116 treated with RH. Chemical characterization by GC-MS and HPLC methods revealed isoledene and elemene as one the major compounds. RH showed potent antitumor activity in xenograft model. Overall, these findings suggest that RH holds a promise to be further studied for cheap anti-colon cancer naturaceutical development.
  6. Tabana YM, Hassan LE, Ahamed MB, Dahham SS, Iqbal MA, Saeed MA, et al.
    Microvasc Res, 2016 09;107:17-33.
    PMID: 27133199 DOI: 10.1016/j.mvr.2016.04.009
    We recently reported the antineovascularization effect of scopoletin on rat aorta and identified its potential anti-angiogenic activity. Scopoletin could be useful as a systemic chemotherapeutic agent against angiogenesis-dependent malignancies if its antitumorigenic activity is investigated and scientifically proven using a suitable human tumor xenograft model. In the present study, bioassay-guided (anti-angiogenesis) phytochemical investigation was conducted on Nicotiana glauca extract which led to the isolation of scopoletin. Further, anti-angiogenic activity of scopoletin was characterized using ex vivo, in vivo and in silico angiogenesis models. Finally, the antitumorigenic efficacy of scopoletin was studied in human colorectal tumor xenograft model using athymic nude mice. For the first time, an in vivo anticancer activity of scopoletin was reported and characterized using xenograft models. Scopoletin caused significant suppression of sprouting of microvessels in rat aortic explants with IC50 (median inhibitory concentration) 0.06μM. Scopoletin (100 and 200mg/kg) strongly inhibited (59.72 and 89.4%, respectively) vascularization in matrigel plugs implanted in nude mice. In the tumor xenograft model, scopoletin showed remarkable inhibition on tumor growth (34.2 and 94.7% at 100 and 200mg/kg, respectively). Tumor histology revealed drastic reduction of the extent of vascularization. Further, immunostaining of CD31 and NG2 receptors in the histological sections confirmed the antivascular effect of scopoletin in tumor vasculature. In computer modeling, scopoletin showed strong ligand affinity and binding energies toward the following angiogenic factors: protein kinase (ERK1), vascular endothelial growth factor A (VEGF-A), and fibroblast growth factor 2 (FGF-2). These results suggest that the antitumor activity of scopoletin may be due to its strong anti-angiogenic effect, which may be mediated by its effective inhibition of ERK1, VEGF-A, and FGF-2.
  7. Nisaa AA, Oon CE, Sreenivasan S, Balakrishnan V, Tan JJ, Teh CS, et al.
    Food Sci Biotechnol, 2023 Mar;32(4):471-480.
    PMID: 36911325 DOI: 10.1007/s10068-022-01088-x
    The aim of this study was to investigate the different immunological and antimicrobial properties of breast milk from women with (W) or without (WO) vaginal yeast infections during pregnancy in 85 lactating women (W, n = 43; WO, n = 42). Concentrations of IL-10, IgA, IgM, IgG, EGF, and TGF-α were similar in both groups. However, breast milk of women aged below 31 years old from the W-group showed higher concentration of EGF than the WO-group (p = 0.031). Breast milk from WO-group exhibited higher anti-Candida properties than W-group, both via growth inhibition and aggregation of yeast cells (p 
  8. Asif M, Iqbal MA, Hussein MA, Oon CE, Haque RA, Khadeer Ahamed MB, et al.
    Eur J Med Chem, 2016 Jan 27;108:177-187.
    PMID: 26649905 DOI: 10.1016/j.ejmech.2015.11.034
    The current mechanistic study was conducted to explore the effects of increased lipophilicity of binuclear silver(I)-NHC complexes on cytotoxicity. Two new silver(I)-N-Heterocyclic Carbene (NHC) complexes (3 and 4), having lypophilic terminal alkyl chains (Octyl and Decyl), were derived from meta-xylyl linked bis-benzimidazolium salts (1 and 2). Each of the synthesized compounds was characterized by microanalysis and spectroscopic techniques. The complexes were tested for their cytotoxicity against a panel of human cancer c as well normal cell lines using MTT assay. Based on MTT assay results, complex 4 was found to be selectively toxic towards human colorectal carcinoma cell line (HCT 116). Complex 4 was further studied in detail to explore the mechanism of cell death and findings of the study revealed that complex 4 has promising pro-apoptotic and anti-metastatic activities against HCT 116 cells. Furthermore, it showed pronounced cytostatic effects in HCT 116 multicellular spheroid model. Hence, binuclear silver(I)-NHC complexes with longer terminal aliphatic chains have worth to be further studied against human colon cancer for the purpose of drug development.
  9. Lachumy SJ, Oon CE, Deivanai S, Saravanan D, Vijayarathna S, Choong YS, et al.
    Asian Pac J Cancer Prev, 2013;14(10):5553-65.
    PMID: 24289545
    Plants play important roles in human life not only as suppliers of oxygen but also as a fundamental resource to sustain the human race on this earthly plane. Plants also play a major role in our nutrition by converting energy from the sun during photosynthesis. In addition, plants have been used extensively in traditional medicine since time immemorial. Information in the biomedical literature has indicated that many natural herbs have been investigated for their efficacy against lethal irradiation. Pharmacological studies by various groups of investigators have shown that natural herbs possess significant radioprotective activity. In view of the immense medicinal importance of natural product based radioprotective agents, this review aims at compiling all currently available information on radioprotective agents from medicinal plants and herbs, especially the evaluation methods and mechanisms of action. In this review we particularly emphasize on ethnomedicinal uses, botany, phytochemistry, mechanisms of action and toxicology. We also describe modern techniques for evaluating herbal samples as radioprotective agents. The usage of herbal remedies for combating lethal irradiation is a green anti- irradiation approach for the betterment of human beings without high cost, side effects and toxicity.
  10. Oon CE, Bridges E, Sheldon H, Sainson RCA, Jubb A, Turley H, et al.
    Oncotarget, 2017 Jun 20;8(25):40115-40131.
    PMID: 28445154 DOI: 10.18632/oncotarget.16969
    Delta-like 4 (DLL4) and Jagged1 (JAG1) are two key Notch ligands implicated in tumour angiogenesis. They were shown to have opposite effects on mouse retinal and adult regenerative angiogenesis. In tumours, both ligands are upregulated but their relative effects and interactions in tumour biology, particularly in tumour response to therapeutic intervention are unclear. Here we demonstrate that DLL4 and JAG1 displayed equal potency in stimulating Notch target genes in HMEC-1 endothelial cells but had opposing effects on sprouting angiogenesis in vitro. Mouse DLL4 or JAG1 expressed in glioblastoma cells decreased tumour cell proliferation in vitro but promoted tumour growth in vivo. mDLL4-expressing tumours showed fewer but larger vessels whereas mJAG1-tumours produced more vessels. In both tumour types pericyte coverage was decreased but the vessels were more perfused. Both ligands increased tumour resistance towards anti-VEGF therapy but the resistance was higher in mDLL4-tumours versus mJAG1-tumours. However, their sensitivity to the therapy was restored by blocking Notch signalling with dibenzazepine. Importantly, anti-DLL4 antibody blocked the effect of JAG1 on tumour growth and increased vessel branching in vivo. The mechanism behind the differential responsiveness was due to a positive feedback loop for DLL4-Notch signalling, rendering DLL4 more dominant in activating Notch signalling in the tumour microenvironment. We concluded that DLL4 and JAG1 promote tumour growth by modulating tumour angiogenesis via different mechanisms. JAG1 is not antagonistic but utilises DLL4 in tumour angiogenesis. The results suggest that anti-JAG1 therapy should be explored in conjunction with anti-DLL4 treatment in developing anti-Notch therapies in clinics.
  11. Tan YJ, Lee YT, Petersen SH, Kaur G, Kono K, Tan SC, et al.
    Ther Adv Med Oncol, 2019;11:1758835919878977.
    PMID: 31632470 DOI: 10.1177/1758835919878977
    Background: This study aims to investigate the combination effect of a novel sirtuin inhibitor (BZD9L1) with 5-fluorouracil (5-FU) and to determine its molecular mechanism of action in colorectal cancer (CRC).

    Methods: BZD9L1 and 5-FU either as single treatment or in combination were tested against CRC cells to evaluate synergism in cytotoxicity, senescence and formation of micronucleus, cell cycle and apoptosis, as well as the regulation of related molecular players. The effects of combined treatments at different doses on stress and apoptosis, migration, invasion and cell death mechanism were evaluated through two-dimensional and three-dimensional cultures. In vivo studies include investigation on the combination effects of BZD9L1 and 5-FU on colorectal tumour xenograft growth and an evaluation of tumour proliferation and apoptosis using immunohistochemistry.

    Results: Combination treatments exerted synergistic reduction on cell viability on HCT 116 cells but not on HT-29 cells. Combined treatments reduced survival, induced cell cycle arrest, apoptosis, senescence and micronucleation in HCT 116 cells through modulation of multiple responsible molecular players and apoptosis pathways, with no effect in epithelial mesenchymal transition (EMT). Combination treatments regulated SIRT1 and SIRT2 protein expression levels differently and changed SIRT2 protein localization. Combined treatment reduced growth, migration, invasion and viability of HCT 116 spheroids through apoptosis, when compared with the single treatment. In addition, combined treatment was found to reduce tumour growth in vivo through reduction of tumour proliferation and necrosis compared with the vehicle control group. This highlights the potential therapeutic effects of BZD9L1 and 5-FU towards CRC.

    Conclusion: This study may pave the way for use of BZD9L1 as an adjuvant to 5-FU in improving the therapeutic efficacy for the treatment of colorectal cancer.

  12. Asif M, Shafaei A, Abdul Majid AS, Ezzat MO, Dahham SS, Ahamed MBK, et al.
    Chin J Nat Med, 2017 Jul;15(7):505-514.
    PMID: 28807224 DOI: 10.1016/S1875-5364(17)30076-6
    Considering the great potential of natural products as anticancer agents, the present study was designed to explore the molecular mechanisms responsible for anticancer activities of Mesua ferrea stem bark extract against human colorectal carcinoma. Based on MTT assay results, bioactive sub-fraction (SF-3) was selected for further studies using HCT 116 cells. Repeated column chromatography resulted in isolation of less active α-amyrin from SF-3, which was identified and characterized by GC-MS and HPLC methods. α-amyrin and betulinic acid contents of SF-3 were measured by HPLC methods. Fluorescent assays revealed characteristic apoptotic features, including cell shrinkage, nuclear condensation, and marked decrease in mitochondrial membrane potential in SF-3 treated cells. In addition, increased levels of caspases-9 and -3/7 levels were also observed in SF-3 treated cells. SF-3 showed promising antimetastatic properties in multiple in vitro assays. Multi-pathway analysis revealed significant down-regulation of WNT, HIF-1α, and EGFR with simultaneous up-regulation of p53, Myc/Max, and TGF-β signalling pathways in SF-3 treated cells. In addition, promising growth inhibitory effects were observed in SF-3 treated HCT 116 tumour spheroids, which give a hint about in vivo antitumor efficacy of SF-3 phytoconstituents. In conclusion, these results demonstrated that anticancer effects of SF-3 towards colon cancer are through modulation of multiple molecular pathways.
  13. Oon CE, Subramaniam AV, Ooi LY, Yehya AHS, Lee YT, Kaur G, et al.
    World J Gastrointest Oncol, 2023 May 15;15(5):810-827.
    PMID: 37275453 DOI: 10.4251/wjgo.v15.i5.810
    BACKGROUND: The development of new vasculatures (angiogenesis) is indispensable in supplying oxygen and nutrients to fuel tumor growth. Epigenetic dysregulation in the tumor vasculature is critical to colorectal cancer (CRC) progression. Sirtuin (SIRT) enzymes are highly expressed in blood vessels. BZD9L1 benzimidazole analogue is a SIRT 1 and 2 inhibitor with reported anticancer activities in CRC. However, its role has yet to be explored in CRC tumor angiogenesis.

    AIM: To investigate the anti-angiogenic potential of BZD9L1 on endothelial cells (EC) in vitro, ex vivo and in HCT116 CRC xenograft in vivo models.

    METHODS: EA.hy926 EC were treated with half inhibitory concentration (IC50) (2.5 μM), IC50 (5.0 μM), and double IC50 (10.0 μM) of BZD9L1 and assessed for cell proliferation, adhesion and SIRT 1 and 2 protein expression. Next, 2.5 μM and 5.0 μM of BZD9L1 were employed in downstream in vitro assays, including cell cycle, cell death and sprouting in EC. The effect of BZD9L1 on cell adhesion molecules and SIRT 1 and 2 were assessed via real-time quantitative polymerase chain reaction (qPCR). The growth factors secreted by EC post-treatment were evaluated using the Quantibody Human Angiogenesis Array. Indirect co-culture with HCT116 CRC cells was performed to investigate the impact of growth factors modulated by BZD9L1-treated EC on CRC. The effect of BZD9L1 on sprouting impediment and vessel regression was determined using mouse choroids. HCT116 cells were also injected subcutaneously into nude mice and analyzed for the outcome of BZD9L1 on tumor necrosis, Ki67 protein expression indicative of proliferation, cluster of differentiation 31 (CD31) and CD34 EC markers, and SIRT 1 and 2 genes via hematoxylin and eosin, immunohistochemistry and qPCR, respectively.

    RESULTS: BZD9L1 impeded EC proliferation, adhesion, and spheroid sprouting through the downregulation of intercellular adhesion molecule 1, vascular endothelial cadherin, integrin-alpha V, SIRT1 and SIRT2 genes. The compound also arrested the cells at G1 phase and induced apoptosis in the EC. In mouse choroids, BZD9L1 inhibited sprouting and regressed sprouting vessels compared to the negative control. Compared to the negative control, the compound also reduced the protein levels of angiogenin, basic fibroblast growth factor, platelet-derived growth factor and placental growth factor, which then inhibited HCT116 CRC spheroid invasion in co-culture. In addition, a significant reduction in CRC tumor growth was noted alongside the downregulation of human SIRT1 (hSIRT1), hSIRT2, CD31, and CD34 EC markers and murine SIRT2 gene, while the murine SIRT1 gene remained unaffected, compared to vehicle control. Histology analyses revealed that BZD9L1 at low (50 mg/kg) and high (250 mg/kg) doses reduced Ki-67 protein expression, while BZD9L1 at the high dose diminished tumor necrosis compared to vehicle control.

    CONCLUSION: These results highlighted the anti-angiogenic potential of BZD9L1 to reduce CRC tumor progression. Furthermore, together with previous anticancer findings, this study provides valuable insights into the potential of BZD9L1 to co-target CRC tumor vasculatures and cancer cells via SIRT1 and/or SIRT2 down-regulation to improve the therapeutic outcome.

  14. Vijayarathna S, Oon CE, Al-Zahrani M, Abualreesh MH, Chen Y, Kanwar JR, et al.
    Front Pharmacol, 2023;14:1198425.
    PMID: 37693900 DOI: 10.3389/fphar.2023.1198425
    Polyalthia longifolia var. angustifolia Thw. (Annonaceae), is a famous traditional medicinal plant in Asia. Ample data specifies that the medicinal plant P. longifolia has anticancer activity; however, the detailed mechanisms of action still need to be well studied. Recent studies have revealed the cytotoxicity potential of P. longifolia leaf against HeLa cells. Therefore, the current study was conducted to examine the regulation of miRNAs in HeLa cancer cells treated with the standardized P. longifolia methanolic leaf extract (PLME). The regulation of miRNAs in HeLa cancer cells treated with the standardized PLME extract was studied through Illumina, Hi-Seq. 2000 platform of Next-Generation Sequencing (NGS) and various in silico bioinformatics tools. The PLME treatment regulated a subset of miRNAs in HeLa cells. Interestingly, the PLME treatment against HeLa cancer cells identified 10 upregulated and 43 downregulated (p < 0.05) miRNAs associated with apoptosis induction. Gene ontology (GO) term analysis indicated that PLME induces cell death in HeLa cells by inducing the pro-apoptotic genes. Moreover, the downregulated oncomiRs modulated by PLME treatment in HeLa cells were identified, targeting apoptosis-related genes through gene ontology and pathway analysis. The LC-ESI-MS/MS analysis identified the presence of Vidarabine and Anandamide compounds that were previously reported to exhibit anticancer activity. The findings of this study obviously linked the cell cytotoxicity effect of PLME treatment against the HeLa cells with regulating various miRNAs expression related to apoptosis induction in the HeLa cells. PLME treatment induced apoptotic HeLa cell death mechanism by regulating multiple miRNAs. The identified miRNAs regulated by PLME may provide further insight into the mechanisms that play a critical role in cervical cancer, as well as novel ideas regarding gene therapeutic strategies.
  15. Yehya AHS, Asif M, Kaur G, Hassan LEA, Al-Suede FSR, Abdul Majid AMS, et al.
    J Adv Res, 2019 Jan;15:59-68.
    PMID: 30581613 DOI: 10.1016/j.jare.2018.05.006
    Pancreatic cancer has the highest mortality rate among cancers due to its aggressive biology and lack of effective treatment. Gemcitabine, the first line anticancer drug has reduced efficacy due to acquired resistance. The current study evaluates the toxicological effects of Orthosiphon stamineus (O.s) and its marker compound (rosmarinic acid) in combination with gemcitabine. O.s (200 or 400 mg/kg/day) and rosmarinic acid (32 mg/kg/day) were administered orally and gemcitabine (10 mg/kg/3 days) intraperitoneally either alone or in combination treatment for fourteen days. Parameters including blood serum biochemistry, hematology, myeloid-erythroid ratio, incident of lethality, and histopathological analysis of liver, kidney, and spleen tissues were studied. Neither, individual drugs/extract nor chemo-herbal combinations at tested doses induced any toxicity and damage to organs in nude mice when compared to control group. Toxicological data obtained from this study will help to select the best doses of chemo-herbal combination for future pancreatic xenograft tumor studies.
  16. Asif M, Saleem M, Yaseen HS, Yehya AH, Saadullah M, Zubair HM, et al.
    Future Microbiol, 2021 Nov;16(16):1289-1301.
    PMID: 34689597 DOI: 10.2217/fmb-2021-0024
    COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.
  17. Kavitha N, Vijayarathna S, Jothy SL, Oon CE, Chen Y, Kanwar JR, et al.
    Asian Pac J Cancer Prev, 2014;15(18):7489-97.
    PMID: 25292018
    MicroRNAs (miRNAs) are short non-coding RNAs of 20-24 nucleotides that play important roles in carcinogenesis. Accordingly, miRNAs control numerous cancer-relevant biological events such as cell proliferation, cell cycle control, metabolism and apoptosis. In this review, we summarize the current knowledge and concepts concerning the biogenesis of miRNAs, miRNA roles in cancer and their potential as biomarkers for cancer diagnosis and prognosis including the regulation of key cancer-related pathways, such as cell cycle control and miRNA dysregulation. Moreover, microRNA molecules are already receiving the attention of world researchers as therapeutic targets and agents. Therefore, in-depth knowledge of microRNAs has the potential not only to identify their roles in cancer, but also to exploit them as potential biomarkers for cancer diagnosis and identify therapeutic targets for new drug discovery.
  18. Vijayarathna S, Oon CE, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Curr Gene Ther, 2014;14(2):112-20.
    PMID: 24588707
    For years researchers have exerted every effort to improve the influential roles of microRNA (miRNA) in regulating genes that direct mammalian cell development and function. In spite of numerous advancements, many facets of miRNA generation remain unresolved due to the perplexing regulatory networks. The biogenesis of miRNA, eminently endures as a mystery as no universal pathway defines or explicates the variegation in the rise of miRNAs. Early evidence in biogenesis ignited specific steps of being omitted or replaced that eventuate in the individual miRNAs of different mechanisms. Understanding the basic foundation concerning how miRNAs are generated and function will help with diagnostic tools and therapeutic strategies. This review encompasses the canonical and the non-canonical pathways involved in miRNA biogenesis, while elucidating how miRNAs regulate genes at the nuclear level and also the mechanism that lies behind circulating miRNAs.
  19. V Subramaniam A, Yehya AHS, Cheng WK, Wang X, Oon CE
    Life Sci, 2019 Sep 01;232:116652.
    PMID: 31302197 DOI: 10.1016/j.lfs.2019.116652
    The development of new blood vessels from pre-existing vasculature is called angiogenesis. The growth of tumors depends on a network of supplying vessels that provide them with oxygen and nutrients. Pro-angiogenic factors that are secreted by tumors will trigger the sprouting of nearby existing blood vessels towards themselves and therefore researchers have developed targeted therapy towards these pro-angiogenic proteins to inhibit angiogenesis. However, certain pro-angiogenic proteins tend to bypass the inhibition. Thus, instead of targeting these expressed proteins, research towards angiogenesis inhibition had been focused on a deeper scale, epigenetic modifications. Epigenetic regulatory mechanisms are a heritable change in a sequence of stable but reversible gene function modification yet do not affect the DNA primary sequence directly. Methylation of DNA, modification of histone and silencing of micro-RNA (miRNA)-associated gene are currently considered to initiate and sustain epigenetic changes. Recent findings on the subject matter have provided an insight into the mechanism of epigenetic modifications, thus this review aims to present an update on the latest studies.
  20. Tan ML, Tan HK, Oon CE, Kuroyanagi M, Muhammad TS
    Food Chem Toxicol, 2012 Feb;50(2):431-44.
    PMID: 22101062 DOI: 10.1016/j.fct.2011.11.001
    14-Deoxy-11,12-didehydroandrographolide is one of the principle compounds of the medicinal plant, Andrographis paniculata Nees. This study explored the mechanisms of 14-deoxy-11,12-didehydroandrographolide-induced toxicity and non-apoptotic cell death in T-47D breast carcinoma cells. Gene expression analysis revealed that 14-deoxy-11,12-didehydroandrographolide exerted its cytotoxic effects by regulating genes that inhibit the cell cycle or promote cell cycle arrest. This compound regulated genes that are known to reduce/inhibit cell proliferation, induce growth arrest and suppress cell growth. The growth suppression activities of this compound were demonstrated by a downregulation of several genes normally found to be over-expressed in cancers. Microscopic analysis revealed positive monodansylcadaverine (MDC) staining at 8h, indicating possible autophagosomes. TEM analysis revealed that the treated cells were highly vacuolated, thereby suggesting that 14-deoxy-11,12-didehydroandrographolide may cause autophagic morphology in these cells. This morphology may be correlated with the concurrent expression of genes known to affect lysosomal activity, ion transport, protein degradation and vesicle transport. Interestingly, some apoptotic-like bodies were found, and these bodies contained multiple large vacuoles, suggesting that this compound is capable of eliciting a combination of apoptotic and autophagic-like morphological characteristics.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links