Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Oslan SN, Salleh AB, Rahman RN, Basri M, Chor AL
    Acta Biochim. Pol., 2012;59(2):225-9.
    PMID: 22577620
    Yeasts are a convenient platform for many applications. They have been widely used as the expression hosts. There is a need to have a new yeast expression system to contribute the molecular cloning demands. Eight yeast isolates were screened from various environment sources and identified through ribosomal DNA (rDNA) Internal Transcribed Spacer (ITS). Full sequence of the rDNA ITS region for each isolate was BLASTed and phylogenetic study was constructed by using MEGA4. Among the isolates, isolate WB from 'ragi' (used to ferment carbohydrates) could be identified as a new species in order Saccharomycetales according to rDNA ITS region, morphology and biochemical tests. Isolate SO (from spoiled orange), RT (rotten tomato) and RG (different type of 'ragi') were identified as Pichia sp. Isolates R1 and R2, S4 and S5 (from the surrounding of a guava tree) were identified as Issatchenkia sp. and Hanseniaspora sp., respectively. Geneticin, 50 µg/mL, was determined to be the antibiotic marker for all isolates excepted for isolates RT and SO which used 500 µg/mL and 100 µg/mL Zeocin, respectively. Intra-extracellular proteins were screened for lipolytic activity at 30°C and 70°C. Thermostable lipase activity was detected in isolates RT and R1 with 0.6 U/mg and 0.1 U/mg, respectively. In conclusion, a new yeast-vector system for isolate WB can be developed by using phleomycin or geneticin as the drugs resistance marker. Moreover, strains RT and R1 can be investigated as a novel source of a thermostable lipase.
  2. Latiffi AA, Salleh AB, Rahman RN, Oslan SN, Basri M
    Genes Genet Syst, 2013;88(2):85-91.
    PMID: 23832300
    The thermostable alkaline protease from Bacillus stearothermophilus F1 has high potential for industrial applications, and attempt to produce the enzyme in yeast for higher yield was undertaken. Secretory expression of F1 protease through yeast system could improve enzyme's capability, thus simplifying the purification steps. Mature and full genes of F1 protease were cloned into Pichia pastoris expression vectors (pGAPZαB and pPICZαB) and transformed into P. pastoris strains (GS115 and SMD1168H) via electroporation method. Recombinant F1 protease under regulation constitutive GAP promoter revealed that the highest expression was achieved after 72 h cultivation. While inducible AOX promoter showed that 0.5% (v/v) methanol was the best to induce expression. It was proven that constitutive expression strategy was better than inducible system. The α-secretion signal from the plasmid demonstrated higher secretory expression level of F1 protease as compared to native Open Reading Frame (ORF) in GS115 strain (GE6GS). Production medium YPTD was found to be the best for F1 protease expression with the highest yield of 4.13 U/mL. The protein was expressed as His-tagged fusion protein with a size about 34 kDa.
  3. Gandhi S, Salleh AB, Rahman RN, Chor Leow T, Oslan SN
    Biomed Res Int, 2015;2015:529059.
    PMID: 26090417 DOI: 10.1155/2015/529059
    Geobacillus stearothermophilus SR74 is a locally isolated thermophilic bacteria producing thermostable and thermoactive α-amylase. Increased production and commercialization of thermostable α-amylase strongly warrant the need of a suitable expression system. In this study, the gene encoding the thermostable α-amylase in G. stearothermophilus SR74 was amplified, sequenced, and subcloned into P. pastoris GS115 strain under the control of a methanol inducible promoter, alcohol oxidase (AOX). Methanol induced recombinant expression and secretion of the protein resulted in high levels of extracellular amylase production. YPTM medium supplemented with methanol (1% v/v) was the best medium and once optimized, the maximum recombinant α-amylase SR74 achieved in shake flask was 28.6 U mL(-1) at 120 h after induction. The recombinant 59 kDa α-amylase SR74 was purified 1.9-fold using affinity chromatography with a product yield of 52.6% and a specific activity of 151.8 U mg(-1). The optimum pH of α-amylase SR74 was 7.0 and the enzyme was stable between pH 6.0-8.0. The purified enzyme was thermostable and thermoactive, exhibiting maximum activity at 65°C with a half-life (t₁/₂) of 88 min at 60°C. In conclusion, thermostable α-amylase SR74 from G. stearothermophilus SR74 would be beneficial for industrial applications, especially in liquefying saccrification.
  4. Garba L, Ali MS, Oslan SN, Rahman RN
    Mol Biotechnol, 2016 Nov;58(11):718-728.
    PMID: 27629791
    Fatty acid desaturase enzymes are capable of inserting double bonds between carbon atoms of saturated fatty acyl-chains to produce unsaturated fatty acids. A gene coding for a putative Δ9-fatty acid desaturase-like protein was isolated from a cold-tolerant Pseudomonas sp. A8, cloned and heterologously expressed in Escherichia coli. The gene named as PA8FAD9 has an open reading frame of 1185 bp and codes for 394 amino acids with a predicted molecular weight of 45 kDa. The enzyme showed high Δ9-fatty acid desaturase-like protein activity and increased overall levels of cellular unsaturated fatty acids in the recombinant E. coli cells upon expression at different temperatures. The results showed that the ratio of palmitoleic to palmitic acid in the recombinant E. coli cells increased by more than twice the amount observed in the control cells at 20 °C using 0.4 mM IPTG. GCMS analysis confirmed the ability of this enzyme to convert exogenous stearic acid to oleic acid incorporated into the recombinant E. coli membrane phospholipids. It may be concluded that the PA8FAD9 gene from Pseudomonas sp. A8 codes for a putative Δ9-fatty acid desaturase protein actively expressed in E. coli under the influence of temperature and an inducer.
  5. Garba L, Mohamad Ali MS, Oslan SN, Rahman RN
    PLoS One, 2016;11(8):e0160681.
    PMID: 27494717 DOI: 10.1371/journal.pone.0160681
    Fatty acid desaturase enzymes play an essential role in the synthesis of unsaturated fatty acids. Pseudomonas sp. A3 was found to produce a large amount of palmitoleic and oleic acids after incubation at low temperatures. Using polymerase Chain Reaction (PCR), a novel Δ9- fatty acid desaturase gene was isolated, cloned, and successfully expressed in Escherichia coli. The gene was designated as PA3FAD9 and has an open reading frame of 1,185 bp which codes for 394 amino acids with a predicted molecular weight of 45 kDa. The activity of the gene product was confirmed via GCMS, which showed a functional putative Δ9-fatty acid desaturase capable of increasing the total amount of cellular unsaturated fatty acids of the E. coli cells expressing the gene. The results demonstrate that the cellular palmitoleic acids have increased two-fold upon expression at 15°C using only 0.1 mM IPTG. Therefore, PA3FAD9 from Pseudomonas sp.A3 codes for a Δ9-fatty acid desaturase-like protein which was actively expressed in E. coli.
  6. Abu ML, Nooh HM, Oslan SN, Salleh AB
    BMC Biotechnol, 2017 Nov 10;17(1):78.
    PMID: 29126403 DOI: 10.1186/s12896-017-0397-7
    BACKGROUND: Pichia guilliermondii was found capable of expressing the recombinant thermostable lipase without methanol under the control of methanol dependent alcohol oxidase 1 promoter (AOXp 1). In this study, statistical approaches were employed for the screening and optimisation of physical conditions for T1 lipase production in P. guilliermondii.

    RESULT: The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD600 23.0.

    CONCLUSION: The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.

  7. Webb CT, Chandrapala D, Oslan SN, Bamert RS, Grinter RD, Dunstan RA, et al.
    Microbiologyopen, 2017 12;6(6).
    PMID: 29055967 DOI: 10.1002/mbo3.513
    Helicobacter pylori is a gram-negative bacterial pathogen that chronically inhabits the human stomach. To survive and maintain advantage, it has evolved unique host-pathogen interactions mediated by Helicobacter-specific proteins in the bacterial outer membrane. These outer membrane proteins (OMPs) are anchored to the cell surface via a C-terminal β-barrel domain, which requires their assembly by the β-barrel assembly machinery (BAM). Here we have assessed the complexity of the OMP C-terminal β-barrel domains employed by H. pylori, and characterized the H. pyloriBAM complex. Around 50 Helicobacter-specific OMPs were assessed with predictive structural algorithms. The data suggest that H. pylori utilizes a unique β-barrel architecture that might constitute H. pylori-specific Type V secretions system. The structural and functional diversity in these proteins is encompassed by their extramembrane domains. Bioinformatic and biochemical characterization suggests that the low β-barrel-complexity requires only minimalist assembly machinery. The H. pylori proteins BamA and BamD associate to form a BAM complex, with features of BamA enabling an oligomerization that might represent a mechanism by which a minimalist BAM complex forms a larger, sophisticated machinery capable of servicing the outer membrane proteome of H. pylori.
  8. Mohd Zin NB, Mohamad Yusof B, Oslan SN, Wasoh H, Tan JS, Ariff AB, et al.
    AMB Express, 2017 Dec;7(1):131.
    PMID: 28651380 DOI: 10.1186/s13568-017-0433-y
    In recent years, many efforts have been directed to explore the methods to reduce the production costs of industrial lipase by improving the yield and the use of low-cost agricultural wastes. Coconut dregs, which is a lignocellulosic by-product from coconut oil and milk processing plants, is rich in cellulose (36%) and crude fat (9%). A newly isolated Bacillus stratosphericus has been demonstrated to perform cellulose hydrolysis on coconut dregs producing fermentable sugars. The highest extracellular lipase activity of 140 U/mL has been achieved in submerged fermentation with acid pre-treated coconut dregs. The lipase was found to be active over a wide range of temperatures and pHs. The activity of lipase can be generally increased by the presence of detergent ingredients such as Tween-80, cetyltrimethylammonium bromide, hydrogen peroxide and phosphate per sulphate. The great compatibility of lipase in commercial detergents has also underlined its potential as an additive ingredient in biodetergent formulations.
  9. Garba L, Mohamad Yussoff MA, Abd Halim KB, Ishak SNH, Mohamad Ali MS, Oslan SN, et al.
    PeerJ, 2018;6:e4347.
    PMID: 29576935 DOI: 10.7717/peerj.4347
    Membrane-bound fatty acid desaturases perform oxygenated desaturation reactions to insert double bonds within fatty acyl chains in regioselective and stereoselective manners. The Δ9-fatty acid desaturase strictly creates the first double bond between C9 and 10 positions of most saturated substrates. As the three-dimensional structures of the bacterial membrane fatty acid desaturases are not available, relevant information about the enzymes are derived from their amino acid sequences, site-directed mutagenesis and domain swapping in similar membrane-bound desaturases. The cold-tolerantPseudomonassp. AMS8 was found to produce high amount of monounsaturated fatty acids at low temperature. Subsequently, an active Δ9-fatty acid desaturase was isolated and functionally expressed inEscherichia coli. In this paper we report homology modeling and docking studies of a Δ9-fatty acid desaturase from a Cold-tolerantPseudomonassp. AMS8 for the first time to the best of our knowledge. Three dimensional structure of the enzyme was built using MODELLER version 9.18 using a suitable template. The protein model contained the three conserved-histidine residues typical for all membrane-bound desaturase catalytic activity. The structure was subjected to energy minimization and checked for correctness using Ramachandran plots and ERRAT, which showed a good quality model of 91.6 and 65.0%, respectively. The protein model was used to preform MD simulation and docking of palmitic acid using CHARMM36 force field in GROMACS Version 5 and Autodock tool Version 4.2, respectively. The docking simulation with the lowest binding energy, -6.8 kcal/mol had a number of residues in close contact with the docked palmitic acid namely, Ile26, Tyr95, Val179, Gly180, Pro64, Glu203, His34, His206, His71, Arg182, Thr85, Lys98 and His177. Interestingly, among the binding residues are His34, His71 and His206 from the first, second, and third conserved histidine motif, respectively, which constitute the active site of the enzyme. The results obtained are in compliance with thein vivoactivity of the Δ9-fatty acid desaturase on the membrane phospholipids.
  10. Daud NH, Leow TC, Oslan SN, Salleh AB
    Mol Biotechnol, 2019 Mar 27.
    PMID: 30919327 DOI: 10.1007/s12033-019-00169-3
    The application of native enzymes may not be economical owing to the stability factor. A smaller protein molecule may be less susceptible to external stresses. Haloalkane dehalogenases (HLDs) that act on toxic haloalkanes may be incorporated as bioreceptors to detect haloalkane contaminants. Therefore, this study aims to develop mini proteins of HLD as an alternative bioreceptor which was able to withstand extreme conditions. Initially, the mini proteins were designed through computer modeling. Based on the results, five designed mini proteins were deemed to be viable stable mini proteins. They were then validated through experimental study. The smallest mini protein (model 5) was chosen for subsequent analysis as it was expressed in soluble form. No dehalogenase activity was detected, thus the specific binding interaction of between 1,3-dibromopropane with mini protein was investigated using isothermal titration calorimetry. Higher binding affinity between 1,3-dibromopropane and mini protein was obtained than the native. Thermal stability study with circular dichroism had proven that the mini protein possessed two times higher Tm value at 83.73 °C than the native at 43.97 °C. In conclusion, a stable mini protein was successfully designed and may be used as bioreceptors in the haloalkane sensor that is suitable for industrial application.
  11. Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, et al.
    Mol Biol Rep, 2019 Dec;46(6):6647-6659.
    PMID: 31535322 DOI: 10.1007/s11033-019-05066-1
    Flavonoids are polyphenols that are important organic chemicals in plants. The health benefits of flavonoids that result in high commercial values make them attractive targets for large-scale production through bioengineering. Strategies such as engineering a flavonoid biosynthetic pathway in microbial hosts provide an alternative way to produce these beneficial compounds. Escherichia coli, Saccharomyces cerevisiae and Streptomyces sp. are among the expression systems used to produce recombinant products, as well as for the production of flavonoid compounds through various bioengineering approaches including clustered regularly interspaced short palindromic repeats (CRISPR)-based genome engineering and genetically encoded biosensors to detect flavonoid biosynthesis. In this study, we review the recent advances in engineering model microbial hosts as being the factory to produce targeted flavonoid compounds.
  12. Roslan NN, Ngalimat MS, Leow ATC, Oslan SN, Baharum SN, Sabri S
    Microbiol Res, 2020 Mar;233:126410.
    PMID: 31945517 DOI: 10.1016/j.micres.2020.126410
    Photobacterium species are widely distributed in the marine environment. The overall metabolism of this genus remains largely unknown. In order to improve our knowledge on this bacterium, the relationship between the genome and phenome of the Photobacterium isolate was analyzed. The cream colored, Gram-negative, rod-shaped and motile bacterial strain, J15, was isolated from marine water of Tanjung Pelepas, Johor, Malaysia. The 5,684,538 bp genome of strain J15 comprised 3 contigs (2 chromosomes and 1 plasmid) with G + C content of 46.39 % and contained 4924 protein-coding genes including 180 tRNAs and 40 rRNAs. The phenotypic microarray (PM) as analyzed using BIOLOG showed the utilization of; i) 93 of the 190 carbon sources tested, where 61 compounds were used efficiently; ii) 41 of the 95 nitrogen sources tested, where 22 compounds were used efficiently; and iii) 3 of the 94 phosphorous and sulphur sources tested. Furthermore, high tolerance to osmotic stress, basic pH and toxic compounds as well as resistance to antibiotics of strain J15 were determined by BIOLOG PM. The ANI and kSNP analyses revealed that strain J15 to be the same species with Photobacterium marinum AK15 with ANI value of 96.93 % and bootstrapping value of 100 in kSNP. Based on the ANI and kSNP analyses, strain J15 was identified as P. marinum J15.
  13. Salleh AB, Baharuddin SM, Rahman RNZRA, Leow TC, Basri M, Oslan SN
    Microorganisms, 2020 Nov 06;8(11).
    PMID: 33171893 DOI: 10.3390/microorganisms8111738
    Screening for a new yeast as an alternative host is expected to solve the limitations in the present yeast expression system. A yeast sample which was isolated from the traditional food starter 'ragi' from Malaysia was identified to contain Meyerozyma guilliermondii strain SMB. This yeast-like fungus strain SMB was characterized to assess its suitability as an expression host. Lipase activity was absent in this host (when assayed at 30 °C and 70 °C) and Hygromycin B (50 μg/mL) was found to be its best selection marker. Then, the hyg gene (Hygromycin B) was used to replace the sh ble gene (Zeocin) expression cassette in a Komagataella phaffii expression vector (designated as pFLDhα). A gene encoding the mature thermostable lipase from Bacillus sp. L2 was cloned into pFLDhα, followed by transformation into strain SMB. The optimal expression of L2 lipase was achieved using YPTM (Yeast Extract-Peptone-Tryptic-Methanol) medium after 48 h with 0.5% (v/v) methanol induction, which was 3 times faster than another K. phaffii expression system. In conclusion, a new host-vector system was established as a platform to express L2 lipase under the regulation of PFLD1. It could also be promising to express other recombinant proteins without inducers.
  14. Abdul Aziz NFH, Abbasiliasi S, Ng ZJ, Abu Zarin M, Oslan SN, Tan JS, et al.
    Molecules, 2020 Nov 16;25(22).
    PMID: 33207534 DOI: 10.3390/molecules25225332
    Lactobacillus bulgaricus is a LAB strain which is capable of producing bacteriocin substances to inhibit Staphylococcus aureus. The aim of this study was to purify a bacteriocin-like inhibitory substance (BLIS) produced by L. bulgaricus FTDC 1211 using an aqueous impregnated resins system consisting of polyethylene-glycol (PEG) impregnated on Amberlite XAD4. Important parameters influencing on purification of BLIS, such as the molecular weight and concentration of PEG, the concentration and pH of sodium citrate and the concentration of sodium chloride, were optimized using a response surface methodology. Under optimum conditions of 11% (w/w) of PEG 4000 impregnated Amberlite XAD4 resins and 2% (w/w) of sodium citrate at pH 6, the maximum purification factor (3.26) and recovery yield (82.69% ± 0.06) were obtained. These results demonstrate that AIRS could be used as an alternate purification system in the primary recovery step.
  15. Eskandari A, Leow TC, Rahman MBA, Oslan SN
    Biomolecules, 2020 12 09;10(12).
    PMID: 33317024 DOI: 10.3390/biom10121649
    Antifreeze proteins (AFPs) are specific proteins, glycopeptides, and peptides made by different organisms to allow cells to survive in sub-zero conditions. AFPs function by reducing the water's freezing point and avoiding ice crystals' growth in the frozen stage. Their capability in modifying ice growth leads to the stabilization of ice crystals within a given temperature range and the inhibition of ice recrystallization that decreases the drip loss during thawing. This review presents the potential applications of AFPs from different sources and types. AFPs can be found in diverse sources such as fish, yeast, plants, bacteria, and insects. Various sources reveal different α-helices and β-sheets structures. Recently, analysis of AFPs has been conducted through bioinformatics tools to analyze their functions within proper time. AFPs can be used widely in various aspects of application and have significant industrial functions, encompassing the enhancement of foods' freezing and liquefying properties, protection of frost plants, enhancement of ice cream's texture, cryosurgery, and cryopreservation of cells and tissues. In conclusion, these applications and physical properties of AFPs can be further explored to meet other industrial players. Designing the peptide-based AFP can also be done to subsequently improve its function.
  16. Oslan SNH, Shoparwe NF, Yusoff AH, Rahim AA, Chang CS, Tan JS, et al.
    Biomolecules, 2021 02 10;11(2).
    PMID: 33578851 DOI: 10.3390/biom11020256
    As the most recognizable natural secondary carotenoid astaxanthin producer, the green microalga Haematococcus pluvialis cultivation is performed via a two-stage process. The first is dedicated to biomass accumulation under growth-favoring conditions (green stage), and the second stage is for astaxanthin evolution under various stress conditions (red stage). This mini-review discusses the further improvement made on astaxanthin production by providing an overview of recent works on H. pluvialis, including the valuable ideas for bioprocess optimization on cell growth, and the current stress-exerting strategies for astaxanthin pigment production. The effects of nutrient constituents, especially nitrogen and carbon sources, and illumination intensity are emphasized during the green stage. On the other hand, the significance of the nitrogen depletion strategy and other exogenous factors comprising salinity, illumination, and temperature are considered for the astaxanthin inducement during the red stage. In short, any factor that interferes with the cellular processes that limit the growth or photosynthesis in the green stage could trigger the encystment process and astaxanthin formation during the red stage. This review provides an insight regarding the parameters involved in bioprocess optimization for high-value astaxanthin biosynthesis from H. pluvialis.
  17. Oslan SNH, Tan JS, Oslan SN, Matanjun P, Mokhtar RAM, Shapawi R, et al.
    Molecules, 2021 Oct 27;26(21).
    PMID: 34770879 DOI: 10.3390/molecules26216470
    Haematococcus pluvialis, a green microalga, appears to be a rich source of valuable bioactive compounds, such as astaxanthin, carotenoids, proteins, lutein, and fatty acids (FAs). Astaxanthin has a variety of health benefits and is used in the nutraceutical and pharmaceutical industries. Astaxanthin, for example, preserves the redox state and functional integrity of mitochondria and shows advantages despite a low dietary intake. Because of its antioxidant capacity, astaxanthin has recently piqued the interest of researchers due to its potential pharmacological effects, which include anti-diabetic, anti-inflammatory, and antioxidant activities, as well as neuro-, cardiovascular-, ocular, and skin-protective properties. Astaxanthin is a popular nutritional ingredient and a significant component in animal and aquaculture feed. Extensive studies over the last two decades have established the mechanism by which persistent oxidative stress leads to chronic inflammation, which then mediates the majority of serious diseases. This mini-review provides an overview of contemporary research that makes use of the astaxanthin pigment. This mini-review provides insight into the potential of H. pluvialis as a potent antioxidant in the industry, as well as the broad range of applications for astaxanthin molecules as a potent antioxidant in the industrial sector.
  18. Lim SJ, Mohamad Ali MS, Sabri S, Muhd Noor ND, Salleh AB, Oslan SN
    Med Mycol, 2021 Dec 03;59(12):1127-1144.
    PMID: 34506621 DOI: 10.1093/mmy/myab053
    Candidiasis is a fungal infection caused by Candida spp. especially Candida albicans, C. glabrata, C. parapsilosis and C. tropicalis. Although the medicinal therapeutic strategies have rapidly improved, the mortality rate as candidiasis has continuously increased. The secreted and membrane-bound virulence factors (VFs) are responsible for fungal invasion, damage and translocation through the host enterocytes besides the evasion from host immune system. VFs such as agglutinin-like sequences (Als), heat shock protein 70, phospholipases, secreted aspartyl proteinases (Sap), lipases, enolases and phytases are mostly hydrolases which degrade or interact with the enterocyte membrane components. Candidalysin, however, acts as a peptide toxin to induce necrotic cell lysis. To date, structural studies of the VFs remain underexplored, hindering their functional analyses. Among the VFs, only Sap and Als have their structures deposited in Protein Data Bank (PDB). Therefore, this review scrutinizes the mechanisms of these VFs by discussing the VF-deficient studies of several Candida spp. and their abilities to produce these VFs. Nonetheless, their latest reported sequential and structural analyses are discussed to impart a wider perception of the host-pathogen interactions and potential vaccine or antifungal drug targets. This review signifies that more VFs structural investigations and mining in the emerging Candida spp. are required to decipher their pathogenicity and virulence mechanisms compared to the prominent C. albicans.

    LAY SUMMARY: Candida virulence factors (VFs) including mainly enzymes and proteins play vital roles in breaching the human intestinal barrier and causing deadly invasive candidiasis. Limited VFs' structural studies hinder deeper comprehension of their mechanisms and thus the design of vaccines and antifungal drugs against fungal infections.

  19. Lim SJ, Oslan SN
    PeerJ, 2021;9:e11315.
    PMID: 34046253 DOI: 10.7717/peerj.11315
    Background: -amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work.

    Survey methodology and objectives: A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries.

    Conclusions: Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.

  20. Abu ML, Mohammad R, Oslan SN, Salleh AB
    Prep Biochem Biotechnol, 2021;51(4):350-360.
    PMID: 32940138 DOI: 10.1080/10826068.2020.1818256
    A thermostable bacterial lipase from Geobacillus zalihae was expressed in a novel yeast Pichia sp. strain SO. The preliminary expression was too low and discourages industrial production. This study sought to investigate the optimum conditions for T1 lipase production in Pichia sp. strain SO. Seven medium conditions were investigated and optimized using Response Surface Methodology (RSM). Five responding conditions namely; temperature, inoculum size, incubation time, culture volume and agitation speed observed through Plackett-Burman Design (PBD) method had a significant effect on T1 lipase production. The medium conditions were optimized using Box-Behnken Design (BBD). Investigations reveal that the optimum conditions for T1 lipase production and Biomass concentration (OD600) were; Temperature 31.76 °C, incubation time 39.33 h, culture volume 132.19 mL, inoculum size 3.64%, and agitation speed of 288.2 rpm with a 95% PI low as; 12.41 U/mL and 95% PI high of 13.65 U/mL with an OD600 of; 95% PI low as; 19.62 and 95% PI high as; 22.62 as generated by the software was also validated. These predicted parameters were investigated experimentally and the experimental result for lipase activity observed was 13.72 U/mL with an OD600 of 24.5. At these optimum conditions, there was a 3-fold increase on T1 lipase activity. This study is the first to develop a statistical model for T1 lipase production and biomass concentration in Pichia sp. Strain SO. The optimized production of T1 lipase presents a choice for its industrial application.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links