Displaying publications 1 - 20 of 154 in total

Abstract:
Sort:
  1. Moo EK, Osman NA, Pingguan-Murphy B, Abas WA, Spence WD, Solomonidis SE
    Acta Bioeng Biomech, 2009;11(4):37-43.
    PMID: 20405814
    Conventionally, patellar tendon-bearing (PTB) sockets, which need high dexterity of prosthetist, are widely used. Lack of chartered and experienced prosthetist has often led to painful experience of wearing prosthesis and this will in turn deter the patients to wear the prosthesis, which will further aggravate stump shrinkage. Thus, the hydrostatic socket which demands relatively lower level of fabricating skill is proposed to replace the PTB socket in order to produce the equivalent, if not better, quality of support to the amputee patients. Both sockets' pressure profiles are studied and compared using finite element analysis (FEA) software. Three-dimensional models of both sockets were developed using MIMICS software. The analysis results showed that hydrostatic socket did exhibit more uniform pressure profiles than that of PTB socket. PTB socket showed pressure concentration near the proximal brim of the socket and also at the distal fibula. It was also found that the pressure magnitude in hydrostatic socket is relatively lower than that of PTB socket.
  2. Abu Osman NA, Spence WD, Solomonidis SE, Paul JP, Weir AM
    Med Eng Phys, 2010 Sep;32(7):760-5.
    PMID: 20678997 DOI: 10.1016/j.medengphy.2010.04.020
    The purpose of this investigation was to vary the load on the patellar tendon bar and to study the subsequent effect this has on the pattern of the pressure distribution at the stump-socket interface. Ten male subjects from the Southern General Hospital in Glasgow, UK participated in this study. Measuring systems utilising strain gauge and electrohydraulic technologies were designed, developed and constructed to enable pressure measurements to be conducted. One transducer, the patellar tendon (PT) transducer, was attached to the patellar tendon bar of the socket such that the patellar tendon bar was capable of being translated by +/-10 mm towards or away from the tendon. The results of this study showed that the position of the patellar tendon bar had no significant effect on the pressure distribution around the socket indicating that it is an unnecessary feature, which, we propose, may be eliminated during manufacture of a trans-tibial socket.
  3. Amiri-Khorasani M, Abu Osman NA, Yusof A
    J Strength Cond Res, 2011 Apr;25(4):1177-81.
    PMID: 20838249 DOI: 10.1519/JSC.0b013e3181d6508c
    This study investigated the number of trials necessary to obtain optimal biomechanical responses in 10 consecutive soccer instep kicks. The kicking motions of dominant legs were captured from 5 experienced and skilled adult male soccer players (height: 184.60 ± 4.49 cm; mass: 80 ± 4.24 kg; and age: 25.60 ± 1.14 years) using a 3D infrared high-speed camera at 200 Hz. Some of the important kinematics and kinetics parameters are maximum thigh angular velocity, maximum lower leg angular velocity, maximum of thigh moment, maximum lower leg moment at forward and impact phases, and finally maximum ball velocity after impact selected to be analyzed. There was a significant decrease of ball velocity between the first and the fifth kick and the subsequent kicks. Similarly, the lower leg angular velocity showed a significant decrease after the fifth kick and thereafter. Compared with the first kick, the thigh angular velocity has been shown to decrease after the sixth kick and thereafter, and the thigh moment result of the sixth kick was significantly lower when compared with the first kick. Moreover, the lower leg moment result of the fourth kick was significantly lower in comparison with the first kick. In conclusion, it seems that 5 consecutive kicks are adequate to achieve high kinematics and kinetics responses and selecting more than 5 kicks does not result in any high biomechanical responses for analysis.
  4. Tham LK, Osman NA, Lim KS, Pingguan-Murphy B, Abas WA, Zain NM
    Med Eng Phys, 2011 May;33(4):407-10.
    PMID: 21146440 DOI: 10.1016/j.medengphy.2010.11.002
    The investigation of patellar tendon reflex involves development of a reflex hammer holder, kinematic data collection and analysis of patellar reflex responses using motion analysis techniques. The main aim of this research is to explore alternative means of assessing reflexes as a part of routine clinical diagnosis. The motion analysis system was applied to provide quantitative data which is a more objective measure of the patellar tendon reflex. Kinematic data was collected from 28 males and 22 females whilst subjected to a knee jerk test. Further analysis of kinematic data was performed to predict relationships which might affect the patellar tendon reflex. All subjects were seated on a high stool with their legs hanging freely within the capture volume of the motion analysis system. Knee jerk tests were applied to all subjects, on both sides of the leg, by eliciting hypo, hyper, and normal reflexes. An additional reinforcement technique called the Jendrassik manoeuvre was also performed under the same conditions to elicit a normal patellar tendon reflex. The comparison of reflex response between genders showed that female subjects generally had a greater response compared to males. However, the difference in reflex response between the left leg and the right leg was not significant. Tapping strength to elicit a hyper-reflex produced greater knee-jerk compared to the normal clinical tapping strength. All results were in agreement with clinical findings and results found by some early researchers.
  5. Amiri-Khorasani M, Abu Osman NA, Yusof A
    J Strength Cond Res, 2011 Jun;25(6):1647-52.
    PMID: 21358428 DOI: 10.1519/JSC.0b013e3181db9f41
    The purpose of this study was to examine the effects of static and dynamic stretching within a pre-exercise warm-up on hip dynamic range of motion (DROM) during instep kicking in professional soccer players. The kicking motions of dominant legs were captured from 18 professional adult male soccer players (height: 180.38 ± 7.34 cm; mass: 69.77 ± 9.73 kg; age: 19.22 ± 1.83 years) using 4 3-dimensional digital video cameras at 50 Hz. Hip DROM at backward, forward, and follow-through phases (instep kick phases) after different warm-up protocols consisting of static, dynamic, and no-stretching on 3 nonconsecutive test days were captured for analysis. During the backswing phase, there was no difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method. There was a significant difference in DROM after the dynamic stretching compared with the static stretching relative to the no-stretching method during (a) the forward phase with p < 0.03, (b) the follow-through phase with p < 0.01, and (c) all phases with p < 0.01. We concluded that professional soccer players can perform a higher DROM of the hip joint during the instep kick after dynamic stretching incorporated in warm-ups, hence increasing the chances of scoring and injury prevention during soccer games.
  6. Yusoff N, Abu Osman NA, Pingguan-Murphy B
    Med Eng Phys, 2011 Jul;33(6):782-8.
    PMID: 21356602 DOI: 10.1016/j.medengphy.2011.01.013
    A mechanical-conditioning bioreactor has been developed to provide bi-axial loading to three-dimensional (3D) tissue constructs within a highly controlled environment. The computer-controlled bioreactor is capable of applying axial compressive and shear deformations, individually or simultaneously at various regimes of strain and frequency. The reliability and reproducibility of the system were verified through validation of the spatial and temporal accuracy of platen movement, which was maintained over the operating length of the system. In the presence of actual specimens, the system was verified to be able to deliver precise bi-axial load to the specimens, in which the deformation of every specimen was observed to be relatively homogeneous. The primary use of the bioreactor is in the culture of chondrocytes seeded within an agarose hydrogel while subjected to physiological compressive and shear deformation. The system has been designed specifically to permit the repeatable quantification and characterisation of the biosynthetic activity of cells in response to a wide range of short and long term multi-dimensional loading regimes.
  7. Gholizadeh H, Abu Osman NA, Lúvíksdóttir Á, Eshraghi A, Kamyab M, Wan Abas WA
    Prosthet Orthot Int, 2011 Dec;35(4):360-4.
    PMID: 21975850 DOI: 10.1177/0309364611423130
    Good suspension lessens the pistoning (vertical displacement) of the residual limb inside the prosthetic socket. Several methods are used for measuring the pistoning.
  8. Moo EK, Osman NA, Pingguan-Murphy B
    Clinics (Sao Paulo), 2011;66(8):1431-6.
    PMID: 21915496
    INTRODUCTION: Although previous studies have been performed on cartilage explant cultures, the generalized dynamics of cartilage metabolism after extraction from the host are still poorly understood due to differences in the experimental setups across studies, which in turn prevent building a complete picture.

    METHODS: In this study, we investigated the response of cartilage to the trauma sustained during extraction and determined the time needed for the cartilage to stabilize. Explants were extracted aseptically from bovine metacarpal-phalangeal joints and cultured for up to 17 days.

    RESULTS: The cell viability, cell number, proteoglycan content, and collagen content of the harvested explants were analyzed at 0, 2, 10, and 17 days after explantation. A high percentage of the cartilage explants were found to be viable. The cell density initially increased significantly but stabilized after two days. The proteoglycan content decreased gradually over time, but it did not decrease to a significant level due to leakage through the distorted peripheral collagen network and into the bathing medium. The collagen content remained stable for most of the culture period until it dropped abruptly on day 17.

    CONCLUSION: Overall, the tested cartilage explants were sustainable over long-term culture. They were most stable from day 2 to day 10. The degradation of the collagen on day 17 did not reach diseased levels, but it indicated the potential of the cultures to develop into degenerated cartilage. These findings have implications for the application of cartilage explants in pathophysiological fields.

  9. Gholizadeh H, Osman NA, Kamyab M, Eshraghi A, Abas WA, Azam MN
    Clin Biomech (Bristol, Avon), 2012 Jan;27(1):34-9.
    PMID: 21794965 DOI: 10.1016/j.clinbiomech.2011.07.004
    The method of attachment of prosthesis to the residual limb (suspension) and socket fitting is a critical issue in the process of providing an amputee with prosthesis. Different suspension methods try to minimize the pistoning movement inside the socket. The Seal-In(®) X5 and Dermo(®) Liner by Ossur are new suspension liners that intend to reduce pistoning between the socket and liner. Since the effects of these new liners on suspension are unclear, the objective of this study was to compare the pistoning effect of Seal-In(®) X5 and Dermo(®) Liner by using Vicon Motion System.
  10. Eshraghi A, Osman NA, Gholizadeh H, Karimi M, Ali S
    Prosthet Orthot Int, 2012 Mar;36(1):15-24.
    PMID: 22269941 DOI: 10.1177/0309364611431625
    One of the main indicators of the suspension system efficiency in lower limb prostheses is vertical displacement or pistoning within the socket. Decreasing pistoning and introducing an effective system for evaluating pistoning could contribute to the amputees' rehabilitation process.
  11. Ku PX, Abu Osman NA, Yusof A, Wan Abas WA
    J Biomech, 2012 Jun 1;45(9):1638-42.
    PMID: 22507349 DOI: 10.1016/j.jbiomech.2012.03.029
    Postural stability is crucial in maintaining body balance during quiet standing, locomotion, and any activities that require a high degree of balance performance, such as participating in sports and dancing. Research has shown that there is a relationship between stability and body mass. The aims of this study were to examine the impact that two variables had on static postural control: body mass index (BMI) and gender. Eighty healthy young adults (age=21.7±1.8 yr; height=1.65±0.09 m; mass=67.5±19.0 kg) participated in the study and the static postural control was assessed using the Biodex Balance System, with a 20 Hz sampling rate in the bipedic stance (BLS) and unipedic stance (ULS) for 30s. Five test evaluations were performed for each balance test. Postural control was found to be negatively correlated with increased adiposity, as the obese BMI group performed significantly poorer than the underweight, normal weight and overweight groups during BLS and ULS tests. The underweight, normal weight and overweight groups exhibited greater anterior-posterior stability in postural control during quiet stance. In addition, female displayed a trend of having a greater postural sway than male young adults, although it was evidenced in only some BMI groups. This study revealed that BMI do have an impact on postural control during both BLS and ULS. As such, BMI and gender-specific effects should be taken into consideration when selecting individuals for different types of sporting activities, especially those that require quiet standing.
  12. Pramanik S, Pingguan-Murphy B, Abu Osman NA
    Sci Technol Adv Mater, 2012 Aug;13(4):043002.
    PMID: 27877500
    There has been unprecedented development in tissue engineering (TE) over the last few years owing to its potential applications, particularly in bone reconstruction or regeneration. In this article, we illustrate several advantages and disadvantages of different approaches to the design of electrospun TE scaffolds. We also review the major benefits of electrospun fibers for three-dimensional scaffolds in hard connective TE applications and identify the key strategies that can improve the mechanical properties of scaffolds for bone TE applications. A few interesting results of recent investigations have been explained for future trends in TE scaffold research.
  13. Moo EK, Herzog W, Han SK, Abu Osman NA, Pingguan-Murphy B, Federico S
    Biomech Model Mechanobiol, 2012 Sep;11(7):983-93.
    PMID: 22234779 DOI: 10.1007/s10237-011-0367-2
    Experimental findings indicate that in-situ chondrocytes die readily following impact loading, but remain essentially unaffected at low (non-impact) strain rates. This study was aimed at identifying possible causes for cell death in impact loading by quantifying chondrocyte mechanics when cartilage was subjected to a 5% nominal tissue strain at different strain rates. Multi-scale modelling techniques were used to simulate cartilage tissue and the corresponding chondrocytes residing in the tissue. Chondrocytes were modelled by accounting for the cell membrane, pericellular matrix and pericellular capsule. The results suggest that cell deformations, cell fluid pressures and fluid flow velocity through cells are highest at the highest (impact) strain rate, but they do not reach damaging levels. Tangential strain rates of the cell membrane were highest at the highest strain rate and were observed primarily in superficial tissue cells. Since cell death following impact loading occurs primarily in superficial zone cells, we speculate that cell death in impact loading is caused by the high tangential strain rates in the membrane of superficial zone cells causing membrane rupture and loss of cell content and integrity.
  14. Al-Fakih E, Abu Osman NA, Mahamd Adikan FR
    Sensors (Basel), 2012 Sep 25;12(10):12890-926.
    PMID: 23201977 DOI: 10.3390/s121012890
    In recent years, fiber Bragg gratings (FBGs) are becoming increasingly attractive for sensing applications in biomechanics and rehabilitation engineering due to their advantageous properties like small size, light weight, biocompatibility, chemical inertness, multiplexing capability and immunity to electromagnetic interference (EMI). They also offer a high-performance alternative to conventional technologies, either for measuring a variety of physical parameters or for performing high-sensitivity biochemical analysis. FBG-based sensors demonstrated their feasibility for specific sensing applications in aeronautic, automotive, civil engineering structure monitoring and undersea oil exploration; however, their use in the field of biomechanics and rehabilitation applications is very recent and its practicality for full-scale implementation has not yet been fully established. They could be used for detecting strain in bones, pressure mapping in orthopaedic joints, stresses in intervertebral discs, chest wall deformation, pressure distribution in Human Machine Interfaces (HMIs), forces induced by tendons and ligaments, angles between body segments during gait, and many others in dental biomechanics. This article aims to provide a comprehensive overview of all the possible applications of FBG sensing technology in biomechanics and rehabilitation and the status of ongoing researches up-to-date all over the world, demonstrating the FBG advances over other existing technologies.
  15. Gholizadeh H, Abu Osman NA, Kamyab M, Eshraghi A, Lúvíksdóttir AG, Wan Abas WA
    Am J Phys Med Rehabil, 2012 Oct;91(10):894-8.
    PMID: 22173083
    The effects of Seal-In X5 and Dermo liner (Össur) on suspension and patient's comfort in lower limb amputees are unclear. In this report, we consider the case of a 51-yr-old woman with bilateral transtibial amputation whose lower limbs were amputated because of peripheral vascular disease. The subject had bony and painful residual limbs, especially at the distal ends. Two prostheses that used Seal-In X5 liners and a pair of prostheses with Dermo liners were fabricated, and the subject wore each for a period of 2 wks. Once the 2 wks had passed, the pistoning within the socket was assessed and the patient was questioned as to her satisfaction with both liners. This study revealed that Seal-In X5 liner decreased the residual limb pain experienced by the patient and that 1-2 mm less pistoning occurred within the socket compared with the Dermo liner. However, the patient needed to put in extra effort for donning and doffing the prosthesis. Despite this, it is clear that the Seal-In X5 liner offers a viable alternative for individuals with transtibial amputations who do not have enough soft tissue around the bone, especially at the end of the residual limb.
  16. Ali S, Osman NA, Mortaza N, Eshraghi A, Gholizadeh H, Wan Abas WA
    Clin Biomech (Bristol, Avon), 2012 Nov;27(9):943-8.
    PMID: 22795863 DOI: 10.1016/j.clinbiomech.2012.06.004
    The interface pressure between the residual limb and prosthetic socket has a significant effect on an amputee's satisfaction and comfort. Liners provide a comfortable interface by adding a soft cushion between the residual limb and the socket. The Dermo and the Seal-In X5 liner are two new interface systems and, due to their relative infancy, very little are known about their effect on patient satisfaction. The aim of this study was to compare the interface pressure with these two liners and their effect on patient satisfaction.
  17. Ali S, Abu Osman NA, Naqshbandi MM, Eshraghi A, Kamyab M, Gholizadeh H
    Arch Phys Med Rehabil, 2012 Nov;93(11):1919-23.
    PMID: 22579945 DOI: 10.1016/j.apmr.2012.04.024
    To investigate the effects of 3 dissimilar suspension systems on participants' satisfaction and perceived problems with their prostheses.
  18. Eshraghi A, Abu Osman NA, Karimi MT, Gholizadeh H, Ali S, Wan Abas WA
    Am J Phys Med Rehabil, 2012 Dec;91(12):1028-38.
    PMID: 23168378 DOI: 10.1097/PHM.0b013e318269d82a
    The objectives of this study were to compare the effects of a newly designed magnetic suspension system with that of two existing suspension methods on pistoning inside the prosthetic socket and to compare satisfaction and perceived problems among transtibial amputees.
  19. Pramanik S, Hanif ASM, Pingguan-Murphy B, Abu Osman NA
    Materials (Basel), 2012 Dec 21;6(1):65-75.
    PMID: 28809294 DOI: 10.3390/ma6010065
    In this work, untreated bovine cortical bones (BCBs) were exposed to a range of heat treatments in order to determine at which temperature the apatite develops an optimum morphology comprising porous nano hydroxyapatite (nanoHAp) crystals. Rectangular specimens (10 mm × 10 mm × 3-5 mm) of BCB were prepared, being excised in normal to longitudinal and transverse directions. Specimens were sintered at up to 900 °C under ambient pressure in order to produce apatites by two steps sintering. The samples were characterized by thermogravimetric analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) attached to an energy-dispersive X-ray spectroscopy detector. For the first time, morphology of the HAp particles was predicted by XRD, and it was verified by SEM. The results show that an equiaxed polycrystalline HAp particle with uniform porosity was produced at 900 °C. It indicates that a porous nanoHAp achieved by sintering at 900 °C can be an ideal candidate as an in situ scaffold for load-bearing tissue applications.
  20. Ku PX, Abu Osman NA, Yusof A, Wan Abas WA
    PLoS One, 2012;7(7):e41539.
    PMID: 22848523 DOI: 10.1371/journal.pone.0041539
    Postural balance is vital for safely carrying out many daily activities, such as locomotion. The purpose of this study was to determine how changes in normal standing (NS) and standing with toe-extension (SWT) impact postural control during quiet standing. Furthermore, the research aimed to examine the extent to which the effect of these factors differed between genders.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links