Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Zainol Abidin MN, Goh PS, Said N, Ismail AF, Othman MHD, Hasbullah H, et al.
    ACS Appl Mater Interfaces, 2020 Jul 22;12(29):33276-33287.
    PMID: 32589391 DOI: 10.1021/acsami.0c08947
    The development of wearable artificial kidney demands an efficient dialysate recovery, which relies upon the adsorption process. This study proposes a solution to solve the problem of competitive adsorption between the uremic toxins by employing two adsorptive components in a membrane separation process. Dual-layer hollow fiber (DLHF) membranes, which are composed of a polysulfone (PSf)/activated carbon (AC) inner layer and a PSf/poly(methyl methacrylate) (PMMA) outer layer, were prepared for co-adsorptive removal of creatinine and urea from aqueous solution. The DLHF membranes were characterized in terms of morphological, physicochemical, water transport, and creatinine adsorption properties. The membrane was then subjected to an ultrafiltration adsorption study for performance evaluation. The incorporation of AC in membrane, as confirmed by microscopic and surface analyses, has improved the pure water flux up to 25.2 L/(m2 h). A membrane with optimum AC loading (9 wt %) demonstrated the highest maximum creatinine adsorption capacity (86.2 mg/g) based on the Langmuir adsorption isotherm model. In the ultrafiltration adsorption experiment, the membrane removed creatinine and urea with a combined average percent removal of 29.3%. Moreover, the membrane exhibited creatinine and urea uptake recoveries of 98.8 and 81.2%, respectively. The combined action of PMMA and AC in the PSf DLHF membrane has made the adsorption of multiple uremic toxins possible during dialysate recovery.
  2. Abidin MNZ, Goh PS, Ismail AF, Said N, Othman MHD, Hasbullah H, et al.
    Carbohydr Polym, 2018 Dec 01;201:257-263.
    PMID: 30241818 DOI: 10.1016/j.carbpol.2018.08.069
    Portable dialysis is a need to implement daily and nocturnal hemodialysis. To realize portable dialysis, a dialysate regeneration system comprising superior adsorbents is required to regenerate the used dialysate. This study aims to develop a nano-adsorbent, derived from corn starch for urea removal. Oxidized starch nanoparticles (oxy-SNPs) were prepared via liquid phase oxidation, followed by chemical dissolution and non-solvent precipitation. The oxy-SNPs possessed Z-average size of 177.7 nm with carbonyl and carboxyl contents of 0.068 and 0.048 per 100 glucose units, respectively. The urea adsorption achieved the equilibrium after 4 h with 95% removal. The adsorption mechanism fitted Langmuir isotherm while the adsorption kinetics obeyed pseudo-second-order model. This new material has a maximum adsorption capacity of 185.2 mg/g with a rate constant of 0.04 g/mg.h. Moreover, the oxy-SNPs exhibited the urea uptake recovery of 91.6%. Oxy-SNPs can become a promising adsorbent for dialysate regeneration system to remove urea.
  3. Samavati A, Samavati Z, Velashjerdi M, Fauzi Ismail A, Othman MHD, Eisaabadi B G, et al.
    Chem Eng J, 2021 Sep 15;420:127655.
    PMID: 33199974 DOI: 10.1016/j.cej.2020.127655
    Monitoring the COVID-19 virus through patients' saliva is a favorable non-invasive specimen for diagnosis and infection control. In this study, salivary samples of COVID-19 patients collected from 6 patients with the median age of 58.5 years, ranging from 34 to 72 years (2 females and 4 males) were analyzed using an Au/fiber Bragg grating (FBG) probe decorated with GO. The probe measures the prevalence of positivity in saliva and the association between the virus density and changes to sensing elements. When the probe is immersed in patients' saliva, deviation of the detected light wavelength and intensity from healthy saliva indicate the presence of the virus and confirms infection. For a patient in the hyperinflammatory phase of desease, who has virus density of 1.2 × 108 copies/mL in saliva, the maximum wavelength shift and intensity changes after 1600 s were shown to be 1.12 nm and 2.01 dB, respectively. While for a patient in the early infection phase with 1.6 × 103 copies/mL, these values were 0.98 nm and 1.32 dB. The precise and highly sensitive FBG probe proposed in this study was found a reliable tool for quick detection of the COVID-19 virus within 10 s after exposure to patients' saliva in any stage of the disease.
  4. Fu D, Kurniawan TA, Avtar R, Xu P, Othman MHD
    Chemosphere, 2021 May;271:129861.
    PMID: 33736203 DOI: 10.1016/j.chemosphere.2021.129861
    This work incorporated technological values into Zn2Cr-layered double hydroxide (LDH), synthesized from unused resources, for removal of pyrophosphate (PP) in electroplating wastewater. To adopt a resource recovery for the remediation of the aquatic environment, the Zn2Cr-LDH was fabricated by co-precipitation from concentrated metals of plating waste that remained as industrial by-products from metal finishing processes. To examine its applicability for water treatment, batch experiments were conducted at optimum M2+/M3+, pH, reaction time, and temperature. To understand the adsorption mechanisms of the PP by the adsorbent, the Zn2Cr-LDH was characterized using Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/EDS), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) analyses before and after adsorption treatment. An almost complete PP removal was attained by the Zn2Cr-LDH at optimized conditions: 50 mg/L of PP, 1 g/L of adsorbent, pH 6, and 6 h of reaction. Ion exchange controlled the PP removal by the adsorbent at acidic conditions. The PP removal well fitted a pseudo-second-order kinetics and/or the Langmuir isotherm model with 79 mg/g of PP adsorption capacity. The spent Zn2Cr-LDH was regenerated with NaOH with 86% of efficiency for the first cycle. The treated effluents could comply with the discharge limit of <1 mg/L. Overall, the use of the Zn2Cr-LDH as a low-cost adsorbent for wastewater treatment has contributed to national policy that promotes a zero-waste approach for a circular economy (CE) through a resource recovery paradigm.
  5. Dzinun H, Othman MHD, Ismail AF
    Chemosphere, 2019 Aug;228:241-248.
    PMID: 31035161 DOI: 10.1016/j.chemosphere.2019.04.118
    Comparison studies in suspension and hybrid photocatalytic membrane reactor (HPMR) system was investigated by using Reactive Black 5 (RB5) as target pollutant under UVA light irradiation. To achieve this aim, hybrid TiO2/clinoptilolite (TCP) photocatalyst powder was prepared by solid-state dispersion (SSD) methods and embedded at the outer layer of dual layer hollow fiber (DLHF) membranes fabricated via single step co-spinning process. TiO2 and CP photocatalyst were also used as control samples. The samples were characterized by Scanning Electron Microscopy (SEM), Energy Dispersion of X-ray (EDX), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analyses. The result shows that TCP was actively functioned as photocatalyst in suspension system and 86% of RB5 photocatalytic degradation achieved within 60 min; however the additional step is required to separate the catalyst with treated water. In the HPMR system, even though the RB5 photocatalytic degradation exhibits lower efficiency however the rejection of RB5 was achieved up to 95% under UV irradiation due to the properties of photocatalytic membranes. The well dispersed of TCP at the outer layer of DLHF membrane have improved the surface affinity of DL-TCP membrane towards water, exhibit the highest pure water flux of 41.72 L/m2.h compared to DL-TiO2 membrane. In general, CP can help on improving photocatalytic activity of TiO2 in suspension, increased the RB5 removal and the permeability of DLHF membrane in HPMR system as well.
  6. Kurniawan TA, Singh D, Avtar R, Othman MHD, Hwang GH, Albadarin AB, et al.
    Chemosphere, 2021 Jul;274:129986.
    PMID: 33979934 DOI: 10.1016/j.chemosphere.2021.129986
    This work investigates the performances of coconut shell waste-based activated carbon (CSWAC) adsorption in batch studies for removal of ammoniacal nitrogen (NH3-N) and refractory pollutants (as indicated by decreasing COD concentration) from landfill leachate. To valorize unused resources, coconut shell, recovered and recycled from agricultural waste, was converted into activated carbon, which can be used for leachate treatment. The ozonation of the CSWAC was conducted to enhance its removal performance for target pollutants. The adsorption mechanisms of refractory pollutants by the adsorbent are proposed. Perspectives on nutrient recovery technologies from landfill leachate from the view-points of downstream processing are presented. Their removal efficiencies for both recalcitrant compounds and ammoniacal nitrogen were compared to those of other techniques reported in previous work. It is found that the ozonated CSWAC substantially removed COD (i.e. 76%) as well as NH3-N (i.e. 75%), as compared to the CSWAC without pretreatment (i.e. COD: 44%; NH3-N: 51%) with NH3-N and COD concentrations of 2750 and 8500 mg/L, respectively. This reveals the need of ozonation for the adsorbent to improve its performance for the removal of COD and NH3-N at optimized reactions: 30 g/L of CSWAC, pH 8, 200 rpm of shaking speed and 20 min of reaction time. Nevertheless, treatment of the leachate samples using the ozonated CSWAC alone was still unable to result in treated effluents that could meet the COD and NH3-N discharge standards below 200 and 5 mg/L, respectively, set by legislative requirements. This reveals that another treatment is necessary to be undertaken to comply with the requirement of their effluent limit.
  7. Alias NH, Jaafar J, Samitsu S, Yusof N, Othman MHD, Rahman MA, et al.
    Chemosphere, 2018 Aug;204:79-86.
    PMID: 29653325 DOI: 10.1016/j.chemosphere.2018.04.033
    Separation and purification of oilfield produced water (OPW) is a major environmental challenge due to the co-production of the OPW during petroleum exploration and production operations. Effective capture of oil contaminant and its in-situ photodegradation is one of the promising methods to purify the OPW. Based on the photocatalytic capability of graphitic carbon nitride (GCN) which was recently rediscovered, photodegradation capability of GCN for OPW was investigated in this study. GCN was synthesized by calcination of urea and further exfoliated into nanosheets. The GCNs were incorporated into polyacrylonitrile nanofibers using electrospinning, which gave a liquid-permeable self-supporting photocatalytic nanofiber mat that can be handled by hand. The photocatalytic nanofiber demonstrated 85.4% degradation of OPW under visible light irradiation, and improved the degradation to 96.6% under UV light. Effective photodegradation of the photocatalytic nanofiber for OPW originates from synergetic effects of oil adsorption by PAN nanofibers and oil photodegradation by GCNs. This study provides an insight for industrial application on purification of OPW through photocatalytic degradation under solar irradiation.
  8. Mohtor NH, Othman MHD, Bakar SA, Kurniawan TA, Dzinun H, Norddin MNAM, et al.
    Chemosphere, 2018 Oct;208:595-605.
    PMID: 29890498 DOI: 10.1016/j.chemosphere.2018.05.159
    Hydrothermal method has been proven to be an effective method to synthesise the nanostructured titanium dioxide (TiO2) with good morphology and uniform distribution at low temperature. Despite of employing a well-known and commonly used glass substrate as the support to hydrothermally synthesise the nanostructured TiO2, this study emphasised on the application of kaolin hollow fibre membrane as the support for the fabrication of kaolin/TiO2 nanorods (TNR) membrane. By varying the hydrothermal reaction times (2 h, 6 h, and 10 h), the different morphology, distribution, and properties of TiO2 nanorods on kaolin support were observed by field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDX), atomic force microscope (AFM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). It was found that the well-dispersed of TiO2 nanorods have improved the surface affinity of kaolin/TNR membrane towards water, allowing kaolin/TNR membrane prepared from 10 h of hydrothermal reaction to exhibit the highest water permeation of 165 L/h.m2.bar. In addition, this prepared membrane also showed the highest photocatalytic activity of 80.3% in the decolourisation of reactive black 5 (RB5) under UV irradiation. On top of that, the kaolin/TNR membrane prepared from 10 h of hydrothermal reaction also exhibited a good resistance towards photocorrosion, enabling the reuse of this membrane for three consecutive cycles of photocatalytic degradation of RB5 without showing significant reduction in photocatalytic efficiency towards the decolourisation of RB5.
  9. Kurniawan TA, Haider A, Ahmad HM, Mohyuddin A, Umer Aslam HM, Nadeem S, et al.
    Chemosphere, 2023 Jun;325:138367.
    PMID: 36907482 DOI: 10.1016/j.chemosphere.2023.138367
    The generation of microplastics (MPs) has increased recently and become an emerging issue globally. Due to their long-term durability and capability of traveling between different habitats in air, water, and soil, MPs presence in freshwater ecosystem threatens the environment with respect to its quality, biotic life, and sustainability. Although many previous works have been undertaken on the MPs pollution in the marine system recently, none of the study has covered the scope of MPs pollution in the freshwater. To consolidate scattered knowledge in the literature body into one place, this work identifies the sources, fate, occurrence, transport pathways, and distribution of MPs pollution in the aquatic system with respect to their impacts on biotic life, degradation, and detection techniques. This article also discusses the environmental implications of MPs pollution in the freshwater ecosystems. Certain techniques for identifying MPs and their limitations in applications are presented. Through a literature survey of over 276 published articles (2000-2023), this study presents an overview of solutions to the MP pollution, while identifying research gaps in the body of knowledge for further work. It is conclusive from this review that the MPs exist in the freshwater due to an improper littering of plastic waste and its degradation into smaller particles. Approximately 15-51 trillion MP particles have accumulated in the oceans with their weight ranging between 93,000 and 236,000 metric ton (Mt), while about 19-23 Mt of plastic waste was released into rivers in 2016, which was projected to increase up to 53 Mt by 2030. A subsequent degradation of MPs in the aquatic environment results in the generation of NPs with size ranging from 1 to 1000 nm. It is expected that this work facilitates stakeholders to understand the multi-aspects of MPs pollution in the freshwater and recommends policy actions to implement sustainable solutions to this environmental problem.
  10. Imtiaz A, Othman MHD, Jilani A, Khan IU, Kamaludin R, Ayub M, et al.
    Chemosphere, 2023 Jun;325:138300.
    PMID: 36893870 DOI: 10.1016/j.chemosphere.2023.138300
    Among wide range of membrane-based operations, membrane contactors, as they reify comparatively modern membrane-based mechanism are gaining quite an attention in both pilot and industrial scales. In recent literature, carbon capture is one of the most researched applications of membrane contactors. Membrane contactors have the potential to minimize the energy consumption and capital cost of traditional CO2 absorptions columns. In a membrane contactor, CO2 regeneration can take place below the solvent boiling point, resulting into lower consumption of energy. Various polymeric as well as ceramic membrane materials have been employed in gas liquid membrane contactors along with several solvents including amino acids, ammonia, amines etc. This review article provides detailed introduction of membrane contactors in terms of CO2 removal. It also discusses that the main challenge that is faced by membrane contactors is membrane pore wetting caused by solvent that in turn can reduce the mass transfer coefficient. Other potential challenges such as selection of suitable solvent and membrane pair as well as fouling are also discussed in this review and are followed by potential ways to reduce them. Furthermore, both membrane gas separation and membrane contactor technologies are analysed and compared in this study on the basis of their characteristics, CO2 separation performances and techno economical transvaluation. Consequently, this review provides an opportunity to thoroughly understand the working principle of membrane contactors along its comparison with membrane-based gas separation technology. It also provides a clear understanding of latest innovations in membrane contactor module designs as well as challenges encountered by membrane contactors along with possible solutions to overcome these challenges. Finally, semi commercial and commercial implementation of membrane contactors has been highlighted.
  11. Mengting Z, Kurniawan TA, Fei S, Ouyang T, Othman MHD, Rezakazemi M, et al.
    Environ Pollut, 2019 Dec;255(Pt 1):113182.
    PMID: 31541840 DOI: 10.1016/j.envpol.2019.113182
    Methylene blue (MB) is a dye pollutant commonly present in textile wastewater. We investigate and critically evaluate the applicability of BaTiO3/GO composite for photodegradation of MB in synthetic wastewater under UV-vis irradiation. To enhance its performance, the BaTiO3/GO composite is varied based on the BaTiO3 weight. To compare and evaluate any changes in their morphologies and crystalline structures before and after treatment, BET (Brunauer-Emmett-Teller), XRD (X-ray diffraction), FTIR (Fourier transform infrared spectroscopy), SEM (scanning electron microscopy) and TEM (transmission electron microscopy) tests are conducted, while the effects of reaction time, pH, dose of photocatalyst and initial MB concentration on its photodegradation by the composite are also investigated under identical conditions. The degradation pathways and removal mechanisms of MB by the BaTiO3/GO are elaborated. It is evident from this study that the BaTiO3/GO composite is promising for MB photodegradation through ·OH. Under optimized conditions (0.5 g/L of dose, pH 9.0, and 5 mg/L of MB concentration), the composite with 1:2 dose ratio of BaTiO3/GO has the highest MB degradation rate (95%) after 3 h of UV vis irradiation. However, its treated effluents still could not comply with the discharge standard limit of less than 0.2 mg/L imposed by national environmental legislation. This suggests that additional biological treatments are still required to deal with the remaining oxidation by-products of MB, still present in the wastewater samples such as 3,7-bis (dimethyl-amino)-10H-phenothiazine 5-oxide.
  12. Kurniawan TA, Lo W, Singh D, Othman MHD, Avtar R, Hwang GH, et al.
    Environ Pollut, 2021 May 15;277:116741.
    PMID: 33652179 DOI: 10.1016/j.envpol.2021.116741
    Recently Xiamen (China) has encountered various challenges of municipal solid waste management (MSWM) such as lack of a complete garbage sorting and recycling system, the absence of waste segregation between organic and dry waste at source, and a shortage of complete and clear information about the MSW generated. This article critically analyzes the existing bottlenecks in its waste management system and discusses the way forward for the city to enhance its MSWM by drawing lessons from Hong Kong's effectiveness in dealing with the same problems over the past decades. Solutions to the MSWM problem are not only limited to technological options, but also integrate environmental, legal, and institutional perspectives. The solutions include (1) enhancing source separation and improving recycling system; (2) improving the legislation system of the MSWM; (3) improvement of terminal disposal facilities in the city; (4) incorporating digitization into MSWM; and (5) establishing standards and definitions for recycled products and/or recyclable materials. We also evaluate and compare different aspects of MSWM in Xiamen and Hong Kong SAR (special administrative region) under the framework of 'One Country, Two Systems' concerning environmental policies, generation, composition, characteristics, treatment, and disposal of their MSW. The nexus of society, economics of the MSW, and the environment in the sustainability sphere are established by promoting local recycling industries and the standardization of recycled products and/or recyclable materials. The roles of digitization technologies in the 4th Industrial Revolution for waste reduction in the framework of circular economy (CE) are also elaborated. This technological solution may improve the city's MSWM in terms of public participation in MSW separation through reduction, recycle, reuse, recovery, and repair (5Rs) schemes. To meet top-down policy goals such as a 35% recycling rate for the generated waste by 2030, incorporating digitization into the MSWM provides the city with technology-driven waste solutions.
  13. Kek HY, Tan H, Othman MHD, Nyakuma BB, Ho WS, Sheng DDCV, et al.
    Environ Res, 2024 Mar 15;245:118055.
    PMID: 38154562 DOI: 10.1016/j.envres.2023.118055
    Airborne Microplastics (MPs), an emerging environmental issue, have gained recent attention due to their newfound presence in indoor environments. Utilizing the Web of Science database for literature collection, the paper presents a comprehensive review of airborne MPs including emission sources, assessment methods, exposure risks, and mitigation strategies. This review delves into the diverse sources and mechanisms influencing indoor airborne MP pollution, underscoring the complex interplay between human activities, ventilation systems, and the characteristics of indoor environments. Major sources include the abrasion of synthetic textiles and the deterioration of flooring materials, with factors like carpeting, airflow, and ventilation significantly impacting MP levels. Human activities, such as increased movement in indoor spaces and the intensive use of plastic-based personal protective equipment (PPE) post-pandemic, notably elevate indoor MP concentrations. The potential health impacts of airborne MPs are increasingly concerning, with evidence suggesting their role in respiratory, immune, and nervous system diseases. Despite this, there is a scarcity of information on MPs in diverse indoor environments and the inhalation risks associated with the frequent use of PPE. This review also stresses the importance of developing effective strategies to reduce MP emissions, such as employing HEPA-filtered vacuums, minimizing the use of synthetic textiles, and enhancing indoor ventilation. Several future research directions were proposed, including detailed temporal analyses of indoor MP levels, interactions of MP with other atmospheric pollutants, the transport dynamics of inhalable MPs (≤10 μm), and comprehensive human exposure risk assessments.
  14. Yusof MSM, Othman MHD, Mustafa A, Rahman MA, Jaafar J, Ismail AF
    Environ Sci Pollut Res Int, 2018 Aug;25(22):21644-21655.
    PMID: 29785602 DOI: 10.1007/s11356-018-2286-6
    Palm oil fuel ash (POFA) is an agricultural waste which was employed in this study to produce novel adsorptive ceramic hollow fibre membranes. The membranes were fabricated using phase inversion-based extrusion technique and sintered at 1150 °C. The membranes were then evaluated on their ability to adsorb cadmium (Cd(II)). These membranes were characterised using (nitrogen) N2 adsorption-desorption analysis, field emission scanning electron microscopy-energy-dispersive X-ray spectroscopy (FESEM-EDX) mapping, X-ray fluorescence (XRF), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses while adsorptivity activity was examined by batch adsorption studies. The adsorption test results show that the quantity of hollow fibre used and water pH level significantly affected the adsorption performance with the 3-fibre membrane yielding 96.4% Cd(II) removal in 30 min equilibrium time at pH 7. These results are comparable to those reported by other studies, and hence demonstrate a promising alternative of low-cost hollow fibre adsorbent membrane. Graphical abstract Figure of FESEM image of the hollow fibre, proposed mechanism and the graph of percentage removal of Cd(II) using POFA.
  15. Muhamad N, Abdullah N, Rahman MA, Abas KH, Aziz AA, Othman MHD, et al.
    Environ Sci Pollut Res Int, 2018 Jul;25(19):19054-19064.
    PMID: 29721796 DOI: 10.1007/s11356-018-2074-3
    This work describes the development of supported zeolite-Y membranes, prepared using the hydrothermal method, for the removal of nickel from an aqueous solution. Alumina hollow fibers prepared using the phase inversion and sintering technique were used as an inert support. The supported zeolite-Y membranes were characterized using the field emission scanning electron microscope (FESEM), X-ray diffraction (XRD), and the water permeation and rejection test. The performance of the supported zeolite-Y membranes for heavy metal removal using batch adsorption and filtration test was studied using the atomic absorption spectroscopy (AAS). The adsorption study shows that the removal of nickel was pH-dependent but affected by the presence of α-alumina. The seeded zeolite-Y membrane gave the highest adsorption capacity which was 126.2 mg g-1. This enabled the membrane to remove 63% of nickel ions from the aqueous solution within 180 min of contact time. The adsorption mechanism of nickel onto the zeolite-Y membrane was best fitted to the Freundlich isotherm. The kinetic study concluded that the adsorption was best fitted to pseudo-second-order model with higher correlation coefficient (R2 = 0.9996). The filtration study proved that the zeolite-Y membrane enabled to reduce the concentration of heavy metal at parts per billion level.
  16. Makhtar SNNM, Rahman MA, Ismail AF, Othman MHD, Jaafar J
    Environ Sci Pollut Res Int, 2017 Jul;24(19):15918-15928.
    PMID: 28589281 DOI: 10.1007/s11356-017-9405-7
    This work discusses the preparation and characterizations of glass hollow fiber membranes prepared using zeolite-5A as a starting material. Zeolite was formed into a hollow fiber configuration using the phase inversion technique. It was later sintered at high temperatures to burn off organic materials and change the zeolite into glass membrane. A preliminary study, that used thermogravimetric analysis (TGA), X-ray diffraction (XRD), and Fourier transform infrared (FTIR), confirmed that zeolite used in this study changed to glass at temperatures above 1000 °C. The glass hollow fiber membranes prepared using the phase inversion technique has three different microstructures, namely (i) sandwich-like structure that originates from inner layer, (ii) sandwich-like that originates from outer layer, and (iii) symmetric sponge like. These variations were influenced by zeolite weight loading and the flow rate of water used to form the lumen. The separation performances of the glass hollow fiber membrane were studied using the pure water permeability and the rejection test of bovine serum albumin (BSA). The glass hollow fiber membrane prepared from using 48 wt% zeolite loading and bore fluid with 9 mL min(-1) flow rate has the highest BSA rejection of 85% with the water permeability of 0.7 L m(-2) h(-1) bar(-1). The results showed that the separation performance of glass hollow fiber membranes was in the ultrafiltration range, enabled the retention of solutes with molecular sizes larger than 67 kDa such as milk proteins, endotoxin pyrogen, virus, and colloidal silica.
  17. Mohtor NH, Othman MHD, Ismail AF, Rahman MA, Jaafar J, Hashim NA
    Environ Sci Pollut Res Int, 2017 Jul;24(19):15905-15917.
    PMID: 28620856 DOI: 10.1007/s11356-017-9341-6
    Despite its extraordinary price, ceramic membrane can still be able to surpass polymeric membrane in the applications that require high temperature and pressure conditions, as well as harsh chemical environment. In order to alleviate the high cost of ceramic material that still becomes one of the major factors that contributes to the high production cost of ceramic membrane, various attempts have been made to use low cost ceramic materials as alternatives to well-known expensive ceramic materials such as alumina, silica, and zirconia in the fabrication of ceramic membrane. Thus, local Malaysian kaolin has been chosen as the ceramic material in this study for the preparation of kaolin hollow fibre membrane since it is inexpensive and naturally abundant in Malaysia. Due to the fact that the sintering process plays a prominent role in obtaining the desired morphology, properties, and performances of prepared ceramic membrane, the aim of this work was to study the effect of different sintering temperatures applied (ranging from 1200 to 1500 °C) in the preparation of kaolin hollow fibre membrane via dry/wet phase inversion-based spinning technique and sintering process. The morphology and properties of membrane were then characterised by SEM, AFM, FTIR, XRD, and three-point bending test, while the performances of membrane were investigated by conducting water permeation and Reactive Black 5 (RB5) dye rejection tests. From the experimental results obtained, the sintering temperature of 1400 °C could be selected as the optimum sintering temperature in preparing the kaolin hollow fibre membrane with the dense sponge-like structure of separation layer that resulted in the good mechanical strength of 70 MPa with the appreciable water permeation of 75 L/h m(2) bar and RB5 rejection of 68%.
  18. Idris NJ, Bakar SA, Mohamed A, Muqoyyanah M, Othman MHD, Mamat MH, et al.
    Environ Sci Pollut Res Int, 2021 Feb;28(6):6966-6979.
    PMID: 33025441 DOI: 10.1007/s11356-020-10904-y
    In this work, sand/zinc oxide (ZnO)/titanium dioxide (TiO2)-based photocatalysts were hybridized with graphene oxide (GO) and GO_multi-walled carbon nanotubes (MWCNTs) hybrid solution. The novel hybrid was then used in photocatalysis to degrade dye contamination. The nanocomposite photocatalyst was initially fabricated by growing ZnO nanorods (NRs) via sol-gel immersion followed by synthesizing TiO2 NRs for different times (5 and 20 h) using a hydrothermal method on sand as a substrate. Prior to the hybridization, the initial GO was synthesized using electrochemical exfoliation and further mixed with 1 wt% MWCNTs to form GO_MWCNTs hybrid solution. The synthesized GO and GO_MWCNTs hybrid solution were then incorporated onto sand/ZnO/TiO2 nanocomposite-based photocatalysts through immersion. Various sand/ZnO/TiO2-based photocatalysts were then tested for methylene blue (MB) dye degradation within 3 days. On the basis of UV-Vis measurement, the highest MB degradation was achieved by using sand/ZnO NRs/TiO2 NRs (5 h)/GO_MWCNTs (92.60%). The high surface area and high electrical conductivity of GO_MWCNTs prolonged the lifetime of electron/hole separation and thus enhanced the photocatalytic performance.
  19. Kamaludin R, Othman MHD, Kadir SHSA, Khan J, Ismail AF, Rahman MA, et al.
    Environ Sci Pollut Res Int, 2023 Jan;30(1):259-273.
    PMID: 35902521 DOI: 10.1007/s11356-022-22121-w
    Various treatments of choice are available to overcome contamination of bisphenol A (BPA) in the environment including membrane technologies; however, the treatment still releases contaminants that threaten the human being. Therefore, the present study is conducted to investigate the degradation of BPA by recently developed visible-light-driven photocatalytic nitrogen-doping titanium dioxide (N-doped TiO2) dual-layer hollow fibre (DLHF) membrane and its efficiency in reducing the level of BPA in contaminated water. Fabricated with suitable polymer/photocatalyst (15/7.5 wt.%) via co-extrusion spinning method, the DLHF was characterized morphologically, evaluated for BPA degradation by using submerged photocatalytic membrane reactor under visible light irradiations followed by the investigation of intermediates formed. BPA exposure effects were accessed by immunohistochemistry staining of gastrointestinal sample obtained from animal model. BPA has been successfully degraded up to 72.5% with 2 intermediate products, B1 and B2, being identified followed by total degradation of BPA. BPA exposure leads to the high-intensity IHC staining of Claudin family which indicated the disruption of small intestinal barrier (SIB) integrity. Low IHC staining intensity of Claudin family in treated BPA group demonstrated that reducing the level of BPA by N-doped TiO2 DLHF is capable of protecting the important component of SIB. Altogether, the fabricated photocatalytic DLHF membrane is expected to have an outstanding potential in removing BPA and its health effect for household water treatment to fulfil the public focus on the safety of their household water and their need to consume clean water.
  20. Abu Bakar S, Jusoh N, Mohamed A, Muqoyyanah M, Othman MHD, Mamat MH, et al.
    Environ Sci Pollut Res Int, 2021 Dec;28(46):65171-65187.
    PMID: 34231144 DOI: 10.1007/s11356-021-14918-y
    In this work, waste cooking palm oil (WCPO)-based carbon nanotubes (CNTs) with encapsulated iron (Fe) nanoparticles have been successfully produced via modified thermal chemical vapor deposition method. Based on several characterizations, the dense WCPO-based CNT was produced with high purity of 89% and high crystallinity proven by low ID/IG ratio (0.43). Moreover, the ferromagnetic response of CNTs showed that the average coercivity and magnetization saturation were found to be 551.5 Oe and 13.4 emu/g, respectively. These produced WCPO-based CNTs were further used as heavy metal ions adsorbent for wastewater treatment application. Some optimizations, such as the effect of different adsorbent dosage, varied initial pH solution, and various heavy metal ions, were investigated. The adsorption studies showed that the optimum adsorbent dosage was 1.8 g/L when it was applied to 100 mg/L Cu (II) solution at neutral pH (pH 7). Further measurement then showed that high Cu (II) ion removal percentage (~80%) was achieved when it was applied at very acidic solution (pH 2). Last measurement confirmed that the produced WCPO-based CNTs successfully removed different heavy metal ions in the following order: Fe (II) > Zn (II) ≈ Cu (II) with the removal percentage in the range of 99.2 to 99.9%. The adsorption isotherm for Cu (II) was better fitted by Langmuir model with a correlation coefficient of 0.82751. WCPO-based CNTs can be a potential material to be applied as adsorbent in heavy metal ion removal.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links