Displaying all 14 publications

Abstract:
Sort:
  1. Abd AA, Othman MR, Kim J
    Environ Sci Pollut Res Int, 2021 Aug;28(32):43329-43364.
    PMID: 34189695 DOI: 10.1007/s11356-021-15121-9
    The atmosphere security and regulation of climate change are being continuously highlighted as a pressing issue. The crisis of climate change owing to the anthropogenic carbon dioxide emission has led many governments at federal and provincial levels to promulgate policies to address this concern. Among them is regulating the carbon dioxide emission from major industrial sources such as power plants, petrochemical industries, cement plants, and other industries that depend on the combustion of fossil fuels for energy to operate. In view of this, various CO2 capture and sequestration technologies have been investigated and presented. From this review, adsorption of CO2 on porous solid materials has been gaining increasing attention due to its cost-effectiveness, ease of application, and comparably low energy demand. Despite the myriad of advanced materials such as zeolites, carbons-based, metal-organic frameworks, mesoporous silicas, and polymers being researched, research on activated carbons (ACs) continue to be in the mainstream. Therefore, this review is endeavored to elucidate the adsorption properties of CO2 on activated carbons derived from different sources. Selective adsorption based on pore size/shape and surface chemistry is investigated. Accordingly, the effect of surface modifications of the ACs with NH3, amines, and metal oxides on adsorption performance toward CO2 is evaluated. The adsorption performance of the activated carbons under humid conditions is also reviewed. Finally, activated carbon-based composite has been surveyed and recommended as a feasible strategy to improve AC adsorption properties toward CO2. The activated carbon surface in the graphical abstract is nitrogen rich modified using ammonia through thermal treatment. The values of CO2 emissions by sources are taken from (Yoro and Daramola 2020).
  2. Ahmad Farid MA, Hassan MA, Roslan AM, Ariffin H, Norrrahim MNF, Othman MR, et al.
    Environ Sci Pollut Res Int, 2021 Jun;28(22):27976-27987.
    PMID: 33527241 DOI: 10.1007/s11356-021-12585-7
    This study provides insight into the decolorization strategy for crude glycerol obtained from biodiesel production using waste cooking oil as raw material. A sequential procedure that includes physico-chemical treatment and adsorption using activated carbon from oil palm biomass was investigated. The results evidenced decolorization and enrichment of glycerol go hand in hand during the treatment, achieving >89% color removal and > 98% increase in glycerol content, turning the glycerol into a clear (colorless) solution. This is attributed to the complete removal of methanol, free fatty acids, and triglycerides, as well as 85% removal of water, and 93% removal of potassium. Properties of the resultant glycerol met the quality standard of BS 2621:1979. The economic aspects of the proposed methods are examined to fully construct a predesign budgetary estimation according to chemical engineering principles. The starting capital is proportionate to the number of physical assets to acquire where both entail a considerable cost at USD 13,200. Having the benefit of sizeable scale production, it reasonably reduces the operating cost per unit product. As productivity sets at 33 m3 per annum, the annual operating costs amount to USD 79,902 in glycerol decolorization. This is translatable to USD 5.38 per liter glycerol, which is ~69% lower compared to using commercial activated carbon.
  3. Al-Qaim FF, Abdullah MP, Othman MR, Latip J, Zakaria Z
    J Chromatogr A, 2014 Jun 6;1345:139-53.
    PMID: 24768127 DOI: 10.1016/j.chroma.2014.04.025
    An analytical method that facilitated the analysis of 11 pharmaceuticals residue (caffeine, prazosin, enalapril, carbamazepine, nifedipine, levonorgestrel, simvastatin, hydrochlorothiazide, gliclazide, diclofenac-Na, and mefenamic acid) with a single pre-treatment protocol was developed. The proposed method included an isolation and concentration procedure using solid phase extraction (Oasis HLB), a separation step using high-performance liquid chromatography, and a detection procedure that applies time-of-flight mass spectrometry. The method was validated for drinking water (DW), surface water (SW), sewage treatment plant (STP) influent and effluent, and hospital (HSP) influent and effluent. The limits of quantification were as low as 0.4, 1.6, 5, 3, 2.2 and 11 ng/L in DW, SW, HSP influent and effluent, STP effluent, and STP influent, respectively. On average, good recoveries higher than 75% were obtained for most of the target analytes in all matrices. Matrix effect was evaluated for all samples matrices. The proposed method successfully determined and quantified the target compounds in raw and treated wastewater of four STPs and three hospitals in Malaysia, as well as in two SW sites. The results showed that a number of the studied compounds pose moderate to high persistency in sewage treatment effluents as well as in the recipient rivers, namely; caffeine, simvastatin, and hydrochlorothiazide. Ten out of 11 compounds were detected and quantified in 13 sampling points. Caffeine was detected with the highest level, with concentrations reaching up to 9099 ng/L in STP influent.
  4. Al-Qaim FF, Mussa ZH, Othman MR, Abdullah MP
    J Hazard Mater, 2015 Dec 30;300:387-397.
    PMID: 26218306 DOI: 10.1016/j.jhazmat.2015.07.007
    The electrochemical oxidation of caffeine, a widely over-the-counter stimulant drug, has been investigated in effluent wastewater and deionized water (DIW) using graphite-poly vinyl chloride (PVC) composite electrode as anode. Effects of initial concentration of caffeine, chloride ion (Cl(-)) loading, presence of hydrogen peroxide (H2O2), sample volume, type of sample and applied voltage were determined to test and to validate a kinetic model for the oxidation of caffeine by the electrochemical oxidation process. The results revealed that the electrochemical oxidation rates of caffeine followed pseudo first-order kinetics, with rate constant values ranged from 0.006 to 0.23 min(-1) depending on the operating parameters. The removal efficiency of caffeine increases with applied voltage very significantly, suggesting a very important role of mediated oxidation process. However, the consumption energy was considered during electrochemical oxidation process. In chloride media, removal of caffeine is faster and more efficiently, although occurrence of more intermediates takes place. The study found that the adding H2O2 to the NaCl solution will inhibit slightly the electrochemical oxidation rate in comparison with only NaCl in solution. Liquid chromatography-time of flight-mass spectrometry (LC-TOF-MS) technique was applied to the identification of the by-products generated during electrochemical oxidation, which allowed to construct the proposed structure of by-products.
  5. Al-Qaim FF, Mussa ZH, Yuzir A, Latip J, Othman MR
    J Environ Sci (China), 2018 Dec;74:134-146.
    PMID: 30340667 DOI: 10.1016/j.jes.2018.02.019
    Prazosin (PRZ) and levonorgestrel (LNG) are widely used as an anti-disease drugs due to their biological activity in the human body. The frequent detection of these compounds in water samples requires alternative technologies for the removal of both compounds. After electrochemical degradation of PRZ and LNG, the parent compounds could be completely removed after treatment, but the identification and characterization of by-products are necessary as well. In this study, the effects of NaCl concentration and applied voltage were investigated during the electrochemical degradation process. The results revealed that the increase of NaCl concentration and applied voltage could promote the generation of hypochlorite OCl- and then enhance the degradation of PRZ and LNG. After initial study, 6V and 0.2g NaCl were selected for further experiments (96% and 99% removal of PRZ and LNG after 40min, respectively). Energy consumption was also evaluated and calculated for PRZ and LNG at 3, 6 and 8V. Solid phase extraction (SPE) method plays an important role in enhancing the detection limit of by-products. Furthermore, characterization and identification of chlorinated and non-chlorinated by-products were conducted using an accurate liquid chromatography-time of flight/mass spectrometry LC-TOF/MS instrument. The monitoring of products during the electrochemical degradation process was performed at 6V and 0.2g NaCl in a 50mL solution. The results indicated that two chlorinated products were formed during the electrochemical process. The toxicity of by-products toward E. coli bacteria was investigated at 37°C and 20hr incubation time.
  6. Hassan MA, Ahmad Farid MA, Shirai Y, Ariffin H, Othman MR, Samsudin MH, et al.
    Biotechnol J, 2019 Jun;14(6):e1800394.
    PMID: 30925022 DOI: 10.1002/biot.201800394
    Oil palm biomass is widely known for its potential as a renewable resource for various value-added products due to its lignocellulosic content and availability. Oil palm biomass biorefinery is an industry that comes with sociopolitical benefits through job opportunities, as well as potential environmental benefits. Many studies have been conducted on the technological advancements of oil-palm biomass-derived renewable materials, which are discussed comprehensively in this review. Recent technological developments have made it possible to bring new and innovative technologies to commercialization, such as compost, biocharcoal, biocomposites, and bioplastics.
  7. Idris J, Shirai Y, Andou Y, Mohd Ali AA, Othman MR, Ibrahim I, et al.
    Waste Manag Res, 2016 Feb;34(2):176-80.
    PMID: 26612557 DOI: 10.1177/0734242X15616472
    An appropriate technology for waste utilisation, especially for a large amount of abundant pressed-shredded oil palm empty fruit bunch (OFEFB), is important for the oil palm industry. Self-sustained pyrolysis, whereby oil palm biomass was combusted by itself to provide the heat for pyrolysis without an electrical heater, is more preferable owing to its simplicity, ease of operation and low energy requirement. In this study, biochar production under self-sustained pyrolysis of oil palm biomass in the form of oil palm empty fruit bunch was tested in a 3-t large-scale pool-type reactor. During the pyrolysis process, the biomass was loaded layer by layer when the smoke appeared on the top, to minimise the entrance of oxygen. This method had significantly increased the yield of biochar. In our previous report, we have tested on a 30-kg pilot-scale capacity under self-sustained pyrolysis and found that the higher heating value (HHV) obtained was 22.6-24.7 MJ kg(-1) with a 23.5%-25.0% yield. In this scaled-up study, a 3-t large-scale procedure produced HHV of 22.0-24.3 MJ kg(-1) with a 30%-34% yield based on a wet-weight basis. The maximum self-sustained pyrolysis temperature for the large-scale procedure can reach between 600 °C and 700 °C. We concluded that large-scale biochar production under self-sustained pyrolysis was successfully conducted owing to the comparable biochar produced, compared with medium-scale and other studies with an electrical heating element, making it an appropriate technology for waste utilisation, particularly for the oil palm industry.
  8. Rohman FS, Othman MR, Muhammad D, Azmi A, Idris I, Ilyas RA, et al.
    ACS Omega, 2022 Nov 08;7(44):39648-39661.
    PMID: 36385840 DOI: 10.1021/acsomega.2c03078
    Fouling formation in reactor vessels poses a serious threat to the safe operation of the industrial low-density polyethylene (LDPE) polymerization. Fouling also degrades the polymer quality and causes productivity loss to some extent. In this work, neural Wiener model predictive control (NWMPC) is introduced to address the fouling concern. In addition, a soft sensor model is used to activate the fouling-defouling (F-D) mechanism when the fouling surpasses the thickness limit to prevent vessel overheating. NWMPC is proven to be fast, stable, and robust under various control scenarios. The use of a soft sensor model in conjunction with NWMPC enables the online monitoring and controlling of the F-D processes. When comparison is made with a state space (SSMPC) utilizing only the linear block, NWMPC is found to be able to control the LDPE grade with quicker grade transition and lower resource consumption.
  9. Roslan RN, Hanif NM, Othman MR, Azmi WN, Yan XX, Ali MM, et al.
    Mar Pollut Bull, 2010 Sep;60(9):1584-90.
    PMID: 20451220 DOI: 10.1016/j.marpolbul.2010.04.004
    A study was done to determine the concentrations of surfactants on the sea-surface microlayer and in atmospheric aerosols in several coastal areas around the Malaysian peninsula. The concentrations of surfactants from the sea-surface microlayer (collected using rotation drum) and from aerosols (collected using HVS) were analyzed as methylene blue active substances and disulphine blue active substances through the colorimetric method using a UV-vis spectrophotometer. The results of this study showed that the average concentrations of surfactants in the sea-surface microlayer ranged between undetected and 0.36+/-0.34 micromol L(-1) for MBAS and between 0.11+/-0.02 and 0.21+/-0.13 micromol L(-1) for DBAS. The contribution of surfactants from the sea-surface microlayer to the composition of surfactants in atmospheric aerosols appears to be very minimal and more dominant in fine mode aerosols.
  10. Samsudin MH, Hassan MA, Idris J, Ramli N, Mohd Yusoff MZ, Ibrahim I, et al.
    Waste Manag Res, 2019 May;37(5):551-555.
    PMID: 30727859 DOI: 10.1177/0734242X18823953
    A one-step self-sustained carbonization of coconut shell biomass, carried out in a brick reactor at a relatively low temperature of 300-500°C, successfully produced a biochar-derived adsorbent with 308 m2/g surface area, 2 nm pore diameter, and 0.15 cm3/g total pore volume. The coconut shell biochar qualifies as a nano-adsorbent, supported by scanning electron microscope images, which showed well-developed nano-pores on the surface of the biochar structure, even though there was no separate activation process. This is the first report whereby coconut shell can be converted to biochar-derived nano-adsorbent at a low carbonization temperature, without the need of the activation process. This is superior to previous reports on biochar produced from oil palm empty fruit bunch.
  11. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
  12. Yusof N, Haraguchi A, Hassan MA, Othman MR, Wakisaka M, Shirai Y
    Waste Manag, 2009 Oct;29(10):2666-80.
    PMID: 19564103 DOI: 10.1016/j.wasman.2009.05.022
    Since landfilling is the common method of waste disposal in Malaysia, river water is greatly exposed to the risk of contamination from leachate unless proper leachate management is carried out. In this study, leachates from three different types of landfills, namely active uncontrolled, active controlled and closed controlled, were characterized, and their relationships with river water chemistry were examined monthly for a year. The influence of leachate on river water chemistry from each type of landfill depended on many factors, including the presence of a leachate control mechanism, leachate characteristics, precipitation, surface runoff and the applied treatment. The impact of leachate from an active uncontrolled landfill was the highest, as the organic content, NH(4)(+)-N, Cd and Mn levels appeared high in the river. At the same time, influences of leachate were also observed from both types of controlled landfills in the form of inorganic nitrogen (NH(4)(+)-N, NO(3)(-)-N and NO(2)(-)-N) and heavy metals (Fe, Cr, Ni and Mn). Improper treatment practice led to high levels of some contaminants in the stream near the closed controlled landfill. Meanwhile, the active controlled landfill, which was located near the coastline, was exposed to the risk of contamination resulting from the pyrite oxidation of the surrounding area.
  13. Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA
    Tissue Eng Part B Rev, 2013 Oct;19(5):431-41.
    PMID: 23557483 DOI: 10.1089/ten.TEB.2012.0624
    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophase hydroxyapatite that has similar properties with natural hydroxyapatite. Sustainable methods to mass-produce synthetic hydroxyapatite nanoparticles are being developed to meet the increasing demand for these materials and to further develop the progress made in hard tissue regeneration, especially for orthopedic and dental applications. This article reviews the current developments in nanophase hydroxyapatite through various manufacturing techniques and modifications.
  14. Zakaria SM, Sharif Zein SH, Othman MR, Jansen JA
    J Biomed Mater Res A, 2013 Jul;101(7):1977-85.
    PMID: 23225849 DOI: 10.1002/jbm.a.34506
    Electrospinning of hydroxyapatite (HA)/polyvinyl butyral solution resulted in the formation of fibers with average diameter of 937-1440 nm. These fibers were converted into HA nanoparticles with size <100 nm after undergoing calcination treatment at 600°C. The diameter of the fiber was found to be influenced by applied voltage and spinning distance. The injection flowrate did not affect the diameter significantly. The electrospinning method successfully reduced the commercial HA particle size in the range of 400-1100 nm into <100 nm. The dispersion of the finally calcined HA nanoparticles was improved significantly after anionic sodium dodecyl sulfate surfactant was introduced. The experimental data of HA growth kinetics were subjected to the integral method of analysis, and the rate law of the reaction was found to follow the first order reaction.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links