Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Jafarian S, Ling KH, Hassan Z, Perimal-Lewis L, Sulaiman MR, Perimal EK
    Alzheimers Dement (N Y), 2019;5:637-643.
    PMID: 31687471 DOI: 10.1016/j.trci.2019.09.009
    Introduction: We investigated the effects of zerumbone (1 and 10 mg/kg) against hyperactivity, anxiety and memory impairment in scopolamine-induced dementia in Sprague-Dawley rats.

    Methods: Open field tests, elevated plus maze and Morris water maze were performed to assess general locomotor activity, anxiety-like behaviours and learning and memory processes respectively in rats pretreated with scopolamine.

    Results: Scopolamine-treated rats showed high total activity, stereotype, and total distance travelled in the open field arena, reduced number of entries to open arms, decreased the percentage of time spent in open arms and higher escape latency time in the Morris water maze test. Interestingly, single administration of zerumbone (1 and 10 mg/kg) reversed the hyperactivity, anxiety-like behaviours, and learning impairment effects of scopolamine in the three experimental model studied respectively.

    Discussion: Our findings demonstrated that the scopolamine-induced impairment of learning and memory was reversed by the administration of zerumbone. As a conclusion, our findings presented the positive effects of zerumbone on dementia-like behaviours in the animal model used and could possibly contribute for future research to manage hyperactivity, anxiety, and learning disabilities.

  2. Ming-Tatt L, Khalivulla SI, Akhtar MN, Mohamad AS, Perimal EK, Khalid MH, et al.
    Basic Clin Pharmacol Toxicol, 2012 Mar;110(3):275-82.
    PMID: 21967232 DOI: 10.1111/j.1742-7843.2011.00804.x
    This study investigated the potential antinociceptive efficacy of a novel synthetic curcuminoid analogue, 2,6-bis-(4-hydroxy-3-methoxybenzylidene)cyclohexanone (BHMC), using chemical- and thermal-induced nociception test models in mice. BHMC (0.03, 0.1, 0.3 and 1.0 mg/kg) administered via intraperitoneal route (i.p.) produced significant dose-related inhibition in the acetic acid-induced abdominal constriction test in mice with an ID(50) of 0.15 (0.13-0.18) mg/kg. It was also demonstrated that BHMC produced significant inhibition in both neurogenic (first phase) and inflammatory phases (second phase) of the formalin-induced paw licking test with an ID(50) of 0.35 (0.27-0.46) mg/kg and 0.07 (0.06-0.08) mg/kg, respectively. Similarly, BHMC also exerted significant increase in the response latency period in the hot-plate test. Moreover, the antinociceptive effect of the BHMC in the formalin-induced paw licking test and the hot-plate test was antagonized by pre-treatment with the non-selective opioid receptor antagonist, naloxone. Together, these results indicate that the compound acts both centrally and peripherally. In addition, administration of BHMC exhibited significant inhibition of the neurogenic nociception induced by intraplantar injections of glutamate and capsaicin with ID(50) of 0.66 (0.41-1.07) mg/kg and 0.42 (0.38-0.51) mg/kg, respectively. Finally, it was also shown that BHMC-induced antinociception was devoid of toxic effects and its antinociceptive effect was associated with neither muscle relaxant nor sedative action. In conclusion, BHMC at all doses investigated did not cause any toxic and sedative effects and produced pronounced central and peripheral antinociceptive activities. The central antinociceptive activity of BHMC was possibly mediated through activation of the opioid system as well as inhibition of the glutamatergic system and TRPV1 receptors, while the peripheral antinociceptive activity was perhaps mediated through inhibition of various inflammatory mediators.
  3. Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Ming OH, Khalid S, et al.
    Basic Clin Pharmacol Toxicol, 2011 Mar;108(3):155-62.
    PMID: 20955360 DOI: 10.1111/j.1742-7843.2010.00635.x
    This study investigated the antinociceptive effects of zerumbone in chemical behavioural models of nociception in mice. Zerumbone given through intraperitoneal route (i.p.) produced dose-related antinociception when assessed on acetic acid-induced abdominal writhing test in mice. In addition, the i.p. administration of zerumbone exhibited significant inhibition of the neurogenic pain induced by intraplantar (i.pl.) injection of capsaicin and bradykinin. Likewise, zerumbone given by i.p. route reduced the nociception produced by i.pl. injection of glutamate and phorbol myristate acetate (PMA). The antinociception caused by zerumbone in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with l-arginine (nitric oxide precursor) and glibenclamide (ATP-sensitive K(+) channel inhibitor). However, the antinociception of zerumbone was enhanced by methylene blue (non-specific gyanylyl cyclase inhibitor). Together, these results indicate that zerumbone produces pronounced antinociception against chemical models of nociception in mice. It also strongly suggests that the l-arginine-nitric oxide-cGMP-PKC-K(+) ATP channel pathways, the TRPV1 and kinin B2 receptors play an important role in the zerumbone-induced antinociception.
  4. Mohamad AS, Akhtar MN, Khalivulla SI, Perimal EK, Khalid MH, Ong HM, et al.
    Basic Clin Pharmacol Toxicol, 2011 Jun;108(6):400-5.
    PMID: 21214864 DOI: 10.1111/j.1742-7843.2010.00670.x
    The possible mechanisms of action in the antinociceptive activity induced by systemic administration (intraperitoneal, i.p.) of flavokawin B (FKB) were analysed using chemical models of nociception in mice. It was demonstrated that i.p. administration of FKB to the mice at 0.3, 1.0, 3.0 and 10 mg/kg produced significant dose-related reduction in the number of abdominal constrictions. The antinociception induced by FKB in the acetic acid test was significantly attenuated by i.p. pre-treatment of mice with L-arginine, the substrate for nitric oxide synthase or glibenclamide, the ATP-sensitive K(+) channel inhibitor, but was enhanced by methylene blue, the non-specific guanylyl cyclase inhibitor. FKB also produced dose-dependent inhibition of licking response caused by intraplantar injection of phorbol 12-myristate 13-acetate, a protein kinase C activator (PKC). Together, these data indicate that the NO/cyclic guanosine monophosphate/PKC/ATP-sensitive K(+) channel pathway possibly participated in the antinociceptive action induced by FKB.
  5. Bharatham BH, Abu Bakar MZ, Perimal EK, Yusof LM, Hamid M
    Biomed Res Int, 2014;2014:146723.
    PMID: 25110655 DOI: 10.1155/2014/146723
    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects.
  6. Chia JSM, Omar Farouk AA, Mohamad AS, Sulaiman MR, Perimal EK
    Biomed Pharmacother, 2016 Oct;83:1303-1310.
    PMID: 27570173 DOI: 10.1016/j.biopha.2016.08.052
    Zerumbone, a bioactive sesquiterpene isolated from Zingiber zerumbet (Smith), has shown to exert antiallodynic and antihyperalgesic effects in neuropathic pain mice model in our recent study. The mechanism through which zerumbone alleviates neuropathic pain has yet to be elucidated. Thus, this study aimed to determine whether the serotonergic system, part of the descending pain modulation pathway, contributes to the antineuropathic effect of zerumbone. Participation of the serotonergic system in zerumbone-induced antiallodynia and antihyperalgesia was assessed using Dynamic Plantar Aesthesiometer von Frey test and Hargreaves plantar test respectively in chronic-constriction injury mice model. Administration of ρ-chlorophenylalanine (PCPA, 100mg/kg, i.p.) for four consecutive days to deplete serotonin (5-HT) prior to zerumbone administration blocked the antiallodynic and antihyperalgesic effects of zerumbone. Further investigation with 5-HT receptor antagonists methiothepin (5-HT1/6/7 receptor antagonist, 0.1mg/kg), WAY-100635 (5-HT1A receptor antagonist, 1mg/kg), isamoltane (5-HT1B receptor antagonist, 2.5mg/kg), ketanserin (5-HT2A receptor antagonist, 0.3mg/kg) and ondansetron (5-HT3 receptor antagonist, 0.5mg/kg) managed to significantly attenuate antiallodynic and antihyperalgesic effects of zerumbone (10mg/kg). These findings demonstrate that zerumbone alleviates mechanical allodynia and thermal hyperalgesia through the descending serotonergic system via 5-HT receptors 1A, 1B, 2A, 3, 6 and 7 in chronic constriction injury neuropathic pain mice.
  7. Mohamad AS, Akhtar MN, Zakaria ZA, Perimal EK, Khalid S, Mohd PA, et al.
    Eur J Pharmacol, 2010 Nov 25;647(1-3):103-9.
    PMID: 20826146 DOI: 10.1016/j.ejphar.2010.08.030
    The present study examined the potential antinociceptive activity of flavokawin B (6'-hydroxy-2',4'-dimethoxychalcone), a synthetic chalcone using chemical- and thermal-induced nociception models in mice. It was demonstrated that flavokawin B (FKB; 0.3, 1, 3 and 10 mg/kg) administered via both oral (p.o.) and intraperitoneal (i.p.) routes produced significant and dose-dependent inhibition in the abdominal constrictions induced by acetic acid, with the i.p. route producing antinociception of approximately 7-fold more potent than the p.o. route. It was also demonstrated that FKB produced significant inhibition in the two phases of the formalin-induced paw licking test. In addition, the same treatment of flavokawin B (FKB) exhibited significant inhibition of the neurogenic nociceptive induced by intraplantar injections of glutamate and capsaicin. Likewise, this compound also induced a significant increase in the response latency period to thermal stimuli in the hot plate test and its antinociceptive effect was not related to muscle relaxant or sedative action. Moreover, the antinociception effect of the FKB in the formalin-induced paw licking test and the hot plate test was not affected by pretreatment of non-selective opioid receptor antagonist, naloxone. The present results indicate that FKB produced pronounced antinociception effect against both chemical and thermal models of pain in mice that exhibited both peripheral and central analgesic activity.
  8. Sambasevam Y, Omar Farouk AA, Tengku Mohamad TA, Sulaiman MR, Bharatham BH, Perimal EK
    Eur J Pharmacol, 2017 Feb 05;796:32-38.
    PMID: 27988285 DOI: 10.1016/j.ejphar.2016.12.020
    Neuropathic pain arises from the injury of nervous system. The condition is extremely difficult to be treated due to the ineffectiveness and presence of various adverse effects of the currently available drugs. In the present study, we investigated the antiallodynic and antihyperlagesic properties of cardamonin, a naturally occurring chalcone in chronic constriction injury (CCI)-induced neuropathic pain mice model. Our findings showed that single and repeated dose of intra-peritoneal administration of cardamonin (3, 10, 30mg/kg) significantly inhibited (P<0.001) the chronic constriction injury-induced neuropathic pain using the Hargreaves plantar test, Randall-Selitto analgesiometer test, dynamic plantar anesthesiometer test and the cold plate test in comparison with the positive control drug used (amitriptyline hydrochloride, 20mg/kg, i.p.). Pre-treatment with naloxone hydrochloride (1mg/kg, i.p.) and naloxone methiodide (1mg/kg, s.c) significantly reversed the antiallodynic and antihyperalgesic effects of cardamonin in dynamic plantar anesthesiometer test and Hargreaves plantar test, respectively. In conclusion, the current findings demonstrated novel antiallodynic and antihyperalgesic effects of cardamonin through the activation of the opioidergic system both peripherally and centrally and may prove to be a potent lead compound for the development of neuropathic pain drugs in the future.
  9. Voon FL, Sulaiman MR, Akhtar MN, Idris MF, Akira A, Perimal EK, et al.
    Eur J Pharmacol, 2017 Jan 05;794:127-134.
    PMID: 27845065 DOI: 10.1016/j.ejphar.2016.11.009
    Boesenbergia rotunda (L.) Mansf. had been traditionally used as herbs to treat pain and rheumatism. Cardamonin (2',4'-dihydroxy-6'-methoxychalcone) is a compound isolated from Boesenbergia rotunda (L.) Mansf.. Previous study had shown the potential of cardamonin in inhibiting the release of pro-inflammatory cytokines such as tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in vitro. Thus, the possible therapeutic effect of cardamonin in the rheumatoid arthritis (RA) joints is postulated. This study was performed to investigate the anti-arthritic properties of cardamonin in rat model of induced RA, particularly on the inflammatory and pain response of RA. Rheumatoid arthritis paw inflammation was induced by intraplantar (i.pl.) injection of complete Freund's adjuvant (CFA) in Sprague Dawley rats. Using four doses of cardamonin (0.625, 1.25, 2.5, and 5.0mg/kg), anti-arthritic activity was evaluated through the paw edema, mechanical allodynia and thermal hyperalgesia responses. Enzyme-linked immunosorbent assay (ELISA) was carried out to evaluate the plasma level of TNF-α, IL-1β, and IL-6. Histological slides were prepared from the harvested rat paws to observe the arthritic changes in the joints. Behavioral, biochemical, and histological studies showed that cardamonin demonstrated significant inhibition on RA-induced inflammatory and pain responses as well as progression of joint destruction in rats. ELISA results showed that there was significant inhibition in TNF-α, IL-1β, and IL-6 levels in plasma of the cardamonin-treated RA rats. Overall, cardamonin possesses potential anti-arthritic properties in CFA-induced RA rat model.
  10. Sulaiman MR, Perimal EK, Akhtar MN, Mohamad AS, Khalid MH, Tasrip NA, et al.
    Fitoterapia, 2010 Oct;81(7):855-8.
    PMID: 20546845 DOI: 10.1016/j.fitote.2010.05.009
    The anti-inflammatory activity of zerumbone (1), a natural cyclic sesquiterpene isolated from Zingiber zerumbet Smith was investigated using carrageenan-induced paw edema and cotton pellet-induced granuloma tissue formation test in mice. It was demonstrated that intraperitoneal administration of 1 at a dose of 5, 10, 50 and 100 mg/kg produced significant dose-dependent inhibition of paw edema induced by carrageenan. It was also demonstrated that 1 at similar doses significantly suppressed granulomatous tissue formation in cotton pellet-induced granuloma test.
  11. Sulaiman MR, Perimal EK, Zakaria ZA, Mokhtar F, Akhtar MN, Lajis NH, et al.
    Fitoterapia, 2009 Jun;80(4):230-2.
    PMID: 19535012 DOI: 10.1016/j.fitote.2009.02.002
    We have investigated the antinociceptive activity of zerumbone (1), a natural cyclic sesquiterpene isolated from Zingiber zerumbet Smith, in acetic acid-induced abdominal writhing test and hot plate test in mice. 1 given by intraperitoneal route produced significant dose-dependent antinociceptive effect in all the test models used. In addition, the antinociceptive effect of 1 in the hot plate test was reversed by the non-selective opioid receptor antagonist naloxone, suggesting that the opioid system is involved in its analgesic mechanism of action.
  12. Zulazmi NA, Gopalsamy B, Farouk AA, Sulaiman MR, Bharatham BH, Perimal EK
    Fitoterapia, 2015 Sep;105:215-21.
    PMID: 26205045 DOI: 10.1016/j.fitote.2015.07.011
    Neuropathic pain is a chronic condition that is difficult to be treated. Current therapies available are either ineffective or non-specific thus requiring newer treatment approaches. In this study, we investigated the antiallodynic and antihyperalgesic effects of zerumbone, a bioactive sesquiterpene from Zingiber zerumbet in chronic constriction injury (CCI)-induced neuropathic pain animal model. Our findings showed that single and repeated dose of intra-peritoneal administration of zerumbone (5, 10, 50, 100 mg/kg) significantly attenuated the CCI-induced neuropathic pain when evaluated using the electronic von Frey anesthesiometer, cold plate, Randall-Selitto analgesiometer and the Hargreaves plantar test. Zerumbone significantly alleviated tactile and cold allodynia as well as mechanical and thermal hyperalgesia. Our findings are in comparison to the positive control drugs thatused gabapentin (20 mg/kgi.p.) and morphine (1 mg/kgi.p.). Together, these results showed that the systemic administration of zerumbone produced marked antiallodynic and antihyperalgesic effects in the CCI-induced neuropathic pain in mice and may serve as a potential lead compound for further analysis.
  13. Chia JSM, Izham NAM, Farouk AAO, Sulaiman MR, Mustafa S, Hutchinson MR, et al.
    Front Pharmacol, 2020;11:92.
    PMID: 32194397 DOI: 10.3389/fphar.2020.00092
    Zerumbone has shown great potential in various pathophysiological models of diseases, particularly in neuropathic pain conditions. Further understanding the mechanisms of action is important to develop zerumbone as a potential anti-nociceptive agent. Numerous receptors and pathways function to inhibit and modulate transmission of pain signals. Previously, we demonstrated involvement of the serotonergic system in zerumbone's anti-neuropathic effects. The present study was conducted to determine zerumbone's modulatory potential involving noradrenergic, transient receptor potential vanilloid type 1 (TRPV1) and N-methyl-D-aspartate (NMDA) receptors in chronic constriction injury (CCI)-induced in vitro and lipopolysaccharide (LPS)-induced SH-SY5Y in vitro neuroinflammatory models. von Frey filament and Hargreaves plantar tests were used to assess allodynia and hyperalgesia in the chronic constriction injury-induced neuropathic pain mouse model. Involvement of specific adrenoceptors were investigated using antagonists- prazosin (α1-adrenoceptor antagonist), idazoxan (α2-adrenoceptor antagonist), metoprolol (β1-adrenoceptor antagonist), ICI 118,551 (β2-adrenoceptor antagonist), and SR 59230 A (β3-adrenoceptor antagonist), co-administered with zerumbone (10 mg/kg). Involvement of excitatory receptors; TRPV and NMDA were conducted using antagonists capsazepine (TRPV1 antagonist) and memantine (NMDA antagonist). Western blot was conducted to investigate the effect of zerumbone on the expression of α2A-adrenoceptor, TRPV1 and NMDA NR2B receptors in CCI-induced whole brain samples of mice as well as in LPS-induced SH-SY5Y neuroblastoma cells. Pre-treatment with α1- and α2-adrenoceptor antagonists significantly attenuated both anti-allodynic and anti-hyperalgesic effects of zerumbone. For β-adrenoceptors, only β2-adrenoceptor antagonist significantly reversed the anti-allodynic and anti-hyperalgesic effects of zerumbone. β1-adrenoceptor antagonist only reversed the anti-allodynic effect of zerumbone. The anti-allodynic and anti-hyperalgesic effects of zerumbone were both absent when TRPV1 and NMDA receptors were antagonized in both nociceptive assays. Zerumbone treatment markedly decreased the expression of α2A-adrenoceptor, while an up-regulation was observed of NMDA NR2B receptors. Expression of TRPV1 receptors however did not significantly change. The in vitro study, representing a peripheral model, demonstrated the reduction of both NMDA NR2B and TRPV1 receptors while significantly increasing α2A-adrenoceptor expression in contrast to the brain samples. Our current findings suggest that the α1-, α2-, β1- and β2-adrenoceptors, TRPV1 and NMDA NR2B are essential for the anti-allodynic and antihyperalgesic effects of zerumbone. Alternatively, we demonstrated the plasticity of these receptors through their response to zerumbone's administration.
  14. Ong HM, Mohamad AS, Makhtar N', Khalid MH, Khalid S, Perimal EK, et al.
    J Ethnopharmacol, 2011 Jan 7;133(1):227-33.
    PMID: 20920570 DOI: 10.1016/j.jep.2010.09.030
    Acmella uliginosa (Sw.) Cass. is a medicinal herbaceous plant that is commonly used by the Malay community in Malaysia to relieve pain often associated with mouth ulcers, toothache, sore throat, and stomach ache.
  15. Khalid MH, Akhtar MN, Mohamad AS, Perimal EK, Akira A, Israf DA, et al.
    J Ethnopharmacol, 2011 Sep 01;137(1):345-51.
    PMID: 21664960 DOI: 10.1016/j.jep.2011.05.043
    ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber zerumbet (L.) Smith, a wild edible ginger species or locally known as "lempoyang", commonly used in the Malays traditional medicine as an appetizer or to treat stomachache, toothache, muscle sprain and as a cure for swelling sores and cuts.

    AIM: The present study was conducted to investigate the possible mechanism of actions underlying the systemic antinociception activity of the essential oil of Zingiber zerumbet (EOZZ) in chemical-induced nociception tests in mice.

    MATERIALS AND METHODS: Acetic acid-induced abdominal constriction, capsaicin-, glutamate- and phorbol 12-myristate 13-acetate-induced paw licking tests in mice were employed in the study. In all experiments, EOZZ was administered systemically at the doses of 50, 100, 200 and 300 mg/kg.

    RESULTS: It was shown that EOZZ given to mice via intraperitoneal and oral routes at 50, 100, 200 and 300 mg/kg produced significant dose dependent antinociception when assessed using acetic acid-induced abdominal writing test with calculated mean ID(50) values of 88.84 mg/kg (80.88-97.57 mg/kg) and 118.8 mg/kg (102.5-137.8 mg/kg), respectively. Likewise, intraperitoneal administration of EOZZ at similar doses produced significant dose dependent inhibition of neurogenic pain induced by intraplantar injection of capsaicin (1.6 μg/paw), glutamate (10 μmol/paw) and phorbol 12-myristate 13-acetate (1.6μg/paw) with calculated mean ID(50) of 128.8 mg/kg (118.6-139.9 mg/kg), 124.8 mg/kg (111.4-139.7 mg/kg) and 40.29 (35.39-45.86) mg/kg, respectively. It was also demonstrated that pretreatment with l-arginine (100mg/kg, i.p.), a nitric oxide precursor significantly reversed antinociception produced by EOZZ suggesting the involvement of l-arginine/nitric oxide pathway. In addition, methylene blue (20mg/kg, i.p.) significantly enhanced antinociception produced by EOZZ. Administration of glibenclamide (10mg/kg, i.p.), an ATP-sensitive K(+) channel antagonist significantly reversed antinociceptive activity induced by EOZZ.

    CONCLUSION: Together, the present results suggested that EOZZ-induced antinociceptive activity was possibly related to its ability to inhibit glutamatergic system, TRPV1 receptors as well as through activation of l-arginine/nitric oxide/cGMP/protein kinase C/ATP-sensitive K(+) channel pathway.

  16. Gopalsamy B, Farouk AAO, Tengku Mohamad TAS, Sulaiman MR, Perimal EK
    J Pain Res, 2017;10:2605-2619.
    PMID: 29184437 DOI: 10.2147/JPR.S143024
    Background: Neuropathic pain is a debilitating condition that severely affects the quality of life for those with this pain condition, and treatment for pain relief is greatly sought-after. Zerumbone (Zer), a sesquiterpene compound isolated from the rhizomes of a Southeast Asian ginger plant, Zingiber zerumbet (L.) Roscoe ex Smith. (Zingiberaceae), showed antinociceptive and antiinflammatory properties when previously tested on models of nociception and inflammation.

    Objective: This study investigated the effects of prophylactic administration of zerumbone on allodynia and hyperalgesia in a mouse model of chronic constriction injury (CCI)-induced neuropathic pain.

    Methods: Intraperitoneal administration of Zer (5-50 mg/kg) from day 1 post-surgery was carried out to identify the onset and progression of the pain condition. Responses toward mechanical and cold allodynia, and mechanical and thermal hyperalgesia were assessed on days 3, 5, 7, 9, 11, and 14 post-surgery. Blood plasma and spinal cord levels of interleukin (IL)-1β, IL-6, tumor necrosis factor-α, and IL-10 were screened using enzyme-linked immunosorbent assay on day 15.

    Results: Zer (10 and 50 mg/kg) attenuated pain symptoms on all days of behavioral testing without any signs of sedation in the rotarod test. ED50 values for mechanical allodynia, cold allodynia, thermal hyperalgesia, and mechanical hyperalgesia were 9.25, 9.507, 8.289, and 9.801 mg/kg, respectively. Blood plasma and spinal levels of IL-1β, IL-6, and tumor necrosis factor-α but not IL-10 were significantly (p<0.05) suppressed by zer treatment.

    Discussion and conclusion: Zer exhibits its antiallodynic and antihyperalgesic properties via reduced sensitization at nociceptor neurons possibly through the suppression of inflammatory mediators. Zer may prove to be a novel and beneficial alternative for the management of neuropathic pain.

  17. Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, et al.
    Molecules, 2013 Apr 10;18(4):4209-20.
    PMID: 23612473 DOI: 10.3390/molecules18044209
    Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when L-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
  18. Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858809 DOI: 10.3390/molecules25173880
    Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
  19. Pui Ping C, Akhtar MN, Israf DA, Perimal EK, Sulaiman MR
    Molecules, 2020 Nov 18;25(22).
    PMID: 33217904 DOI: 10.3390/molecules25225385
    The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9-4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
  20. Zulazmi NA, Gopalsamy B, Min JC, Farouk AA, Sulaiman MR, Bharatham BH, et al.
    Molecules, 2017 Mar 30;22(4).
    PMID: 28358309 DOI: 10.3390/molecules22040555
    The present study investigates the involvement of the l-arginine-Nitric Oxide-cGMP-K⁺ ATP pathways responsible for the action of anti-allodynic and antihyperalgesic activities of zerumbone in chronic constriction injury (CCI) induced neuropathic pain in mice. The role of l-arginine-NO-cGMP-K⁺ was assessed by the von Frey and the Randall-Selitto tests. Both allodynia and hyperalgesia assessments were carried out on the 14th day post CCI, 30 min after treatments were given for each respective pathway. Anti-allodynic and antihyperalgesic effects of zerumbone (10 mg/kg, i.p) were significantly reversed by the pre-treatment of l-arginine (10 mg/kg), 1H [1,2,4]Oxadiazole[4,3a]quinoxalin-1-one (ODQ), a soluble guanosyl cyclase blocker (2 mg/kg i.p.) and glibenclamide (ATP-sensitive potassium channel blocker) (10 mg/kg i.p.) (p < 0.05). Taken together, these results indicate that systemic administration of zerumbone produces significant anti-allodynic and antihyperalgesic activities in neuropathic pain in mice possibly due to involvement of the l-arginine-NO-cGMP-PKG-K⁺ ATP channel pathways in CCI model.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links