Displaying publications 1 - 20 of 164 in total

Abstract:
Sort:
  1. Rahman NA, Fadzly N, Dzakwan NM, Zulkifli NH
    Trop Life Sci Res, 2014 Aug;25(1):95-103.
    PMID: 25210590 MyJurnal
    We conducted a series of experiments to test the numerical competency of two species of birds, Corvus splendens (House Crow) and Acridotheres tristis (Common Myna). Both species were allowed to choose from seven different groups of mealworms with varying proportions. We considered the birds to have made a correct choice when it selected the food group with the highest number of mealworms. Our overall results indicated that the Common Myna is able to count numbers (161 successful choices out of 247 trials) better than House Crows (133 successful choices out of 241 trials). We suspect that House Crows do not rely on a numerical sense when selecting food. Although House Crows mostly chose the cup with more mealworms (from seven food item proportions), only one proportion was chosen at rate above random chance. The Common Myna, however, were slow performers at the beginning but became increasingly more capable of numerical sense during the remainder of the experiment (four out of seven food proportion groups were chosen at a rate above random chance).
  2. Ahmad R, Rahmat R, Hisamudin N, Rahman NA, Noh AY, Mohammad N, et al.
    PMID: 20578468
    Early identification and rapid treatment of red tag patients may decrease morbidity and mortality. We examined the clinical characteristics, etiologies and one week mortality rate of red tag (life threatening and potentially life threatening illness) patients at the Hospital Universiti Sains Malaysai (HUSM). A cross-sectional study was conducted at the Emergency Department of the HUSM from 1 August 2006 to 31 January 2007; 440 eligible patients were analyzed. The group had a mean age of 47.2 +/- 22 years, with 67.3% of the patients being male. Twenty-three percent were trauma cases with motor vehicle accident being the major mechanism of injury. Fifty-four percent of the cases had cardiac related illnesses. The mean duration of stay in the Emergency Department (ED) was 3.9 +/- 1.5 hours. The survival rate at one week was 76.6%. The non-trauma group comprised 74.0% of death cases. Acute coronary syndrome and road traffic accidents comprised 22.0% of total death cases at one week. Red tag patients constitute a large proportion of ED cases and may remain in the ED for significant periods of time.

    Study site: Hospital Universiti Sains Malaysia (HUSM)
  3. Omar NY, Rahman NA, Zain SM
    J Comput Chem, 2011 Jul 15;32(9):1813-23.
    PMID: 21455954 DOI: 10.1002/jcc.21763
    The mechanism and enantioselectivity of the organocatalytic Diels-Alder reaction were computationally investigated by density functional theory at the B3LYP/6-31G(d) level of theory. The uncatalyzed Diels-Alder reaction was also studied to explore the effect of the organocatalyst on this reaction in terms of energetics, selectivity, and mechanism. The catalyzed reaction showed improved endo/exo selectivity, and the free energy of activation was significantly lowered in the presence of the catalyst. Both uncatalyzed and catalyzed reactions exhibited concerted asynchronous reaction mechanism with the degree of asynchronicity being more evident in the presence of the catalyst. The Corey's experimentally derived predictive selection rules for the outcome of the organocatalytic Diels-Alder reaction were also theoretically analyzed, and an excellent agreement was found between experiment and theory.
  4. Rothan HA, Bahrani H, Shankar EM, Rahman NA, Yusof R
    Antiviral Res, 2014 Aug;108:173-80.
    PMID: 24929084 DOI: 10.1016/j.antiviral.2014.05.019
    Chikungunya virus (CHIKV) outbreaks have led to a serious economic burden, as the available treatment strategies can only alleviate disease symptoms, and no effective therapeutics or vaccines are currently available for human use. Here, we report the use of a new cost-effective approach involving production of a recombinant antiviral peptide-fusion protein that is scalable for the treatment of CHIKV infection. A peptide-fusion recombinant protein LATA-PAP1-THAN that was generated by joining Latarcin (LATA) peptide with the N-terminus of the PAP1 antiviral protein, and the Thanatin (THAN) peptide to the C-terminus, was produced in Escherichia coli as inclusion bodies. The antiviral LATA-PAP1-THAN protein showed 89.0% reduction of viral plaque formation compared with PAP1 (46.0%), LATA (67.0%) or THAN (79.3%) peptides alone. The LATA-PAP1-THAN protein reduced the viral RNA load that was 0.89-fold compared with the untreated control cells. We also showed that PAP1 resulted in 0.44-fold reduction, and THAN and LATA resulting in 0.78-fold and 0.73-fold reductions, respectively. The LATA-PAP1-THAN protein inhibited CHIKV replication in the Vero cells at an EC50 of 11.2μg/ml, which is approximately half of the EC50 of PAP1 (23.7μg/ml) and protected the CHIKV-infected mice at the dose of 0.75mg/ml. We concluded that production of antiviral peptide-fusion protein in E. coli as inclusion bodies could accentuate antiviral activities, enhance cellular internalisation, and could reduce product toxicity to host cells and is scalable to epidemic response quantities.
  5. Rothan HA, Mohamed Z, Paydar M, Rahman NA, Yusof R
    Arch Virol, 2014 Apr;159(4):711-8.
    PMID: 24142271 DOI: 10.1007/s00705-013-1880-7
    Doxycycline is an antibiotic derived from tetracycline that possesses antimicrobial and anti-inflammatory activities. Antiviral activity of doxycycline against dengue virus has been reported previously; however, its anti-dengue properties need further investigation. This study was conducted to determine the potential activity of doxycycline against dengue virus replication in vitro. Doxycycline inhibited the dengue virus serine protease (DENV2 NS2B-NS3pro) with an IC50 value of 52.3 ± 6.2 μM at 37 °C (normal human temperature) and 26.7 ± 5.3 μM at 40 °C (high fever temperature). The antiviral activity of doxycycline was first tested at different concentrations against DENV2 using a plaque-formation assay. The virus titter decreased significantly after applying doxycycline at levels lower than its 50 % cytotoxic concentration (CC50, 100 μM), showing concentration-dependent inhibition with a 50 % effective concentration (EC50) of approximately 50 μM. Doxycycline significantly inhibited viral entry and post-infection replication of the four dengue serotypes, with serotype-specific inhibition (high activity against DENV2 and DENV4 compared to DENV1 and DENV3). Collectively, these findings underline the need for further experimental and clinical studies on doxycycline, utilizing its anti-dengue and anti-inflammatory activities to attenuate the clinical symptoms of dengue virus infection.
  6. Rothan HA, Mohamed Z, Suhaeb AM, Rahman NA, Yusof R
    OMICS, 2013 Nov;17(11):560-7.
    PMID: 24044366 DOI: 10.1089/omi.2013.0056
    Dengue virus infects millions of people worldwide, and there is no vaccine or anti-dengue therapeutic available. Antimicrobial peptides have been shown to possess effective antiviral activity against various viruses. One of the main limitations of developing these peptides as potent antiviral drugs is the high cost of production. In this study, high yield production of biologically active plectasin peptide was inexpensively achieved by producing tandem plectasin peptides as inclusion bodies in E. coli. Antiviral activity of the recombinant peptide towards dengue serotype-2 NS2B-NS3 protease (DENV2 NS2B-NS3pro) was assessed as a target to inhibit dengue virus replication in Vero cells. Single units of recombinant plectasin were collected after applying consecutive steps of refolding, cleaving by Factor Xa, and nickel column purification to obtain recombinant proteins of high purity. The maximal nontoxic dose (MNTD) of the recombinant peptide against Vero cells was 20 μM (100 μg/mL). The reaction velocity of DENV2 NS2B-NS3pro decreased significantly after increasing concentrations of recombinant plectasin were applied to the reaction mixture. Plectasin peptide noncompetitively inhibited DENV2 NS2B-NS3pro at Ki value of 5.03 ± 0.98 μM. The percentage of viral inhibition was more than 80% at the MNTD value of plectasin. In this study, biologically active recombinant plectasin which was able to inhibit dengue protease and viral replication in Vero cells was successfully produced in E. coli in a time- and cost- effective method. These findings are potentially important in the development of potent therapeutics against dengue infection.
  7. Othman S, Rahman NA, Yusof R
    Trans R Soc Trop Med Hyg, 2010 Dec;104(12):806-8.
    PMID: 20800252 DOI: 10.1016/j.trstmh.2010.07.004
    In contrast to many viruses that escape the host's immune responses by suppressing the major histocompatibility complex (MHC) class I pathway, flaviviruses have been shown to up-regulate the cell surface expression of MHC class I complex. The mechanism by which dengue virus (DV) achieves this up-regulation remains unclear. Our investigation on the HLA-A2 gene in human liver cells demonstrated that all four serotypes of dengue virus, DV1 to DV4, resulted in variable degrees of promoter induction. This illustrates the importance of MHC class I transcription regulation in primary infections by different DV serotypes that may have even greater impact in secondary infections, associated with increased disease severity.
  8. Rothan HA, Han HC, Ramasamy TS, Othman S, Rahman NA, Yusof R
    BMC Infect Dis, 2012;12:314.
    PMID: 23171075 DOI: 10.1186/1471-2334-12-314
    Global resurgence of dengue virus infections in many of the tropical and subtropical countries is a major concern. Therefore, there is an urgent need for the development of successful drugs that are both economical and offer a long-lasting protection. The viral NS2B-NS3 serine protease (NS2B-NS3pro) is a promising target for the development of drug-like inhibitors, which are not available at the moment. In this study, we report retrocyclin-1 (RC-1) production in E. coli as a recombinant peptide to test against dengue NS2B-NS3pro.
  9. Rothan HA, Bahrani H, Abdulrahman AY, Mohamed Z, Teoh TC, Othman S, et al.
    Antiviral Res, 2016 Mar;127:50-6.
    PMID: 26794398 DOI: 10.1016/j.antiviral.2016.01.006
    Chikungunya virus (CHIKV) infection is a persistent problem worldwide due to efficient adaptation of the viral vectors, Aedes aegypti and Aedes albopictus mosquitoes. Therefore, the absence of effective anti-CHIKV drugs to combat chikungunya outbreaks often leads to a significant impact on public health care. In this study, we investigated the antiviral activity of drugs that are used to alleviate infection symptoms, namely, the non-steroidal anti-inflammatory drugs (NSAIDs), on the premise that active compounds with potential antiviral and anti-inflammatory activities could be directly subjected for human use to treat CHIKV infections. Amongst the various NSAID compounds, Mefenamic acid (MEFE) and Meclofenamic acid (MECLO) showed considerable antiviral activity against viral replication individually or in combination with the common antiviral drug, Ribavirin (RIBA). The 50% effective concentration (EC50) was estimated to be 13 μM for MEFE, 18 μM for MECLO and 10 μM for RIBA, while MEFE + RIBA (1:1) exhibited an EC50 of 3 μM, and MECLO + RIBA (1:1) was 5 μM. Because MEFE is commercially available and its synthesis is easier compared with MECLO, MEFE was selected for further in vivo antiviral activity analysis. Treatment with MEFE + RIBA resulted in a significant reduction of hypertrophic effects by CHIKV on the mouse liver and spleen. Viral titre quantification in the blood of CHIKV-infected mice through the plaque formation assay revealed that treatment with MEFE + RIBA exhibited a 6.5-fold reduction compared with untreated controls. In conclusion, our study demonstrated that MEFE in combination with RIBA exhibited significant anti-CHIKV activity by impairing viral replication in vitro and in vivo. Indeed, this finding may lead to an even broader application of these combinatorial treatments against other viral infections.
  10. Rothan HA, Bahrani H, Mohamed Z, Teoh TC, Shankar EM, Rahman NA, et al.
    PLoS One, 2015;10(5):e0126360.
    PMID: 25970853 DOI: 10.1371/journal.pone.0126360
    Lack of vaccine and effective antiviral drugs against chikungunya virus (CHIKV) outbreaks have led to significant impact on health care in the developing world. Here, we evaluated the antiviral effects of tetracycline (TETRA) derivatives and other common antiviral agents against CHIKV. Our results showed that within the TETRA derivatives group, Doxycycline (DOXY) exhibited the highest inhibitory effect against CHIKV replication in Vero cells. On the other hand, in the antiviral group Ribavirin (RIBA) showed higher inhibitory effects against CHIKV replication compared to Aciclovir (ACIC). Interestingly, RIBA inhibitory effects were also higher than all but DOXY within the TETRA derivatives group. Docking studies of DOXY to viral cysteine protease and E2 envelope protein showed non-competitive interaction with docking energy of -6.6±0.1 and -6.4±0.1 kcal/mol respectively. The 50% effective concentration (EC50) of DOXY and RIBA was determined to be 10.95±2.12 μM and 15.51±1.62 μM respectively, while DOXY+RIBA (1:1 combination) showed an EC50 of 4.52±1.42 μM. When compared, DOXY showed higher inhibition of viral infectivity and entry than RIBA. In contrast however, RIBA showed higher inhibition against viral replication in target cells compared to DOXY. Assays using mice as animal models revealed that DOXY+RIBA effectively inhibited CHIKV replication and attenuated its infectivity in vivo. Further experimental and clinical studies are warranted to investigate their potential application for clinical intervention of CHIKV disease.
  11. Othman S, Rahman NA, Yusof R
    Virus Res, 2012 Jan;163(1):238-45.
    PMID: 22001567 DOI: 10.1016/j.virusres.2011.09.040
    Despite aggressive efforts in dengue research, the control of dengue diseases and discovery of therapeutics against them await complete elucidation of its complex immune-pathogenesis. Unlike many viruses that escape the host's immune responses by suppressing the major histocompatibility complex (MHC) Class I pathway, many Flaviviruses up-regulate the cell surface expression of MHC Class I complex. We recently reported MHC Class I HLA-A2 promoter activation by all serotypes of dengue virus (DV). The mechanism by which DV regulates this is further explored here in HepG2 human liver cell line. Using real-time PCR, evidence that, similar to infections by other Flaviviruses, DV infection has the ability to up-regulate the MHC Class I transcription and mRNA synthesis, is presented. The region responsive towards DV infection of all serotypes was mapped to the Class I Regulatory Complex (CRC) of the HLA-A2 promoter. Competition electrophoretic mobility shift assay (EMSA) with NFκB probe established the presence of specific DNA-protein complex in DV-infected nuclear extracts. Antibody-supershift assays identified the MHC Class I promoter activation by DV to occur through binding of p65/p50 heterodimers and p65 homodimers to κB1 and κB2 cis-acting elements, respectively, within the CRC, and not with the interferon consensus sequence (ICS). This study presents evidence of MHC Class I gene modulation by DV, hence providing a better understanding of dengue immune-pathogenesis that would consequently facilitate the discovery of antiviral therapeutics against dengue.
  12. Rothan HA, Bahrani H, Rahman NA, Yusof R
    BMC Microbiol, 2014;14:140.
    PMID: 24885331 DOI: 10.1186/1471-2180-14-140
    Although there have been considerable advances in the study of dengue virus, no vaccines or anti-dengue drugs are currently available for humans. Therefore, new approaches are necessary for the development of potent anti-dengue drugs. Natural antimicrobial peptides (AMPs) with potent antiviral activities are potential hits-to-leads for antiviral drug discovery. We performed this study to identify and characterise the inhibitory potential of the latarcin peptide (Ltc 1, SMWSGMWRRKLKKLRNALKKKLKGE) against dengue virus replication in infected cells.
  13. Rothan HA, Zulqarnain M, Ammar YA, Tan EC, Rahman NA, Yusof R
    Trop Biomed, 2014 Jun;31(2):286-96.
    PMID: 25134897 MyJurnal
    Dengue virus infects millions of people worldwide and there is no vaccine or anti-dengue therapeutic available. Screening large numbers of medicinal plants for anti-dengue activities is an alternative strategy in order to find the potent therapeutic compounds. Therefore, this study was designed to identify anti-dengue activities in nineteen medicinal plant extracts that are used in traditional medicine. Local medicinal plants Vernonia cinerea, Hemigraphis reptans, Hedyotis auricularia, Laurentia longiflora, Tridax procumbers and Senna angustifolia were used in this study. The highest inhibitory activates against dengue NS2B-NS3pro was observed in ethanolic extract of S. angustifolia leaves, methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems. These findings were further verified by in vitro viral inhibition assay. Methanolic extract of V. cinerea leaves, ethanol extract of T. procumbens stems and at less extent ethanolic extract of S. angustifolia leaves were able to maintain the normal morphology of DENV2-infected Vero cells without causing much cytopathic effects (CPE). The percentage of viral inhibition of V. cinerea and T. procumbens extracts were significantly higher than S. angustifolia extract as measured by plaque formation assay and RT-qPCR. In conclusion, The outcome of this study showed that the methanolic extract of V. cinerea leaves and ethanol extract of T. procumbens stems possessed high inhibitory activates against dengue virus that worth more investigation.
  14. Muhamad M, Kee LY, Rahman NA, Yusof R
    Int J Biol Sci, 2010 May 23;6(3):294-302.
    PMID: 20567498
    Dengue viruses, mosquito-borne members of the Flaviviridae family, are the causative agents of dengue fever and its associated complications, dengue haemorrhagic fever and dengue shock syndrome. To date, more than 2.5 billion people in over 100 countries are at risk of infection, and approximately 20 million infections were reported annually. There is currently no treatment or vaccine available for dengue infection. This study employed a whole-cell organism model or in vitro methods to study the inhibitory property of the flavanoid-derived compounds against DENV2 activity. Results showed that at concentration not exceeding the maximum non-toxic dose (MNTD), these compounds completely prevented DENV2 infection in HepG2 cells as indicated by the absence of cytophatic effects. The in vitro antiviral activity assessed in HepG2 cells employing virus inhibition assay showed high inhibitory activity in a dose dependent manner. At concentration below MNTD, compounds exhibited inhibitory activity against DENV2 with a range of potency strengths of 72% to 100%. The plaque forming unit per ml (pfu/ml) was reduced prominently with a maximum reduction of 98% when the infected HepG2 cells were treated with the highest non-toxic dose of compounds. The highly potent activity of the compounds against DENV2 infection strongly suggests their potential as a lead antiviral agent for dengue.
  15. Rothan HA, Abdulrahman AY, Sasikumer PG, Othman S, Rahman NA, Yusof R
    J Biomed Biotechnol, 2012;2012:251482.
    PMID: 23093838 DOI: 10.1155/2012/251482
    Dengue diseases have an economic as well as social burden worldwide. In this study, the antiviral activity of protegrin-1 (PG-1, RGGRLCYCRRRFCVCVGR) peptide towards dengue NS2B-NS3pro and viral replication in Rhesus monkey kidney (MK2) cells was investigated. The peptide PG-1 was synthesized by solid-phase peptide synthesis, and disulphide bonds formation followed by peptide purification was confirmed by LC-MS and RPHPLC. Dengue NS2B-NS3pro was produced as a single-chain recombinant protein in E. coli. The NS2B-NS3pro assay was carried out by measuring the florescence emission of catalyzed substrate. Real-time PCR was used to evaluate the inhibition potential of PG-1 towards dengue serotype-2 (DENV-2) replication in MK2 cells. The results showed that PG-1 inhibited dengue NS2B-NS3pro at IC(50) of 11.7 μM. The graded concentrations of PG-1 at nontoxic range were able to reduce viral replication significantly (P < 0.001) at 24, 48, and 72 hrs after viral infection. However, the percentage of inhibition was significantly (P < 0.01) higher at 24 hrs compared to 48 and 72 hrs. These data show promising therapeutic potential of PG-1 against dengue infection, hence it warrants further analysis and improvement of the peptide features as a prospective starting point for consideration in designing attractive dengue virus inhibitors.
  16. Pyle JA, Warwick NJ, Harris NR, Abas MR, Archibald AT, Ashfold MJ, et al.
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3210-24.
    PMID: 22006963 DOI: 10.1098/rstb.2011.0060
    We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
  17. Hameed MM, Razali SFM, Mohtar WHMW, Rahman NA, Yaseen ZM
    PLoS One, 2023;18(10):e0290891.
    PMID: 37906556 DOI: 10.1371/journal.pone.0290891
    The Great Lakes are critical freshwater sources, supporting millions of people, agriculture, and ecosystems. However, climate change has worsened droughts, leading to significant economic and social consequences. Accurate multi-month drought forecasting is, therefore, essential for effective water management and mitigating these impacts. This study introduces the Multivariate Standardized Lake Water Level Index (MSWI), a modified drought index that utilizes water level data collected from 1920 to 2020. Four hybrid models are developed: Support Vector Regression with Beluga whale optimization (SVR-BWO), Random Forest with Beluga whale optimization (RF-BWO), Extreme Learning Machine with Beluga whale optimization (ELM-BWO), and Regularized ELM with Beluga whale optimization (RELM-BWO). The models forecast droughts up to six months ahead for Lake Superior and Lake Michigan-Huron. The best-performing model is then selected to forecast droughts for the remaining three lakes, which have not experienced severe droughts in the past 50 years. The results show that incorporating the BWO improves the accuracy of all classical models, particularly in forecasting drought turning and critical points. Among the hybrid models, the RELM-BWO model achieves the highest level of accuracy, surpassing both classical and hybrid models by a significant margin (7.21 to 76.74%). Furthermore, Monte-Carlo simulation is employed to analyze uncertainties and ensure the reliability of the forecasts. Accordingly, the RELM-BWO model reliably forecasts droughts for all lakes, with a lead time ranging from 2 to 6 months. The study's findings offer valuable insights for policymakers, water managers, and other stakeholders to better prepare drought mitigation strategies.
  18. Chong PP, Tung CH, Rahman NA, Yajima M, Chin FW, Yeng CL, et al.
    Acta Ophthalmol, 2014 Nov;92(7):e569-79.
    PMID: 25043991 DOI: 10.1111/aos.12427
    The aim of the study was to determine the prevalence of human papillomavirus (HPV) in primary and recurrent pterygia samples collected from different ethnic groups in the equatorial Malay Peninsula.
  19. Yehye WA, Rahman NA, Ariffin A, Abd Hamid SB, Alhadi AA, Kadir FA, et al.
    Eur J Med Chem, 2015 Aug 28;101:295-312.
    PMID: 26150290 DOI: 10.1016/j.ejmech.2015.06.026
    Hindered phenols find a wide variety of applications across many different industry sectors. Butylated hydroxytoluene (BHT) is a most commonly used antioxidant recognized as safe for use in foods containing fats, pharmaceuticals, petroleum products, rubber and oil industries. In the past two decades, there has been growing interest in finding novel antioxidants to meet the requirements of these industries. To accelerate the antioxidant discovery process, researchers have designed and synthesized a series of BHT derivatives targeting to improve its antioxidant properties to be having a wide range of antioxidant activities markedly enhanced radical scavenging ability and other physical properties. Accordingly, some structure-activity relationships and rational design strategies for antioxidants based on BHT structure have been suggested and applied in practice. We have identified 14 very sensitive parameters, which may play a major role on the antioxidant performance of BHT. In this review, we attempt to summarize the current knowledge on this topic, which is of significance in selecting and designing novel antioxidants using a well-known antioxidant BHT as a building-block molecule. Our strategy involved investigation on understanding the chemistry behind the antioxidant activities of BHT, whether through hydrogen or electron transfer mechanism to enable promising anti-oxidant candidates to be synthesized.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links