Displaying publications 1 - 20 of 87 in total

Abstract:
Sort:
  1. Mat Hadzir N, Basri M, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RN, Basri H
    AAPS PharmSciTech, 2013 Mar;14(1):456-63.
    PMID: 23386307 DOI: 10.1208/s12249-013-9929-1
    Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via 'One-At-A-Time Approach' were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze-thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.
  2. Yaacob MA, Hasan WA, Ali MS, Rahman RN, Salleh AB, Basri M, et al.
    Acta Biochim. Pol., 2014;61(4):745-52.
    PMID: 25337608
    Genome mining revealed a 1011 nucleotide-long fragment encoding a type I L-asparaginase (J15 asparaginase) from the halo-tolerant Photobacterium sp. strain J15. The gene was overexpressed in pET-32b (+) vector in E. coli strain Rosetta-gami B (DE3) pLysS and purified using two-step chromatographic methods: Ni(2+)-Sepharose affinity chromatography and Q-Sepharose anion exchange chromatography. The final specific activity and yield of the enzyme achieved from these steps were 20 U/mg and 49.2%, respectively. The functional dimeric form of J15-asparaginase was characterised with a molecular weight of ~70 kDa. The optimum temperature and pH were 25°C and pH 7.0, respectively. This protein was stable in the presence of 1 mM Ni(2+) and Mg(2+), but it was inhibited by Mn(2+), Fe(3+) and Zn(2+) at the same concentration. J15 asparaginase actively hydrolysed its native substrate, l-asparagine, but had low activity towards l-glutamine. The melting temperature of J15 asparaginase was ~51°C, which was determined using denatured protein analysis of CD spectra. The Km, Kcat, Kcat/Km of J15 asparaginase were 0.76 mM, 3.2 s(-1), and 4.21 s(-1) mM(-1), respectively. Conformational changes of the J15 asparaginase 3D structure at different temperatures (25°C, 45°C, and 65°C) were analysed using Molecular Dynamic simulations. From the analysis, residues Tyr₂₄ , His₂₂, Gly₂₃, Val₂₅ and Pro₂₆ may be directly involved in the 'open' and 'closed' lid-loop conformation, facilitating the conversion of substrates during enzymatic reactions. The properties of J15 asparaginase, which can work at physiological pH and has low glutaminase activity, suggest that this could be a good candidate for reducing toxic effects during cancer treatment.
  3. Oslan SN, Salleh AB, Rahman RN, Basri M, Chor AL
    Acta Biochim. Pol., 2012;59(2):225-9.
    PMID: 22577620
    Yeasts are a convenient platform for many applications. They have been widely used as the expression hosts. There is a need to have a new yeast expression system to contribute the molecular cloning demands. Eight yeast isolates were screened from various environment sources and identified through ribosomal DNA (rDNA) Internal Transcribed Spacer (ITS). Full sequence of the rDNA ITS region for each isolate was BLASTed and phylogenetic study was constructed by using MEGA4. Among the isolates, isolate WB from 'ragi' (used to ferment carbohydrates) could be identified as a new species in order Saccharomycetales according to rDNA ITS region, morphology and biochemical tests. Isolate SO (from spoiled orange), RT (rotten tomato) and RG (different type of 'ragi') were identified as Pichia sp. Isolates R1 and R2, S4 and S5 (from the surrounding of a guava tree) were identified as Issatchenkia sp. and Hanseniaspora sp., respectively. Geneticin, 50 µg/mL, was determined to be the antibiotic marker for all isolates excepted for isolates RT and SO which used 500 µg/mL and 100 µg/mL Zeocin, respectively. Intra-extracellular proteins were screened for lipolytic activity at 30°C and 70°C. Thermostable lipase activity was detected in isolates RT and R1 with 0.6 U/mg and 0.1 U/mg, respectively. In conclusion, a new yeast-vector system for isolate WB can be developed by using phleomycin or geneticin as the drugs resistance marker. Moreover, strains RT and R1 can be investigated as a novel source of a thermostable lipase.
  4. Tan CY, Rahman RN, Kadir HA, Tayyab S
    Acta Biochim. Pol., 2011;58(3):405-12.
    PMID: 21887412
    Bacillus licheniformis α-amylase (BLA) was chemically modified using 100-fold molar excess of succinic anhydride over protein or 0.66 M potassium cyanate to obtain 42 % succinylated and 81 % carbamylated BLAs. Size and charge homogeneity of modified preparations was established by Sephacryl S-200 HR gel chromatography and polyacrylamide gel electrophoresis. Conformational alteration in these preparations was evident by the larger Stokes radii (3.40 nm for carbamylated and 3.34 nm for succinylated BLAs) compared to 2.43 nm obtained for native BLA. Urea denaturation results using mean residue ellipticity (MRE) as a probe also showed conformational destabilization based on the early start of transition as well as ΔG(D)(H(2)O) values obtained for both modified derivatives and Ca-depleted BLA. Decrease in ΔG(D)(H(2)O) value from 5,930 cal/mol (for native BLA) to 3,957 cal/mol (for succinylated BLA), 3,336 cal/mol (for carbamylated BLA) and 3,430 cal/mol for Ca-depleted BLA suggested reduced conformational stability upon modification of amino groups of BLA or depletion of calcium. Since both succinylation and carbamylation reactions abolish the positive charge on amino groups (both α- and ε- amino), the decrease in conformational stability can be ascribed to the disruption of salt bridges present in the protein which might have released the intrinsic calcium from its binding site.
  5. Khusaini MS, Rahman RN, Mohamad Ali MS, Leow TC, Basri M, Salleh AB
    PMID: 21393852 DOI: 10.1107/S1744309111002028
    An organic solvent-tolerant lipase from Bacillus sp. strain 42 was crystallized using the capillary-tube method. The purpose of studying this enzyme was in order to better understand its folding and to characterize its properties in organic solvents. By initially solving its structure in the native state, further studies on protein-solvent interactions could be performed. X-ray data were collected at 2.0 Å resolution using an in-house diffractometer. The estimated crystal dimensions were 0.09×0.19×0.08 mm. The crystal belonged to the monoclinic space group C2, with unit-cell parameters a=117.41, b=80.85, c=99.44 Å, β=96.40°.
  6. Shariff FM, Rahman RN, Ali MS, Chor AL, Basri M, Salleh AB
    PMID: 20516608 DOI: 10.1107/S174430911001482X
    Purified thermostable recombinant L2 lipase from Bacillus sp. L2 was crystallized by the counter-diffusion method using 20% PEG 6000, 50 mM MES pH 6.5 and 50 mM NaCl as precipitant. X-ray diffraction data were collected to 2.7 A resolution using an in-house Bruker X8 PROTEUM single-crystal diffractometer system. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 87.44, b = 94.90, c = 126.46 A. The asymmetric unit contained one single molecule of protein, with a Matthews coefficient (V(M)) of 2.85 A(3) Da(-1) and a solvent content of 57%.
  7. Rahman RN, Baharum SN, Basri M, Salleh AB
    Anal Biochem, 2005 Jun 15;341(2):267-74.
    PMID: 15907872
    An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
  8. Wahab RA, Basri M, Rahman RN, Salleh AB, Rahman MB, Chor LT
    Appl Biochem Biotechnol, 2012 Jun;167(3):612-20.
    PMID: 22581079 DOI: 10.1007/s12010-012-9728-2
    In silico and experimental investigations were conducted to explore the effects of substituting hydrophobic residues, Val, Met, Leu, Ile, Trp, and Phe into Gln 114 of T1 lipase. The in silico investigations accurately predicted the enzymatic characteristics of the mutants in the experimental studies and provided rationalization for some of the experimental observations. Substitution with Leu successfully improved the conformational stability and enzymatic characteristics of T1 lipase. However, replacement of Gln114 with Trp negatively affected T1 lipase and resulted in the largest disruption of protein stability, diminished lipase activity and inferior enzymatic characteristics. These results suggested that the substitution of a larger residue in a densely packed area of the protein core can have considerable effects on the structure and function of an enzyme. This is especially true when the residue is next to the catalytic serine as demonstrated with the Phe and Trp mutation.
  9. Zakaria II, Rahman RN, Salleh AB, Basri M
    Appl Biochem Biotechnol, 2011 Sep;165(2):737-47.
    PMID: 21633820 DOI: 10.1007/s12010-011-9292-1
    Flavonoids are secondary metabolites synthesized by plants shown to exhibit health benefits such as anti-inflammatory, antioxidant, and anti-tumor effects. Thus, due to the importance of this compound, several enzymes involved in the flavonoid pathway have been cloned and characterized in Escherichia coli. However, the formation of inclusion bodies has become a major disadvantage of this approach. As an alternative, chalcone synthase from Physcomitrella patens was secreted into the medium using a bacteriocin release protein expression vector. Secretion of P. patens chalcone synthase into the culture media was achieved by co-expression with a psW1 plasmid encoding bacteriocin release protein in E. coli Tuner (DE3) plysS. The optimized conditions, which include the incubation of cells for 20 h with 40 ng/ml mitomycin C at OD(600) induction time of 0.5 was found to be the best condition for chalcone synthase secretion.
  10. Cheong KW, Leow TC, Rahman RN, Basri M, Rahman MB, Salleh AB, et al.
    Appl Biochem Biotechnol, 2011 Jun;164(3):362-75.
    PMID: 21153892 DOI: 10.1007/s12010-010-9140-8
    A thermostable lipase from Geobacillus zalihae strain T1 was chemically modified using propionaldehyde via reductive alkylation. The targeted alkylation sites were lysines, in which T1 lipase possessed 11 residues. Far-UV circular dichroism (CD) spectra of both native and alkylated enzyme showed a similar broad minimum between 208 and 222 nm, thus suggesting a substantial amount of secondary structures in modified enzyme, as compared with the corresponding native enzyme. The hydrolytic activity of the modified enzymes dropped drastically by nearly 15-fold upon chemical modification, despite both the native and modified form showed distinctive α-helical bands at 208 and 222 nm in CD spectra, leading us to the hypothesis of formation of a molten globule (MG)-like structure. As cooperative unfolding transitions were observed, the modified lipase was distinguished from the native state, in which the former possessed a denaturation temperature (T(m)) in lower temperature range at 61 °C while the latter at 68 °C. This was further supported by 8-anilino-1-naphthalenesulfonic acid (ANS) probed fluorescence which indicated higher exposure of hydrophobic residues, consequential of chemical modification. Based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis, a small number of lysine residues were confirmed to be alkylated.
  11. Abdul Rahman MB, Chaibakhsh N, Basri M, Salleh AB, Abdul Rahman RN
    Appl Biochem Biotechnol, 2009 Sep;158(3):722-35.
    PMID: 19132557 DOI: 10.1007/s12010-008-8465-z
    In this study, an artificial neural network (ANN) trained by backpropagation algorithm, Levenberg-Marquadart, was applied to predict the yield of enzymatic synthesis of dioctyl adipate. Immobilized Candida antarctica lipase B was used as a biocatalyst for the reaction. Temperature, time, amount of enzyme, and substrate molar ratio were the four input variables. After evaluating various ANN configurations, the best network was composed of seven hidden nodes using a hyperbolic tangent sigmoid transfer function. The correlation coefficient (R2) and mean absolute error (MAE) values between the actual and predicted responses were determined as 0.9998 and 0.0966 for training set and 0.9241 and 1.9439 for validating dataset. A simulation test with a testing dataset showed that the MAE was low and R2 was close to 1. These results imply the good generalization of the developed model and its capability to predict the reaction yield. Comparison of the performance of radial basis network with the developed models showed that radial basis function was more accurate but its performance was poor when tested with unseen data. In further part of the study, the feedforward backpropagation model was used for prediction of the ester yield within the given range of the main parameters.
  12. Rahman MB, Basri M, Hussein MZ, Rahman RN, Zainol DH, Salleh AB
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):313-20.
    PMID: 15304759
    Synthesis of layered double hydroxides (LDHs) of Zn/Al-NO3- hydrotalcite (HIZAN) and Zn/Al-diocytyl sodium sulfosuccinate (DSS) nanocomposite (NAZAD) with a molar ratio of Zn/Al of 4:1 were carried out by coprecipitation through continuous agitation. Their structures were determined using X-ray diffractometer spectra, which showed that basal spacing for LDH synthesized by both methods was about 8.89 A. An expansion of layered structure of about 27.9 A was observed to accommodate the surfactant anion between the interlayer. This phenomenon showed that the intercalation process took place between the LDH interlayer. Lipase from Candida rugosa was immobilized onto these materials by physical adsorption method. It was found that the protein loading onto NAZAD is higher than HIZAN. The activity of immobilized lipase was investigated through esterification of oleic acid and 1-butanol in hexane. The effects of pore size, surface area, reaction temperature, thermostability of the immobilized lipases, storage stability in organic solvent, and leaching studies were investigated. Stability was found to be the highest in the nanocomposite NAZAD.
  13. Salleh AB, Basri M, Taib M, Jasmani H, Rahman RN, Rahman MB, et al.
    Appl Biochem Biotechnol, 2002 10 25;102-103(1-6):349-57.
    PMID: 12396136
    Recent studies on biocatalysis in water-organic solvent biphasic systems have shown that many enzymes retain their catalytic activities in the presence of high concentrations of organic solvents. However, not all enzymes are organic solvent tolerant, and most have limited and selective tolerance to particular organic solvents. Protein modification or protein tailoring is an approach to alter the characteristics of enzymes, including solubility in organic solvents. Particular amino acids may play pivotal roles in the catalytic ability of the protein. Attaching soluble modifiers to the protein molecule may alter its conformation and the overall polarity of the molecule. Enzymes, in particular lipases, have been chemically modified by attachment of aldehydes, polyethylene glycols, and imidoesters. These modifications alter the hydrophobicity and conformation of the enzymes, resulting in changes in the microenvironment of the enzymes. By these modifications, newly acquired properties such as enhancement of activity and stability and changes in specificity and solubility in organic solvents are obtained. Modified lipases were found to be more active and stable in organic solvents. The optimum water activity (a(w)) for reaction was also shifted by using modified enzymes. Changes in enantioselective behavior were also observed.
  14. Rahman RN, Tejo BA, Basri M, Rahman MB, Khan F, Zain SM, et al.
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):11-20.
    PMID: 15304735
    Candida rugosa lipase was modified via reductive alkylation to increase its hydrophobicity to work better in organic solvents. The free amino group of lysines was alkylated using propionaldehyde with different degrees of modification obtained (49 and 86%). Far-ultraviolet circular dichroism (CD) spectroscopy of the lipase in aqueous solvent showed that such chemical modifications at the enzyme surface caused a loss in secondary and tertiary structure that is attributed to the enzyme unfolding. Using molecular modeling, we propose that in an aqueous environment the loss in protein structure of the modified lipase is owing to disruption of stabilizing salt bridges, particularly of surface lysines. Indeed, molecular modeling and simulation of a salt bridge formed by Lys-75 to Asp-79, in a nonpolar environment, suggests the adoption of a more flexible alkylated lysine that may explain higher lipase activity in organic solvents on alkylation.
  15. Basri M, Rahman RN, Ebrahimpour A, Salleh AB, Gunawan ER, Rahman MB
    BMC Biotechnol, 2007;7:53.
    PMID: 17760990
    Wax esters are important ingredients in cosmetics, pharmaceuticals, lubricants and other chemical industries due to their excellent wetting property. Since the naturally occurring wax esters are expensive and scarce, these esters can be produced by enzymatic alcoholysis of vegetable oils. In an enzymatic reaction, study on modeling and optimization of the reaction system to increase the efficiency of the process is very important. The classical method of optimization involves varying one parameter at a time that ignores the combined interactions between physicochemical parameters. RSM is one of the most popular techniques used for optimization of chemical and biochemical processes and ANNs are powerful and flexible tools that are well suited to modeling biochemical processes.
  16. Ebrahimpour A, Abd Rahman RN, Ean Ch'ng DH, Basri M, Salleh AB
    BMC Biotechnol, 2008 Dec 23;8:96.
    PMID: 19105837 DOI: 10.1186/1472-6750-8-96
    BACKGROUND: Thermostable bacterial lipases occupy a place of prominence among biocatalysts owing to their novel, multifold applications and resistance to high temperature and other operational conditions. The capability of lipases to catalyze a variety of novel reactions in both aqueous and nonaqueous media presents a fascinating field for research, creating interest to isolate novel lipase producers and optimize lipase production. The most important stages in a biological process are modeling and optimization to improve a system and increase the efficiency of the process without increasing the cost.

    RESULTS: Different production media were tested for lipase production by a newly isolated thermophilic Geobacillus sp. strain ARM (DSM 21496 = NCIMB 41583). The maximum production was obtained in the presence of peptone and yeast extract as organic nitrogen sources, olive oil as carbon source and lipase production inducer, sodium and calcium as metal ions, and gum arabic as emulsifier and lipase production inducer. The best models for optimization of culture parameters were achieved by multilayer full feedforward incremental back propagation network and modified response surface model using backward elimination, where the optimum condition was: growth temperature (52.3 degrees C), medium volume (50 ml), inoculum size (1%), agitation rate (static condition), incubation period (24 h) and initial pH (5.8). The experimental lipase activity was 0.47 Uml(-1) at optimum condition (4.7-fold increase), which compared well to the maximum predicted values by ANN (0.47 Uml(-1)) and RSM (0.476 Uml(-1)), whereas R2 and AAD were determined as 0.989 and 0.059% for ANN, and 0.95 and 0.078% for RSM respectively.

    CONCLUSION: Lipase production is the result of a synergistic combination of effective parameters interactions. These parameters are in equilibrium and the change of one parameter can be compensated by changes of other parameters to give the same results. Though both RSM and ANN models provided good quality predictions in this study, yet the ANN showed a clear superiority over RSM for both data fitting and estimation capabilities. On the other hand, ANN has the disadvantage of requiring large amounts of training data in comparison with RSM. This problem was solved by using statistical experimental design, to reduce the number of experiments.

  17. Abd Rahman RN, Leow TC, Salleh AB, Basri M
    BMC Microbiol, 2007;7:77.
    PMID: 17692114
    Thermophilic Bacillus strains of phylogenetic Bacillus rRNA group 5 were described as a new genus Geobacillus. Their geographical distribution included oilfields, hay compost, hydrothermal vent or soils. The members from the genus Geobacillus have a growth temperatures ranging from 35 to 78 degrees C and contained iso-branched saturated fatty acids (iso-15:0, iso-16:0 and iso-17:0) as the major fatty acids. The members of Geobacillus have similarity in their 16S rRNA gene sequences (96.5-99.2%). Thermophiles harboring intrinsically stable enzymes are suitable for industrial applications. The quest for intrinsically thermostable lipases from thermophiles is a prominent task due to the laborious processes via genetic modification.
  18. Lee Ying Yeng A, Kadir MS, Ghazali HM, Raja Abd Rahman RN, Saari N
    BMC Res Notes, 2013 Dec 10;6:526.
    PMID: 24321181 DOI: 10.1186/1756-0500-6-526
    BACKGROUND: γ-Amino butyric acid (GABA) is a major inhibitory neurotransmitter of the mammalian central nervous system that plays a vital role in regulating vital neurological functions. The enzyme responsible for producing GABA is glutamate decarboxylase (GAD), an intracellular enzyme that both food and pharmaceutical industries are currently using as the major catalyst in trial biotransformation process of GABA. We have successfully isolated a novel strain of Aspergillus oryzae NSK that possesses a relatively high GABA biosynthesizing capability compared to other reported GABA-producing fungal strains, indicating the presence of an active GAD. This finding has prompted us to explore an effective method to recover maximum amount of GAD for further studies on the GAD's biochemical and kinetic properties. The extraction techniques examined were enzymatic lysis, chemical permeabilization, and mechanical disruption. Under the GAD activity assay used, one unit of GAD activity is expressed as 1 μmol of GABA produced per min per ml enzyme extract (U/ml) while the specific activity was expressed as U/mg protein.

    RESULTS: Mechanical disruption by sonication, which yielded 1.99 U/mg of GAD, was by far the most effective cell disintegration method compared with the other extraction procedures examined. In contrast, the second most effective method, freeze grinding followed by 10% v/v toluene permeabilization at 25°C for 120 min, yielded only 1.17 U/mg of GAD, which is 170% lower than the sonication method. Optimized enzymatic lysis with 3 mg/ml Yatalase® at 60°C for 30 min was the least effective. It yielded only 0.70 U/mg of GAD. Extraction using sonication was further optimized using a one-variable-at-a-time approach (OVAT). Results obtained show that the yield of GAD increased 176% from 1.99 U/mg to 3.50 U/mg.

    CONCLUSION: Of the techniques used to extract GAD from A. oryzae NSK, sonication was found to be the best. Under optimized conditions, about 176% of GAD was recovered compared to recovery under non optimized conditions. The high production level of GAD in this strain offers an opportunity to conduct further studies on GABA production at a larger scale.

  19. Mohamad Aris SN, Thean Chor AL, Mohamad Ali MS, Basri M, Salleh AB, Raja Abd Rahman RN
    Biomed Res Int, 2014;2014:904381.
    PMID: 24516857 DOI: 10.1155/2014/904381
    Three-dimensional structure of thermostable lipase is much sought after nowadays as it is important for industrial application mainly found in the food, detergent, and pharmaceutical sectors. Crystallization utilizing the counter diffusion method in space was performed with the aim to obtain high resolution diffracting crystals with better internal order to improve the accuracy of the structure. Thermostable T1 lipase enzyme has been crystallized in laboratory on earth and also under microgravity condition aboard Progress spacecraft to the ISS in collaboration with JAXA (Japanese Aerospace Exploration Agency). This study is conducted with the aims of improving crystal packing and structure resolution. The diffraction data set for ground grown crystal was collected to 1.3 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.40 Å, b = 80.95 Å, and c = 99.81 Å, whereas the diffraction data set for space grown crystal was collected to 1.1 Å resolution and belonged to monoclinic C2 space group with unit cell parameters a = 117.31 Å, b = 80.85 Å, and c = 99.81 Å. The major difference between the two crystal growth systems is the lack of convection and sedimentation in microgravity environment resulted in the growth of much higher quality crystals of T1 lipase.
  20. Mohamad Ali MS, Mohd Fuzi SF, Ganasen M, Abdul Rahman RN, Basri M, Salleh AB
    Biomed Res Int, 2013;2013:925373.
    PMID: 23738333 DOI: 10.1155/2013/925373
    The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8) (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil) are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus) maintained its stability more than the noncatalytic domain (C-terminus), but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links