Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Ishak SNH, Aris SNAM, Halim KBA, Ali MSM, Leow TC, Kamarudin NHA, et al.
    Molecules, 2017 Sep 25;22(10).
    PMID: 28946656 DOI: 10.3390/molecules22101574
    Less sedimentation and convection in a microgravity environment has become a well-suited condition for growing high quality protein crystals. Thermostable T1 lipase derived from bacterium Geobacilluszalihae has been crystallized using the counter diffusion method under space and earth conditions. Preliminary study using YASARA molecular modeling structure program for both structures showed differences in number of hydrogen bond, ionic interaction, and conformation. The space-grown crystal structure contains more hydrogen bonds as compared with the earth-grown crystal structure. A molecular dynamics simulation study was used to provide insight on the fluctuations and conformational changes of both T1 lipase structures. The analysis of root mean square deviation (RMSD), radius of gyration, and root mean square fluctuation (RMSF) showed that space-grown structure is more stable than the earth-grown structure. Space-structure also showed more hydrogen bonds and ion interactions compared to the earth-grown structure. Further analysis also revealed that the space-grown structure has long-lived interactions, hence it is considered as the more stable structure. This study provides the conformational dynamics of T1 lipase crystal structure grown in space and earth condition.
  2. Rahman NNA, Sharif FM, Kamarudin NHA, Ali MSM, Aris SNAM, Jonet MA, et al.
    3 Biotech, 2023 May;13(5):128.
    PMID: 37064003 DOI: 10.1007/s13205-023-03534-x
    GDSL esterase is designated as a member of Family II of lipolytic enzymes known to catalyse the synthesis and hydrolysis of ester bonds. The enzyme possesses a highly conserved motif Ser-Gly-Asn-His in the four conserved blocks I, II, III and V respectively. The enzyme characteristics, such as region-, chemo-, and enantioselectivity, help in resolving the racemic mixture of single-isomer chiral drugs. Recently, crystal structure of GDSL esterase from Photobacterium J15 has been reported (PDB ID: 5XTU) but not in complex with substrate. Therefore, GDSL in complex with substrate could provide insights into the binding mode of substrate towards inactive form of GDSL esterase (S12A) and identify the hot spot residues for the designing of a better binding pocket. Insight into molecular mechanisms is limited due to the lack of crystal structure of GDSL esterase-substrate complex. In this paper, the crystallization of mutant GDSL esterase (S12A) (PDB ID: 8HWO) and its complex with butyric acid (PDB ID: 8HWP) are reported. The optimized structure would be vital in determining hot spot residue for GDSL esterase. This preliminary study provides an understanding of the interactions between enzymes and hydrolysed p-nitro-phenyl butyrate. The information could guide in the rational design of GDSL esterase in overcoming the medical limitations associated with racemic mixture.
  3. Moi IM, Roslan NN, Leow ATC, Ali MSM, Rahman RNZRA, Rahimpour A, et al.
    Appl Microbiol Biotechnol, 2017 Jun;101(11):4371-4385.
    PMID: 28497204 DOI: 10.1007/s00253-017-8300-y
    Photobacterium species are Gram-negative coccobacilli which are distributed in marine habitats worldwide. Some species are unique because of their capability to produce luminescence. Taxonomically, about 23 species and 2 subspecies are validated to date. Genomes from a few Photobacterium spp. have been sequenced and studied. They are considered a special group of bacteria because some species are capable of producing essential polyunsaturated fatty acids, antibacterial compounds, lipases, esterases and asparaginases. They are also used as biosensors in food and environmental monitoring and detectors of drown victim, as well as an important symbiont.
  4. Said ZSAM, Arifi FAM, Salleh AB, Rahman RNZRA, Leow ATC, Latip W, et al.
    Int J Biol Macromol, 2019 Apr 15;127:575-584.
    PMID: 30658145 DOI: 10.1016/j.ijbiomac.2019.01.056
    The utilization of organic solvents as reaction media for enzymatic reactions provides numerous industrially attractive advantages. However, an adaptation of enzyme towards organic solvent is unpredictable and not fully understood because of limited information on the organic solvent tolerant enzymes. To understand how the enzyme can adapt to the organic solvent environment, structural and computational approaches were employed. A recombinant elastase from Pseudomonas aeruginosa strain K was an organic solvent tolerant zinc metalloprotease was successfully crystallized and diffracted up to 1.39 Å. Crystal structure of elastase from strain K showed the typical, canonical alpha-beta hydrolase fold consisting of 10-helices (118 residues), 10- β-strands (38 residues) and 142 residues were formed other secondary structure such as loop and coil to whole structure. The elastase from Pseusomonas aeruginosa strain K possess His-140, His-144 and Glu-164 served as a ligand for zinc ion. The conserved catalytic triad was composed of Glu-141, Tyr-155 and His-223. Three-dimensional structure features such as calcium-binding and presence of disulphide-bridge contribute to the stabilizing the elastase structure. Molecular dynamic (MD) simulation of elastase revealed that, amino acid residues located at the surface area and disulphide bridge in Cys-30 to Cys-58 were responsible for enzyme stability in organic solvents.
  5. Maiangwa J, Mohamad Ali MS, Salleh AB, Rahman RNZRA, Normi YM, Mohd Shariff F, et al.
    PeerJ, 2017;5:e3341.
    PMID: 28533982 DOI: 10.7717/peerj.3341
    The dynamics and conformational landscape of proteins in organic solvents are events of potential interest in nonaqueous process catalysis. Conformational changes, folding transitions, and stability often correspond to structural rearrangements that alter contacts between solvent molecules and amino acid residues. However, in nonaqueous enzymology, organic solvents limit stability and further application of proteins. In the present study, molecular dynamics (MD) of a thermostable Geobacillus zalihae T1 lipase was performed in different chain length polar organic solvents (methanol, ethanol, propanol, butanol, and pentanol) and water mixture systems to a concentration of 50%. On the basis of the MD results, the structural deviations of the backbone atoms elucidated the dynamic effects of water/organic solvent mixtures on the equilibrium state of the protein simulations in decreasing solvent polarity. The results show that the solvent mixture gives rise to deviations in enzyme structure from the native one simulated in water. The drop in the flexibility in H2O, MtOH, EtOH and PrOH simulation mixtures shows that greater motions of residues were influenced in BtOH and PtOH simulation mixtures. Comparing the root mean square fluctuations value with the accessible solvent area (SASA) for every residue showed an almost correspondingly high SASA value of residues to high flexibility and low SASA value to low flexibility. The study further revealed that the organic solvents influenced the formation of more hydrogen bonds in MtOH, EtOH and PrOH and thus, it is assumed that increased intraprotein hydrogen bonding is ultimately correlated to the stability of the protein. However, the solvent accessibility analysis showed that in all solvent systems, hydrophobic residues were exposed and polar residues tended to be buried away from the solvent. Distance variation of the tetrahedral intermediate packing of the active pocket was not conserved in organic solvent systems, which could lead to weaknesses in the catalytic H-bond network and most likely a drop in catalytic activity. The conformational variation of the lid domain caused by the solvent molecules influenced its gradual opening. Formation of additional hydrogen bonds and hydrophobic interactions indicates that the contribution of the cooperative network of interactions could retain the stability of the protein in some solvent systems. Time-correlated atomic motions were used to characterize the correlations between the motions of the atoms from atomic coordinates. The resulting cross-correlation map revealed that the organic solvent mixtures performed functional, concerted, correlated motions in regions of residues of the lid domain to other residues. These observations suggest that varying lengths of polar organic solvents play a significant role in introducing dynamic conformational diversity in proteins in a decreasing order of polarity.
  6. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Rahman RNZRA, Ali MSM
    Comput Struct Biotechnol J, 2019;17:215-228.
    PMID: 30828413 DOI: 10.1016/j.csbj.2019.01.005
    Pseudomonas fluorescens AMS8 lipase lid 1 structure is rigid and holds unclear roles due to the absence of solvent-interactions. Lid 1 region was stabilized by 17 hydrogen bond linkages and displayed lower mean hydrophobicity (0.596) compared to MIS38 lipase. Mutating lid 1 residues, Thr-52 and Gly-55 to aromatic hydrophobic-polar tyrosine would churned more side-chain interactions between lid 1 and water or toluene. This study revealed that T52Y leads G55Y and its recombinant towards achieving higher solvent-accessible surface area and longer half-life at 25 to 37 °C in 0.5% (v/v) toluene. T52Y also exhibited better substrate affinity with long-chain carbon substrate in aqueous media. The affinity for pNP palmitate, laurate and caprylate increased in 0.5% (v/v) toluene in recombinant AMS8, but the affinity in similar substrates was substantially declined in lid 1 mutated lipases. Regarding enzyme efficiency, the recombinant AMS8 lipase displayed highest value of kcat/Km in 0.5% (v/v) toluene, mainly with pNPC. In both hydrolysis reactions with 0% and 0.5% (v/v) toluene, the enzyme efficiency of G55Y was found higher than T52Y for pNPL and pNPP. At 0.5% (v/v) toluene, both mutants showed reductions in activation energy and enthalpy values as temperature increased from 25 to 35 °C, displaying better catalytic functions. Only T52Y exhibited increase in entropy values at 0.5% (v/v) toluene indicating structure stability. As a conclusion, Thr-52 and Gly-55 are important residues for lid 1 stability as their existence helps to retain the geometrical structure of alpha-helix and connecting hinge.
  7. Hamdan SH, Maiangwa J, Nezhad NG, Ali MSM, Normi YM, Shariff FM, et al.
    Appl Microbiol Biotechnol, 2023 Mar;107(5-6):1673-1686.
    PMID: 36752811 DOI: 10.1007/s00253-023-12396-5
    Lipase biocatalysts offer unique properties which are often impaired by low thermal and methanol stability. In this study, the rational design was employed to engineer a disulfide bond in the protein structure of Geobacillus zalihae T1 lipase in order to improve its stability. The selection of targeted disulfide bond sites was based on analysis of protein spatial configuration and change of Gibbs free energy. Two mutation points (S2C and A384C) were generated to rigidify the N-terminal and C-terminal regions of T1 lipase. The results showed the mutant 2DC lipase improved methanol stability from 35 to 40% (v/v) after 30 min of pre-incubation. Enhancement in thermostability for the mutant 2DC lipase at 70 °C and 75 °C showed higher half-life at 70 °C and 75 °C for 30 min and 52 min, respectively. The mutant 2DC lipase maintained the same optimum temperature (70 °C) as T1 lipase, while thermally induced unfolding showed the mutant maintained higher rigidity. The kcat/Km values demonstrated a relatively small difference between the T1 lipase (WT) and 2DC lipase (mutant). The kcat/Km (s-1 mM-1) of the T1 and 2DC showed values of 13,043 ± 224 and 13,047 ± 312, respectively. X-ray diffraction of 2DC lipase crystal structure with a resolution of 2.04 Å revealed that the introduced single disulfide bond did not lower initial structural interactions within the residues. Enhanced methanol and thermal stability are suggested to be strongly related to the newly disulfide bridge formation and the enhanced compactness and rigidity of the mutant structure. KEY POINTS: • Protein engineering via rational design revealed relative improved enzymatic performance. • The presence of disulfide bond impacts on the rigidity and structural function of proteins. • X-ray crystallography reveals structural changes accompanying protein modification.
  8. Ong SN, Kamarudin NHA, Shariff FM, Noor NDM, Ali MSM, Rahman RNZRA
    J Biomol Struct Dyn, 2023 Nov 15.
    PMID: 37968883 DOI: 10.1080/07391102.2023.2282177
    The stability and activity of lipase in organic media are important parameters in determining how quickly biocatalysis proceeds. This study aimed to examine the effects of two commonly used alcohols in industrial applications, methanol (MtOH) and ethanol (EtOH) on the conformational stability and catalytic activity of G210C lipase, a laboratory-evolved mutant of Staphylococcus epidermidis AT2 lipase. Simulation studies were performed using an open-form predicted structure under 30, 40 and 50% of MtOH and EtOH at 25 °C and 45 °C. The overall enzyme structure becomes more flexible with increasing concentration of MtOH and exhibited the highest flexibility in 40% EtOH. In EtOH, the movement of the lid was found to be temperature-dependent with a noticeable shift in the lid position at 45 °C. Lid opening was evidenced at 50% of MtOH and EtOH which was supported by the increase in SASA of hydrophobic residues of the lid and catalytic triad. The active site remained mostly intact. An open-closed lid transition was observed when the structure was re-simulated in water. Experimental evaluation of the lipase stability showed that the half-life reduced when the enzyme was treated with 40% (v/v) and 50% (v/v) of EtOH and MtOH respectively. The finding implies that a high concentration of alcohol and elevated temperature can induce the lid opening of lipase which could be essential for the activation of the enzyme, provided that the catalytic performance in the active site is not compromised.Communicated by Ramaswamy H. Sarma.
  9. Hussian CHAC, Rahman RNZRA, Leow ATC, Salleh AB, Ali MSM, Latip W
    Prep Biochem Biotechnol, 2024 Apr;54(4):526-534.
    PMID: 37647127 DOI: 10.1080/10826068.2023.2252052
    The Geobacillus zalihae strain T1 produces a thermostable T1 lipase that could be used for industrial purposes. Previously, the GST-T1 lipase was purified through two chromatographic steps: affinity and ion exchange (IEX) but the recovery yield was only 33%. To improve the recovery yield to over 80%, the GST tag from the pGEX system was replaced with a poly-histidine at the N-terminal of the T1 lipase sequence. The novel construct of pGEX/His-T1 lipase was developed by site-directed mutagenesis, where the XbaI restriction site was introduced upstream of the GST tag, allowing the removal of tag via double digestion using XbaI and EcoRI (existing cutting site in the pGEX system). Fragment of 6 × His-T1 lipase fusion was synthesized, cloned into the pGEX4T1 system, and expressed in Escherichia coli BL21 (DE3) pLysS, resulting in lipase-specific activity at 236 U/mg. The single purification step of His-T1 lipase was successfully achieved using nickel Sepharose 6FF with an optimized concentration of 5 mM imidazole for binding, yielding the recovery of 98%, 1,353 U/mg lipase activity, and a 5.7-fold increase in purification fold. His-T1 lipase was characterized and was found to be stable at pH 5-9, active at 70 °C, and optimal at pH 9.
  10. Ishak SNH, Kamarudin NHA, Ali MSM, Leow ATC, Shariff FM, Rahman RNZRA
    PLoS One, 2021;16(6):e0251751.
    PMID: 34061877 DOI: 10.1371/journal.pone.0251751
    5M mutant lipase was derived through cumulative mutagenesis of amino acid residues (D43E/T118N/E226D/E250L/N304E) of T1 lipase from Geobacillus zalihae. A previous study revealed that cumulative mutations in 5M mutant lipase resulted in decreased thermostability compared to wild-type T1 lipase. Multiple amino acids substitution might cause structural destabilization due to negative cooperation. Hence, the three-dimensional structure of 5M mutant lipase was elucidated to determine the evolution in structural elements caused by amino acids substitution. A suitable crystal for X-ray diffraction was obtained from an optimized formulation containing 0.5 M sodium cacodylate trihydrate, 0.4 M sodium citrate tribasic pH 6.4 and 0.2 M sodium chloride with 2.5 mg/mL protein concentration. The three-dimensional structure of 5M mutant lipase was solved at 2.64 Å with two molecules per asymmetric unit. The detailed analysis of the structure revealed that there was a decrease in the number of molecular interactions, including hydrogen bonds and ion interactions, which are important in maintaining the stability of lipase. This study facilitates understanding of and highlights the importance of hydrogen bonds and ion interactions towards protein stability. Substrate specificity and docking analysis on the open structure of 5M mutant lipase revealed changes in substrate preference. The molecular dynamics simulation of 5M-substrates complexes validated the substrate preference of 5M lipase towards long-chain p-nitrophenyl-esters.
  11. Hasan WANBW, Nezhad NG, Yaacob MA, Salleh AB, Rahman RNZRA, Leow TC
    World J Microbiol Biotechnol, 2024 Feb 22;40(4):106.
    PMID: 38386107 DOI: 10.1007/s11274-024-03927-x
    Enzymes are often required to function in a particular reaction condition by the industrial procedure. In order to identify critical residues affecting the optimum pH of Staphylococcal lipases, chimeric lipases from homologous lipases were generated via a DNA shuffling strategy. Chimeric 1 included mutations of G166S, K212E, T243A, H271Y. Chimeric 2 consisted of substitutions of K212E, T243A, H271Y. Chimeric 3 contained substitutions of K212E, R359L. From the screening results, the pH profiles for chimeric 1 and 2 lipases were shifted from pH 7 to 6. While the pH of chimeric 3 was shifted to 8. It seems the mutation of K212E in chimeric 1 and 2 decreased the pH to 6 by changing the electrostatic potential surface. Furthermore, chimeric 3 showed 10 ˚C improvement in the optimum temperature due to the rigidification of the catalytic loop through the hydrophobic interaction network. Moreover, the substrate specificity of chimeric 1 and 2 was increased towards the longer carbon length chains due to the mutation of T243A adjacent to the lid region through increasing the flexibility of the lid. Current study illustrated that directed evolution successfully modified lipase properties including optimum pH, temperature and substrate specificity through mutations, especially near catalytic and lid regions.
  12. Nezhad NG, Jamaludin SZB, Rahman RNZRA, Yahaya NM, Oslan SN, Shariff FM, et al.
    World J Microbiol Biotechnol, 2024 Apr 17;40(6):171.
    PMID: 38630327 DOI: 10.1007/s11274-024-03970-8
    A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, β-Turns, and β-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.
  13. Adlan NA, Sabri S, Masomian M, Ali MSM, Rahman RNZRA
    Front Microbiol, 2020;11:565608.
    PMID: 33013795 DOI: 10.3389/fmicb.2020.565608
    The deposition of paraffin wax in crude oil is a problem faced by the oil and gas industry during extraction, transportation, and refining of crude oil. Most of the commercialized chemical additives to prevent wax are expensive and toxic. As an environmentally friendly alternative, this study aims to find a novel thermophilic bacterial strain capable of degrading paraffin wax in crude oil to control wax deposition. To achieve this, the biodegradation of crude oil paraffin wax by 11 bacteria isolated from seawater and oil-contaminated soil samples was investigated at 70°C. The bacteria were identified as Geobacillus kaustophilus N3A7, NFA23, DFY1, Geobacillus jurassicus MK7, Geobacillus thermocatenulatus T7, Parageobacillus caldoxylosilyticus DFY3 and AZ72, Anoxybacillus geothermalis D9, Geobacillus stearothermophilus SA36, AD11, and AD24. The GCMS analysis showed that strains N3A7, MK7, DFY1, AD11, and AD24 achieved more than 70% biodegradation efficiency of crude oil in a short period (3 days). Notably, most of the strains could completely degrade C37-C40 and increase the ratio of C14-C18, especially during the initial 2 days incubation. In addition, the degradation of crude oil also resulted in changes in the pH of the medium. The degradation of crude oil is associated with the production of degradative enzymes such as alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase. Among the 11 strains, the highest activities of alkane monooxygenase were recorded in strain AD24. A comparatively higher overall alcohol dehydrogenase, lipase, and esterase activities were observed in strains N3A7, MK7, DFY1, AD11, and AD24. Thus, there is a potential to use these strains in oil reservoirs, crude oil processing, and recovery to control wax deposition. Their ability to withstand high temperature and produce degradative enzymes for long-chain hydrocarbon degradation led to an increase in the short-chain hydrocarbon ratio, and subsequently, improving the quality of the oil.
  14. Moi IM, Leow ATC, Ali MSM, Rahman RNZRA, Salleh AB, Sabri S
    Appl Microbiol Biotechnol, 2018 Jul;102(14):5811-5826.
    PMID: 29749565 DOI: 10.1007/s00253-018-9063-9
    Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.
  15. Veno J, Rahman RNZRA, Masomian M, Ali MSM, Kamarudin NHA
    Molecules, 2019 Aug 30;24(17).
    PMID: 31480403 DOI: 10.3390/molecules24173169
    Thermostability remains one of the most desirable traits in many lipases. Numerous studies have revealed promising strategies to improve thermostability and random mutagenesis often leads to unexpected yet interesting findings in engineering stability. Previously, the thermostability of C-terminal truncated cold-adapted lipase from Staphylococcus epidermidis AT2 (rT-M386) was markedly enhanced by directed evolution. The newly evolved mutant, G210C, demonstrated an optimal temperature shift from 25 to 45 °C and stability up to 50 °C. Interestingly, a cysteine residue was randomly introduced on the loop connecting the two lids and accounted for the only cysteine found in the lipase. We further investigated the structural and mechanistic insights that could possibly cause the significant temperature shift. Both rT-M386 and G210C were modeled and simulated at 25 °C and 50 °C. The results clearly portrayed the effect of cysteine substitution primarily on the lid stability. Comparative molecular dynamics simulation analysis revealed that G210C exhibited greater stability than the wild-type at high temperature simulation. The compactness of the G210C lipase structure increased at 50 °C and resulted in enhanced rigidity hence stability. This observation is supported by the improved and stronger non-covalent interactions formed in the protein structure. Our findings suggest that the introduction of a single cysteine residue at the lid region of cold-adapted lipase may result in unexpected increased in thermostability, thus this approach could serve as one of the thermostabilization strategies in engineering lipase stability.
  16. Ahmad NN, Ahmad Kamarudin NH, Leow ATC, Rahman RNZRA
    Molecules, 2020 Aug 25;25(17).
    PMID: 32854267 DOI: 10.3390/molecules25173858
    Surface charge residues have been recognized as one of the stability determinants in protein. In this study, we sought to compare and analyse the stability and conformational dynamics of staphylococcal lipase mutants with surface lysine mutation using computational and experimental methods. Three highly mutable and exposed lysine residues (Lys91, Lys177, Lys325) were targeted to generate six mutant lipases in silico. The model structures were simulated in water environment at 25 °C. Our simulations showed that the stability was compromised when Lys177 was substituted while mutation at position 91 and 325 improved the stability. To illustrate the putative alterations of enzyme stability in the stabilising mutants, we characterized single mutant K325G and double mutant K91A/K325G. Both mutants showed a 5 °C change in optimal temperature compared to their wild type. Single mutant K325G rendered a longer half-life at 25 °C (T1/2 = 21 h) while double mutant K91A/K325G retained only 40% of relative activity after 12 h incubation. The optimal pH for mutant K325G was shifted from 8 to 9 and similar substrate preference was observed for the wild type and two mutants. Our findings indicate that surface lysine mutation alters the enzymatic behaviour and, thus, rationalizes the functional effects of surface exposed lysine in conformational stability and activity of this lipase.
  17. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2020 Dec 01;164:3155-3162.
    PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162
    The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
  18. Salleh AB, Baharuddin SM, Rahman RNZRA, Leow TC, Basri M, Oslan SN
    Microorganisms, 2020 Nov 06;8(11).
    PMID: 33171893 DOI: 10.3390/microorganisms8111738
    Screening for a new yeast as an alternative host is expected to solve the limitations in the present yeast expression system. A yeast sample which was isolated from the traditional food starter 'ragi' from Malaysia was identified to contain Meyerozyma guilliermondii strain SMB. This yeast-like fungus strain SMB was characterized to assess its suitability as an expression host. Lipase activity was absent in this host (when assayed at 30 °C and 70 °C) and Hygromycin B (50 μg/mL) was found to be its best selection marker. Then, the hyg gene (Hygromycin B) was used to replace the sh ble gene (Zeocin) expression cassette in a Komagataella phaffii expression vector (designated as pFLDhα). A gene encoding the mature thermostable lipase from Bacillus sp. L2 was cloned into pFLDhα, followed by transformation into strain SMB. The optimal expression of L2 lipase was achieved using YPTM (Yeast Extract-Peptone-Tryptic-Methanol) medium after 48 h with 0.5% (v/v) methanol induction, which was 3 times faster than another K. phaffii expression system. In conclusion, a new host-vector system was established as a platform to express L2 lipase under the regulation of PFLD1. It could also be promising to express other recombinant proteins without inducers.
  19. Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA
    Int J Biol Macromol, 2021 Jun 01;180:242-251.
    PMID: 33737181 DOI: 10.1016/j.ijbiomac.2021.03.072
    Fatty acid desaturase catalyzes the desaturation reactions by insertion of double bonds into the fatty acyl chain, producing unsaturated fatty acids. Though soluble fatty acid desaturases have been studied widely in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to the difficulty of generating recombinant desaturase. Brassica napus is a rapeseed, which possesses a range of different membrane-bound desaturases capable of producing fatty acids including Δ3, Δ4, Δ8, Δ9, Δ12, and Δ15 fatty acids. The 1155 bp open reading frame of Δ12 fatty acid desaturase (FAD12) from Brassica napus codes for 383 amino acid residues with a molecular weight of 44 kDa. It was expressed in Escherichia coli at 37 °C in soluble and insoluble forms when induced with 0.5 mM IPTG. Soluble FAD12 has been purified using Ni2+-Sepharose affinity chromatography with a total protein yield of 0.728 mg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that desaturase activity of FAD12 could produce linoleic acid from oleic acid at a retention time of 17.6 with a conversion rate of 47%. Characterization of purified FAD12 revealed the optimal temperature of FAD12 was 50 °C with 2 mM preferred substrate concentration of oleic acid. Analysis of circular dichroism (CD) showed FAD12 was made up of 47.3% and 0.9% of alpha-helix and β-sheet secondary structures. The predicted Tm value was 50.2 °C.
  20. Yaacob N, Mohamad Ali MS, Salleh AB, Rahman RNZRA, Leow ATC
    J Mol Graph Model, 2016 07;68:224-235.
    PMID: 27474867 DOI: 10.1016/j.jmgm.2016.07.003
    The utilization of cold active lipases in organic solvents proves an excellent approach for chiral synthesis and modification of fats and oil due to the inherent flexibility of lipases under low water conditions. In order to verify whether this lipase can function as a valuable synthetic catalyst, the mechanism concerning activation of the lid and interacting solvent residues in the presence of organic solvent must be well understood. A new alkaline cold-adapted lipase, AMS8, from Pseudomonas fluorescens was studied for its structural adaptation and flexibility prior to its exposure to non-polar, polar aprotic and protic solvents. Solvents such as ethanol, toluene, DMSO and 2-propanol showed to have good interactions with active sites. Asparagine (Asn) and tyrosine (Tyr) were key residues attracted to solvents because they could form hydrogen bonds. Unlike in other solvents, Phe-18, Tyr-236 and Tyr-318 were predicted to have aromatic-aromatic side-chain interactions with toluene. Non-polar solvent also was found to possess highest energy binding compared to polar solvents. Due to this circumstance, the interaction of toluene and AMS8 lipase was primarily based on hydrophobicity and molecular recognition. The molecular dynamic simulation showed that lid 2 (residues 148-167) was very flexible in toluene and Ca(2+). As a result, lid 2 moves away from the catalytic areas, leaving an opening for better substrate accessibility which promotes protein activation. Only a single lid (lid 2) showed the movement following interactions with toluene, although AMS8 lipase displayed double lids. The secondary conformation of AMS8 lipase that was affected by toluene observed a reduction of helical strands and increased coil structure. Overall, this work shows that cold active lipase, AMS8 exhibits distinguish interfacial activation and stability in the presence of polar and non-polar solvents.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links