Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Salleh AB, Baharuddin SM, Rahman RNZRA, Leow TC, Basri M, Oslan SN
    Microorganisms, 2020 Nov 06;8(11).
    PMID: 33171893 DOI: 10.3390/microorganisms8111738
    Screening for a new yeast as an alternative host is expected to solve the limitations in the present yeast expression system. A yeast sample which was isolated from the traditional food starter 'ragi' from Malaysia was identified to contain Meyerozyma guilliermondii strain SMB. This yeast-like fungus strain SMB was characterized to assess its suitability as an expression host. Lipase activity was absent in this host (when assayed at 30 °C and 70 °C) and Hygromycin B (50 μg/mL) was found to be its best selection marker. Then, the hyg gene (Hygromycin B) was used to replace the sh ble gene (Zeocin) expression cassette in a Komagataella phaffii expression vector (designated as pFLDhα). A gene encoding the mature thermostable lipase from Bacillus sp. L2 was cloned into pFLDhα, followed by transformation into strain SMB. The optimal expression of L2 lipase was achieved using YPTM (Yeast Extract-Peptone-Tryptic-Methanol) medium after 48 h with 0.5% (v/v) methanol induction, which was 3 times faster than another K. phaffii expression system. In conclusion, a new host-vector system was established as a platform to express L2 lipase under the regulation of PFLD1. It could also be promising to express other recombinant proteins without inducers.
  2. Johan UUM, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Colloids Surf B Biointerfaces, 2021 Sep;205:111882.
    PMID: 34087776 DOI: 10.1016/j.colsurfb.2021.111882
    Carboxylesterases (CEs) are members of prominent esterase, and as their name imply, they catalyze the cleavage of ester linkages. By far, a considerable number of novel CEs have been identified to investigate their exquisite physiological and biochemical properties. They are abundant enzymes in nature, widely distributed in relatively broad temperature range and in various sources; both macroorganisms and microorganisms. Given the importance of these enzymes in broad industries, interest in the study of their mechanisms and structural-based engineering are greatly increasing. This review presents the current state of knowledge and understanding about the structure and functions of this ester-metabolizing enzyme, primarily from bacterial sources. In addition, the potential biotechnological applications of bacterial CEs are also encompassed. This review will be useful in understanding the molecular basis and structural protein of bacterial CEs that are significant for the advancement of enzymology field in industries.
  3. Rozi MFAM, Rahman RNZRA, Leow ATC, Ali MSM
    Mol Phylogenet Evol, 2022 Mar;168:107381.
    PMID: 34968679 DOI: 10.1016/j.ympev.2021.107381
    Family I.3 lipase is distinguished from other families by the amino acid sequence and secretion mechanism. Little is known about the evolutionary process driving these differences. This study attempt to understand how the diverse temperature stabilities of bacterial lipases from family I.3 evolved. To achieve that, eighty-three protein sequences sharing a minimum 30% sequence identity with Antarctic Pseudomonas sp. AMS8 lipase were used to infer phylogenetic tree. Using ancestral sequence reconstruction (ASR) technique, the last universal common ancestor (LUCA) sequence of family I.3 was reconstructed. A gene encoding LUCA was synthesized, cloned and expressed as inclusion bodies in E. coli system. Insoluble form of LUCA was refolded using urea dilution method and then purified using affinity chromatography. The purified LUCA exhibited an optimum temperature and pH at 70 ℃ and 10 respectively. Various metal ions increased or retained the activity of LUCA. LUCA also demonstrated tolerance towards various organic solvents in 25% v/v concentration. The finding from this study could support the understanding on temperature and environment during ancient time. In overall, reconstructed ancestral enzymes have improved physicochemical properties that make them suitable for industrial applications and ASR technique can be employed as a general technique for enzyme engineering.
  4. Rahman RNZRA, Latip W, Adlan NA, Sabri S, Ali MSM
    Arch Microbiol, 2022 Nov 12;204(12):701.
    PMID: 36370212 DOI: 10.1007/s00203-022-03316-8
    Waxy crude oil is a problem to the oil and gas industry because wax deposition in pipelines reduces the quality of the crude oil. Currently, the industry uses chemicals to solve the problem but it is not environmentally friendly. As an alternative, the biodegradation approach is one of the options. Previously eleven thermophilic bacteria were isolated and exhibited high ability to degrade hydrocarbon up to 70% of waxy crude oil. However, despite the successful study on these single bacteria strains, it is believed that biodegradation of paraffin wax requires more than a single species. Five consortia were developed based on the biodegradation efficiency of 11 bacterial strains. Consortium 3 showed the highest biodegradation (77.77%) with more long-chain alkane degraded throughout the incubation compared to other consortia. Enhancement of hydrocarbon degradation was observed for all consortia especially in long chain alkane (C18-C40). Consortium 3 exhibited higher alkane monooxygenase, alcohol dehydrogenase, lipase, and esterase activities. Moreover, the dominant bacteria in the consortia were determined by denaturing gradient gel electrophoresis (DGGE), which showed the domination of genera Geobacillus, Parageobacillus, and Anoxybacillus. It can be concluded that the bacterial consortia showed higher biodegradation and improved degrading more long-chain hydrocarbon compared to a single isolate.
  5. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2023 Jun 15;240:124526.
    PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526
    Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the dynamics, mechanisms, and unique features of the enzymes. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
  6. Wong CF, Rahman RNZRA, Basri M, Salleh AB
    Iran J Biotechnol, 2017;15(3):194-200.
    PMID: 29845069 DOI: 10.15171/ijb.1524
    Background:Pseudomonas protein expression in E. coli is known to be a setback due to significant genetic variation and absence of several genetic elements in E. coli for regulation and activation of Pseudomonas proteins. Modifications in promoter/repressor system and shuttle plasmid maintenance have made the expression of stable and active Pseudomonas protein possible in both Pseudomonas sp. and E. coli. Objectives: Construction of shuttle expression vectors for regulation and overexpression of Pseudomonas proteins in Pseudomonas sp. and E. coli. Materials and Methods:Pseudomonas-Escherichia shuttle expression vectors, pCon2(3), pCon2(3)-Kan and pCon2(3)-Zeo as well as E. coli expression vectors of pCon4 and pCon5 were constructed from pUCP19-, pSS213-, pSTBlue-1- and pPICZαA-based vectors. Protein overexpression was measured using elastase strain K as passenger enzyme in elastinolytic activity assay. Results: The integration of two series of IPTG inducible expression cassettes in pCon2(3), pCon2(3)-Kan and pCon2(3)-Zeo, each carrying an E. coli lac-operon based promoter, Plac, and a tightly regulated T7(A1/O4/O3) promoter/repressor system was performed to facilitate overexpression study of the organic solvent-tolerant elastase strain K. These constructs have demonstrated an elastinolytic fold of as high as 1464.4 % in comparison to other published constructs. pCon4 and pCon5, on the other hand, are series of pCon2(3)-derived vectors harboring expression cassettes controlled by PT7(A1/O4/O3) promoter, which conferred tight regulation and repression of basal expression due to existence of respective double operator sites, O3 and O4, and lacIq. Conclusions: The constructs offered remarkable assistance for overexpression of heterogeneous genes in Pseudomonas sp. and E. coli for downstream applications such as in industries and structural biology study.
  7. Mazlan SNHS, Ali MSM, Rahman RNZRA, Sabri S, Jonet MA, Leow TC
    Int J Biol Macromol, 2018 Nov;119:1188-1194.
    PMID: 30102982 DOI: 10.1016/j.ijbiomac.2018.08.022
    GDSL esterase J15 (EstJ15) is a member of Family II of lipolytic enzyme. The enzyme was further classified in subgroup SGNH hydrolase due to the presence of highly conserve motif, Ser-Gly-Asn-His in four conserved blocks I, II, III, and V, respectively. X-ray quality crystal of EstJ15 was obtained from optimized formulation containing 0.10 M ammonium sulphate, 0.15 M sodium cacodylate trihydrate pH 6.5, and 20% PEG 8000. The crystal structure of EstJ15 was solved at 1.38 Å with one molecule per asymmetric unit. The structure exhibits α/β hydrolase fold and shared low amino acid sequence identity of 23% with the passenger domain of the autotransporter EstA of Pseudomonas aeruginosa. The active site is located at the centre of the structure, formed a narrow tunnel that hinder long substrates to be catalysed which was proven by the protein-ligand docking analysis. This study facilitates the understanding of high substrate specificity of EstJ15 and provide insights on its catalytic mechanism.
  8. Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM
    Int J Biol Macromol, 2020 Dec 01;164:3155-3162.
    PMID: 32841666 DOI: 10.1016/j.ijbiomac.2020.08.162
    The conversion of aldehydes to valuable alkanes via cyanobacterial aldehyde deformylating oxygenase is of great interest. The availability of fossil reserves that keep on decreasing due to human exploitation is worrying, and even more troubling is the combustion emission from the fuel, which contributes to the environmental crisis and health issues. Hence, it is crucial to use a renewable and eco-friendly alternative that yields compound with the closest features as conventional petroleum-based fuel, and that can be used in biofuels production. Cyanobacterial aldehyde deformylating oxygenase (ADO) is a metal-dependent enzyme with an α-helical structure that contains di‑iron at the active site. The substrate enters the active site of every ADO through a hydrophobic channel. This enzyme exhibits catalytic activity toward converting Cn aldehyde to Cn-1 alkane and formate as a co-product. These cyanobacterial enzymes are small and easy to manipulate. Currently, ADOs are broadly studied and engineered for improving their enzymatic activity and substrate specificity for better alkane production. This review provides a summary of recent progress in the study of the structure and function of ADO, structural-based engineering of the enzyme, and highlight its potential in producing biofuels.
  9. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Rahman RNZRA, Ali MSM
    Comput Struct Biotechnol J, 2019;17:215-228.
    PMID: 30828413 DOI: 10.1016/j.csbj.2019.01.005
    Pseudomonas fluorescens AMS8 lipase lid 1 structure is rigid and holds unclear roles due to the absence of solvent-interactions. Lid 1 region was stabilized by 17 hydrogen bond linkages and displayed lower mean hydrophobicity (0.596) compared to MIS38 lipase. Mutating lid 1 residues, Thr-52 and Gly-55 to aromatic hydrophobic-polar tyrosine would churned more side-chain interactions between lid 1 and water or toluene. This study revealed that T52Y leads G55Y and its recombinant towards achieving higher solvent-accessible surface area and longer half-life at 25 to 37 °C in 0.5% (v/v) toluene. T52Y also exhibited better substrate affinity with long-chain carbon substrate in aqueous media. The affinity for pNP palmitate, laurate and caprylate increased in 0.5% (v/v) toluene in recombinant AMS8, but the affinity in similar substrates was substantially declined in lid 1 mutated lipases. Regarding enzyme efficiency, the recombinant AMS8 lipase displayed highest value of kcat/Km in 0.5% (v/v) toluene, mainly with pNPC. In both hydrolysis reactions with 0% and 0.5% (v/v) toluene, the enzyme efficiency of G55Y was found higher than T52Y for pNPL and pNPP. At 0.5% (v/v) toluene, both mutants showed reductions in activation energy and enthalpy values as temperature increased from 25 to 35 °C, displaying better catalytic functions. Only T52Y exhibited increase in entropy values at 0.5% (v/v) toluene indicating structure stability. As a conclusion, Thr-52 and Gly-55 are important residues for lid 1 stability as their existence helps to retain the geometrical structure of alpha-helix and connecting hinge.
  10. Ong SN, Kamarudin NHA, Shariff FM, Noor NDM, Ali MSM, Rahman RNZRA
    J Biomol Struct Dyn, 2023 Nov 15.
    PMID: 37968883 DOI: 10.1080/07391102.2023.2282177
    The stability and activity of lipase in organic media are important parameters in determining how quickly biocatalysis proceeds. This study aimed to examine the effects of two commonly used alcohols in industrial applications, methanol (MtOH) and ethanol (EtOH) on the conformational stability and catalytic activity of G210C lipase, a laboratory-evolved mutant of Staphylococcus epidermidis AT2 lipase. Simulation studies were performed using an open-form predicted structure under 30, 40 and 50% of MtOH and EtOH at 25 °C and 45 °C. The overall enzyme structure becomes more flexible with increasing concentration of MtOH and exhibited the highest flexibility in 40% EtOH. In EtOH, the movement of the lid was found to be temperature-dependent with a noticeable shift in the lid position at 45 °C. Lid opening was evidenced at 50% of MtOH and EtOH which was supported by the increase in SASA of hydrophobic residues of the lid and catalytic triad. The active site remained mostly intact. An open-closed lid transition was observed when the structure was re-simulated in water. Experimental evaluation of the lipase stability showed that the half-life reduced when the enzyme was treated with 40% (v/v) and 50% (v/v) of EtOH and MtOH respectively. The finding implies that a high concentration of alcohol and elevated temperature can induce the lid opening of lipase which could be essential for the activation of the enzyme, provided that the catalytic performance in the active site is not compromised.Communicated by Ramaswamy H. Sarma.
  11. Hussian CHAC, Rahman RNZRA, Leow ATC, Salleh AB, Ali MSM, Latip W
    Prep Biochem Biotechnol, 2024 Apr;54(4):526-534.
    PMID: 37647127 DOI: 10.1080/10826068.2023.2252052
    The Geobacillus zalihae strain T1 produces a thermostable T1 lipase that could be used for industrial purposes. Previously, the GST-T1 lipase was purified through two chromatographic steps: affinity and ion exchange (IEX) but the recovery yield was only 33%. To improve the recovery yield to over 80%, the GST tag from the pGEX system was replaced with a poly-histidine at the N-terminal of the T1 lipase sequence. The novel construct of pGEX/His-T1 lipase was developed by site-directed mutagenesis, where the XbaI restriction site was introduced upstream of the GST tag, allowing the removal of tag via double digestion using XbaI and EcoRI (existing cutting site in the pGEX system). Fragment of 6 × His-T1 lipase fusion was synthesized, cloned into the pGEX4T1 system, and expressed in Escherichia coli BL21 (DE3) pLysS, resulting in lipase-specific activity at 236 U/mg. The single purification step of His-T1 lipase was successfully achieved using nickel Sepharose 6FF with an optimized concentration of 5 mM imidazole for binding, yielding the recovery of 98%, 1,353 U/mg lipase activity, and a 5.7-fold increase in purification fold. His-T1 lipase was characterized and was found to be stable at pH 5-9, active at 70 °C, and optimal at pH 9.
  12. Omar MN, Rahman RNZRA, Noor NDM, Latip W, Knight VF, Ali MSM
    J Biomol Struct Dyn, 2024 Mar 31.
    PMID: 38555730 DOI: 10.1080/07391102.2024.2331093
    Aminopeptidase P (APPro) is a crucial metalloaminopeptidase involved in amino acid cleavage from peptide N-termini, playing essential roles as versatile biocatalysts with applications ranging from pharmaceuticals to industrial processes. Despite acknowledging its potential for catalysis in lower temperatures, detailed molecular basis and biotechnological implications in cold environments are yet to be explored. Therefore, this research aims to investigate the molecular mechanisms underlying the cold-adapted characteristics of APPro from Pseudomonas sp. strain AMS3 (AMS3-APPro) through a detailed analysis of its structure and dynamics. In this study, structure analysis and molecular dynamics (MD) simulation of a predicted model of AMS3-APPro has been performed at different temperatures to assess structural flexibility and thermostability across a temperature range of 0-60 °C over 100 ns. The MD simulation results revealed that the structure were able to remain stable at low temperatures. Increased temperatures present a potential threat to the overall stability of AMS3-APPro by disrupting the intricate hydrogen bond networks crucial for maintaining structural integrity, thereby increasing the likelihood of protein unfolding. While the metal binding site at the catalytic core exhibits resilience at higher temperatures, highlighting its local structural integrity, the overall enzyme structure undergoes fluctuations and potential denaturation. This extensive structural instability surpasses the localized stability observed at the metal binding site. Consequently, these assessments offer in-depth understanding of the cold-adapted characteristics of AMS3-APPro, highlighting its capability to uphold its native conformation and stability in low-temperature environments. In summary, this research provides valuable insights into the cold-adapted features of AMS3-APPro, suggesting its efficient operation in low thermal conditions, particularly relevant for potential biotechnological applications in cold environments.Communicated by Ramaswamy H. Sarma.
  13. Nezhad NG, Jamaludin SZB, Rahman RNZRA, Yahaya NM, Oslan SN, Shariff FM, et al.
    World J Microbiol Biotechnol, 2024 Apr 17;40(6):171.
    PMID: 38630327 DOI: 10.1007/s11274-024-03970-8
    A histidine acid phosphatase (HAP) (PhySc) with 99.50% protein sequence similarity with PHO5 from Saccharomyces cerevisiae was expressed functionally with the molecular mass of ∼110 kDa through co-expression along with the set of molecular chaperones dnaK, dnaJ, GroESL. The purified HAP illustrated the optimum activity of 28.75 ± 0.39 U/mg at pH 5.5 and 40 ˚C. The Km and Kcat values towards calcium phytate were 0.608 ± 0.09 mM and 650.89 ± 3.6 s- 1. The half-lives (T1/2) at 55 and 60 ˚C were 2.75 min and 55 s, respectively. The circular dichroism (CD) demonstrated that PhySc includes 30.5, 28.1, 21.3, and 20.1% of random coils, α-Helix, β-Turns, and β-Sheet, respectively. The Tm recorded by CD for PhySc was 56.5 ± 0.34˚C. The molecular docking illustrated that His59 and Asp322 act as catalytic residues in the PhySc. MD simulation showed that PhySc at 40 ˚C has higher structural stability over those of the temperatures 60 and 80 ˚C that support the thermodynamic in vitro investigations. Secondary structure content results obtained from MD simulation indicated that PhySc consists of 34.03, 33.09, 17.5, 12.31, and 3.05% of coil, helix, turn, sheet, and helix310, respectively, which is almost consistent with the experimental results.
  14. Johan UUM, Rahman RNZRA, Kamarudin NHA, Latip W, Ali MSM
    Polymers (Basel), 2023 Mar 09;15(6).
    PMID: 36987142 DOI: 10.3390/polym15061361
    Carboxylesterase has much to offer in the context of environmentally friendly and sustainable alternatives. However, due to the unstable properties of the enzyme in its free state, its application is severely limited. The present study aimed to immobilize hyperthermostable carboxylesterase from Anoxybacillus geothermalis D9 with improved stability and reusability. In this study, Seplite LX120 was chosen as the matrix for immobilizing EstD9 by adsorption. Fourier-transform infrared (FT-IR) spectroscopy verified the binding of EstD9 to the support. According to SEM imaging, the support surface was densely covered with the enzyme, indicating successful enzyme immobilization. BET analysis of the adsorption isotherm revealed reduction of the total surface area and pore volume of the Seplite LX120 after immobilization. The immobilized EstD9 showed broad thermal stability (10-100 °C) and pH tolerance (pH 6-9), with optimal temperature and pH of 80 °C and pH 7, respectively. Additionally, the immobilized EstD9 demonstrated improved stability towards a variety of 25% (v/v) organic solvents, with acetonitrile exhibiting the highest relative activity (281.04%). The bound enzyme exhibited better storage stability than the free enzyme, with more than 70% of residual activity being maintained over 11 weeks. Through immobilization, EstD9 can be reused for up to seven cycles. This study demonstrates the improvement of the operational stability and properties of the immobilized enzyme for better practical applications.
  15. Masomian M, Jasni AS, Rahman RNZRA, Salleh AB, Basri M
    J Biotechnol, 2017 Dec 20;264:51-62.
    PMID: 29107669 DOI: 10.1016/j.jbiotec.2017.10.014
    A total of 97 amino acids, considered as the signal peptide and transmembrane segments were removed from 205y lipase gene using polymerase chain reaction technique that abolished the low activity of this enzyme. The mature enzyme was expressed in Escherichia coli using pBAD expression vector, which gave up to a 13-fold increase in lipase activity. The mature 205y lipase (without signal peptide and transmembrane; -SP/TM) was purified to homogeneity using the isoelectric focusing technique with 53% recovery. Removing of the signal peptide and transmembrane segments had resulted in the shift of optimal pH, an increase in optimal temperature and tolerance towards more water-miscible organic solvents as compared to the characteristics of open reading frame (ORF) of 205y lipase. Also, in the presence of 1mM inhibitors, less decrease in the activity of mature 205y lipase was observed compared to the ORF of the enzyme. Protein structure modeling showed that 205y lipase consisted of an α/β hydrolase fold without lid domain. However, the transmembrane segment could effect on the enzyme activity by covering the active site or aggregation the protein.
  16. Naganthran A, Masomian M, Rahman RNZRA, Ali MSM, Nooh HM
    Molecules, 2017 Sep 19;22(9).
    PMID: 28925972 DOI: 10.3390/molecules22091577
    The use of T1 lipase in automatic dishwashing detergent (ADD) is well established, but efficiency in hard water is very low. A new enzymatic environmentally-friendly dishwashing was formulated to be efficient in both soft and hard water. Thermostable enzymes such as T1 lipase from Geobacillus strain T1, Rand protease from Bacillussubtilis strain Rand, and Maltogenic amylase from Geobacillus sp. SK70 were produced and evaluated for an automatic dishwashing detergent formulation. The components of the new ADD were optimized for compatibility with these three enzymes. In compatibility tests of the enzymes with different components, several criteria were considered. The enzymes were mostly stable in non-ionic surfactants, especially polyhydric alcohols, Glucopon UP 600, and in a mixture of sodium carbonate and glycine (30:70) buffer at a pH of 9.25. Sodium polyacrylate and sodium citrate were used in the ADD formulation as a dispersing agent and a builder, respectively. Dishwashing performance of the formulated ADDs was evaluated in terms of percent of soil removed using the Leenert's Improved Detergency Tester. The results showed that the combination of different hydrolysis enzymes could improve the washing efficiency of formulated ADD compared to the commercial ADD "Finish" at 40 and 50 C.
  17. Lorrine OE, Rahman RNZRA, Joo Shun T, Salleh AB, Oslan SN
    Anal Biochem, 2023 May 01;668:115092.
    PMID: 36889624 DOI: 10.1016/j.ab.2023.115092
    In eukaryotes, serine proteases are cellular localized hydrolases reported to regulate essential biological reactions. Improved industrial applications of proteins are aided by prediction and analysis of their 3-dimensional structures (3D). A serine protease was identified from CTG-clade yeast Meyerozyma guilliermondii strain SO and its 3D structure as well as its catalytic attributes have not been fully understood yet, thus we seek to report on the catalytic mechanism of M. guilliermondii strain SO MgPRB1 using substrate PMSF via in silico docking as well as its stability by way of disulfide bonds formation. Herein, bioinformatics tools and techniques were used to predict, validate and analyze the possible changes of CUG ambiguity (if any) in strain SO using template PDB ID: 3F7O. Structural assessments confirmed the classic catalytic triad Asp305, His337, and Ser499. Superimposition of MgPRB1 and template 3F7O structures revealed the unlinked cysteine residues between Cys341, Cys440, Cys471 and Cys506 of MgPRB1 compared to template 3F7O with two disulfide bonds formation, which confers structural stability. In conclusion, serine protease structure from strain SO was successfully predicted and studies towards understanding at the molecular level may be undertaken for its potential applications in the degradation of peptide bonds.
  18. Veno J, Rahman RNZRA, Masomian M, Ali MSM, Kamarudin NHA
    Molecules, 2019 Aug 30;24(17).
    PMID: 31480403 DOI: 10.3390/molecules24173169
    Thermostability remains one of the most desirable traits in many lipases. Numerous studies have revealed promising strategies to improve thermostability and random mutagenesis often leads to unexpected yet interesting findings in engineering stability. Previously, the thermostability of C-terminal truncated cold-adapted lipase from Staphylococcus epidermidis AT2 (rT-M386) was markedly enhanced by directed evolution. The newly evolved mutant, G210C, demonstrated an optimal temperature shift from 25 to 45 °C and stability up to 50 °C. Interestingly, a cysteine residue was randomly introduced on the loop connecting the two lids and accounted for the only cysteine found in the lipase. We further investigated the structural and mechanistic insights that could possibly cause the significant temperature shift. Both rT-M386 and G210C were modeled and simulated at 25 °C and 50 °C. The results clearly portrayed the effect of cysteine substitution primarily on the lid stability. Comparative molecular dynamics simulation analysis revealed that G210C exhibited greater stability than the wild-type at high temperature simulation. The compactness of the G210C lipase structure increased at 50 °C and resulted in enhanced rigidity hence stability. This observation is supported by the improved and stronger non-covalent interactions formed in the protein structure. Our findings suggest that the introduction of a single cysteine residue at the lid region of cold-adapted lipase may result in unexpected increased in thermostability, thus this approach could serve as one of the thermostabilization strategies in engineering lipase stability.
  19. Ishak SNH, Kamarudin NHA, Ali MSM, Leow ATC, Rahman RNZRA
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731607 DOI: 10.3390/molecules25153430
    A comparative structure analysis between space- and an Earth-grown T1 recombinant lipase from Geobacillus zalihae had shown changes in the formation of hydrogen bonds and ion-pair interactions. Using the space-grown T1 lipase validated structure having incorporated said interactions, the recombinant T1 lipase was re-engineered to determine the changes brought by these interactions to the structure and stability of lipase. To understand the effects of mutation on T1 recombinant lipase, five mutants were developed from the structure of space-grown T1 lipase and biochemically characterized. The results demonstrate an increase in melting temperature up to 77.4 °C and 76.0 °C in E226D and D43E, respectively. Moreover, the mutated lipases D43E and E226D had additional hydrogen bonds and ion-pair interactions in their structures due to the improvement of stability, as observed in a longer half-life and an increased melting temperature. The biophysical study revealed differences in β-Sheet percentage between less stable (T118N) and other mutants. As a conclusion, the comparative analysis of the tertiary structure and specific residues associated with ion-pair interactions and hydrogen bonds could be significant in revealing the thermostability of an enzyme with industrial importance.
  20. Hamdan SH, Maiangwa J, Nezhad NG, Ali MSM, Normi YM, Shariff FM, et al.
    Appl Microbiol Biotechnol, 2023 Mar;107(5-6):1673-1686.
    PMID: 36752811 DOI: 10.1007/s00253-023-12396-5
    Lipase biocatalysts offer unique properties which are often impaired by low thermal and methanol stability. In this study, the rational design was employed to engineer a disulfide bond in the protein structure of Geobacillus zalihae T1 lipase in order to improve its stability. The selection of targeted disulfide bond sites was based on analysis of protein spatial configuration and change of Gibbs free energy. Two mutation points (S2C and A384C) were generated to rigidify the N-terminal and C-terminal regions of T1 lipase. The results showed the mutant 2DC lipase improved methanol stability from 35 to 40% (v/v) after 30 min of pre-incubation. Enhancement in thermostability for the mutant 2DC lipase at 70 °C and 75 °C showed higher half-life at 70 °C and 75 °C for 30 min and 52 min, respectively. The mutant 2DC lipase maintained the same optimum temperature (70 °C) as T1 lipase, while thermally induced unfolding showed the mutant maintained higher rigidity. The kcat/Km values demonstrated a relatively small difference between the T1 lipase (WT) and 2DC lipase (mutant). The kcat/Km (s-1 mM-1) of the T1 and 2DC showed values of 13,043 ± 224 and 13,047 ± 312, respectively. X-ray diffraction of 2DC lipase crystal structure with a resolution of 2.04 Å revealed that the introduced single disulfide bond did not lower initial structural interactions within the residues. Enhanced methanol and thermal stability are suggested to be strongly related to the newly disulfide bridge formation and the enhanced compactness and rigidity of the mutant structure. KEY POINTS: • Protein engineering via rational design revealed relative improved enzymatic performance. • The presence of disulfide bond impacts on the rigidity and structural function of proteins. • X-ray crystallography reveals structural changes accompanying protein modification.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links