Displaying all 6 publications

Abstract:
Sort:
  1. Huda N, Raman AAA, Bello MM, Ramesh S
    J Environ Manage, 2017 Dec 15;204(Pt 1):75-81.
    PMID: 28865309 DOI: 10.1016/j.jenvman.2017.08.028
    The main problem of landfill leachate is its diverse composition comprising many persistent organic pollutants which must be removed before being discharge into the environment. This study investigated the treatment of raw landfill leachate using electrocoagulation process. An electrocoagulation system was designed with iron as both the anode and cathode. The effects of inter-electrode distance, initial pH and electrolyte concentration on colour and COD removals were investigated. All these factors were found to have significant effects on the colour removal. On the other hand, electrolyte concentration was the most significant parameter affecting the COD removal. Numerical optimization was also conducted to obtain the optimum process performance. Under optimum conditions (initial pH: 7.73, inter-electrode distance: 1.16 cm, and electrolyte concentration (NaCl): 2.00 g/L), the process could remove up to 82.7% colour and 45.1% COD. The process can be applied as a pre-treatment for raw leachates before applying other appropriate treatment technologies.
  2. Sherlala AIA, Raman AAA, Bello MM, Buthiyappan A
    J Environ Manage, 2019 Sep 15;246:547-556.
    PMID: 31202019 DOI: 10.1016/j.jenvman.2019.05.117
    Chitosan-magnetic-graphene oxide (CMGO) nanocomposite was prepared for arsenic adsorption. The nanocomposite was characterized through BET, FTIR, FESEM, EDX, and VSM analyses. These characterizations confirmed the formation of CMGO nanocomposites with high specific surface area (152.38 m2/g) and excellent saturation magnetization (49.30 emu/g). Batch adsorption experiments were conducted to evaluate the performance of the nanocomposite in the adsorption of arsenic from aqueous solution. The effects of operational parameters, adsorption kinetic, equilibrium isotherm and thermodynamics were evaluated. The removal efficiency of arsenic increased with increasing adsorbent dosage and contact time. However, the effect of pH followed a different pattern, with the removal efficiency increasing from acidic to neutral pH, and then decreasing at alkaline conditions. The highest adsorption capacity (45 mg/g) and removal efficiency (61%) were obtained at pH 7.3. The adsorption kinetic followed a pseudo-second-order kinetic model. The analysis of adsorption isotherm shows that the adsorption data fitted well to Langmuir isotherm model, indicating a homogeneous process. Thermodynamic analysis shows that the adsorption of As(III) is exothermic and spontaneous. The superparamagnetic properties of the nanocomposite enabled the separation and recovery of the nanoparticles using an external magnetic field. Thus, the developed nanocomposite has a potential for arsenic remediation.
  3. Sherlala AIA, Raman AAA, Bello MM, Asghar A
    Chemosphere, 2018 Feb;193:1004-1017.
    PMID: 29874727 DOI: 10.1016/j.chemosphere.2017.11.093
    Graphene-based adsorbents have attracted wide interests as effective adsorbents for heavy metals removal from the environment. Due to their excellent electrical, mechanical, optical and transport properties, graphene and its derivatives such as graphene oxide (GO) have found various applications. However, in many applications, surface modification is necessary as pristine graphene/GO may be ineffective in some specific applications such as adsorption of heavy metal ions. Consequently, the modification of graphene/GO using various metals and non-metals is an ongoing research effort in the carbon-material realm. The use of organic materials represents an economical and environmentally friendly approach in modifying GO for environmental applications such as heavy metal adsorption. This review discusses the applications of organo-functionalized GO composites for the adsorption of heavy metals. The aspects reviewed include the commonly used organic materials for modifying GO, the performance of the modified composites in heavy metals adsorption, effects of operational parameters, adsorption mechanisms and kinetic, as well as the stability of the adsorbents. Despite the significant research efforts on GO modification, many aspects such as the interaction between the functional groups and the heavy metal ions, and the quantitative effect of the functional groups are yet to be fully understood. The review, therefore, offers some perspectives on the future research needs.
  4. Sherlala AIA, Raman AAA, Bello MM
    Environ Technol, 2019 May;40(12):1508-1516.
    PMID: 29300679 DOI: 10.1080/09593330.2018.1424259
    A magnetic graphene oxide (MGO) was developed for the adsorption of As(III) from aqueous solution. The characteristics of MGO were investigated using Fourier-transform infrared (FTIR), X-ray diffraction and field emission scanning electron microscope-E/energy-dispersive X-ray analyses. Batch adsorption experiments were designed using central composite design, and the effects of adsorbent dosage, pH, contact time and concentration of As(III) were investigated. The MGO showed an excellent performance, removing up to 99.95% of As(III) under the following condition: initial As(III) concentration = 100 mg/L, pH = 7, adsorbent dosage = 0.3 g/L and contact time = 77 min. MGO dosage and initial pH were the most significant parameters influencing the process performance. FTIR analysis of the used adsorbent confirms the adsorption of As(III) through complexation between surface functional groups of the MGO and the oxyanions of As(III). The adsorbent maintained a significant level of performance even after four cycles of adsorption. Thus, the developed MGO has the potential to be used for the abatement of arsenic pollution.
  5. Asghar A, Bello MM, Raman AAA, Daud WMAW, Ramalingam A, Zain SBM
    Heliyon, 2019 Sep;5(9):e02396.
    PMID: 31517121 DOI: 10.1016/j.heliyon.2019.e02396
    In this work, quantum chemical analysis was used to predict the degradation potential of a recalcitrant dye, Acid blue 113, by hydrogen peroxide, ozone, hydroxyl radical and sulfate radical. Geometry optimization and frequency calculations were performed at 'Hartree Fock', 'Becke, 3-parameter, Lee-Yang-Parr' and 'Modified Perdew-Wang exchange combined with PW91 correlation' levels of study using 6-31G* and 6-31G** basis sets. The Fourier Transform-Raman spectra of Acid blue 113 were recorded and a complete analysis on vibrational assignment and fundamental modes of model compound was performed. Natural bond orbital analysis revealed that Acid blue 113 has a highly stable structure due to strong intermolecular and intra-molecular interactions. Mulliken charge distribution and molecular electrostatic potential map of the dye also showed a strong influence of functional groups on the neighboring atoms. Subsequently, the reactivity of the dye towards the oxidants was compared based on the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy values. The results showed that Acid blue 113 with a HOMO value -5.227 eV exhibits a nucleophilic characteristic, with a high propensity to be degraded by ozone and hydroxyl radical due to their lower HOMO-LUMO energy gaps of 4.99 and 4.22 eV respectively. On the other hand, sulfate radical and hydrogen peroxide exhibit higher HOMO-LUMO energy gaps of 7.92 eV and 8.10 eV respectively, indicating their lower reactivity towards Acid blue 113. We conclude that oxidation processes based on hydroxyl radical and ozone would offer a more viable option for the degradation of Acid blue 113. This study shows that quantum chemical analysis can assist in selecting appropriate advanced oxidation processes for the treatment of textile effluent.
  6. Khaki MRD, Shafeeyan MS, Raman AAA, Daud WMAW
    J Environ Manage, 2017 Aug 01;198(Pt 2):78-94.
    PMID: 28501610 DOI: 10.1016/j.jenvman.2017.04.099
    Advanced oxidation process involves production of hydroxyl radical for industrial wastewater treatment. This method is based on the irradiation of UV light to photocatalysts such as TiO2 and ZnO for photodegradation of pollutant. UV light is used for irradiation in photocatalytic process because TiO2 has a high band gap energy which is around 3.2 eV. There can be shift adsorption to visible light by reducing the band gap energy to below 3.2 eV. Doped catalyst is one of the means to reduce band gap energy. Different methods are used for doped catalyst which uses transition metals and titanium dioxide. The band gap energy of three types of transition metals Fe, Cd and Co after being doped with TiO2, are around 2.88 ev, 2.97ev and 2.96 ev, respectively which are all below TiO2 energy. Some of the transition metals change the energy level to below 3.2 eV and the adsorption shifts to visible light for degradation of industrial pollutant after being doped with titanium dioxide. This paper aims at providing a deep insight into advanced oxidation processes, photocatalysts and their applications in wastewater treatment, doping processes and the effects of operational factors on photocatalytic degradation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links