Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P
    Mikrochim Acta, 2019 07 18;186(8):546.
    PMID: 31321546 DOI: 10.1007/s00604-019-3696-y
    A genomic DNA-based colorimetric assay is described for the detection of the early growth factor receptor (EGFR) mutation, which is the protruding reason for non-small cell lung cancer. A DNA sequence was designed and immobilized on unmodified gold nanoparticles (GNPs). The formation of the respective duplex indicates the presence of an EGFR mutation. It is accompanied by the aggregation of the GNPs in the presence of monovalent ions, and it indicates the presence of an EGFR mutation. This is accompanied by a color change from red (520 nm) to purple (620 nm). Aggregation was evidenced by transmission electron microscopy, scanning electron microscopy and atomic force microscopy. The limit of detection is 313 nM of the mutant target strand. A similar peak shift was observed for 2.5 μM concentrations of wild type target. No significant peak shift was observed with probe and non-complementary DNA. Graphical abstract Schematic representation of high-specific genomic DNA sequence on gold nanoparticle (GNP) aggregation with sodium chloride (NaCl). It illustrates the detection method for EGFR mutation on lung cancer detection. Red and purple colors of tubes represent dispersed and aggregated GNP, respectively.
  2. Sharma A, Kamble SH, León F, Chear NJ, King TI, Berthold EC, et al.
    Drug Test Anal, 2019 Aug;11(8):1162-1171.
    PMID: 30997725 DOI: 10.1002/dta.2604
    Kratom (Mitragyna speciosa) is a psychoactive plant popular in the United States for the self-treatment of pain and opioid addiction. For standardization and quality control of raw and commercial kratom products, an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed and validated for the quantification of ten key alkaloids, namely: corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine, mitragynine, mitraphylline, paynantheine, speciociliatine, and speciogynine. Chromatographic separation of diastereomers, or alkaloids sharing same ion transitions, was achieved on an Acquity BEH C18 column with a gradient elution using a mobile phase containing acetonitrile and aqueous ammonium acetate buffer (10mM, pH 3.5). The developed method was linear over a concentration range of 1-200 ng/mL for each alkaloid. The total analysis time per sample was 22.5 minutes. The analytical method was validated for accuracy, precision, robustness, and stability. After successful validation, the method was applied for the quantification of kratom alkaloids in alkaloid-rich fractions, ethanolic extracts, lyophilized teas, and commercial products. Mitragynine (0.7%-38.7% w/w), paynantheine (0.3%-12.8% w/w), speciociliatine (0.4%-12.3% w/w), and speciogynine (0.1%-5.3% w/w) were the major alkaloids in the analyzed kratom products/extracts. Minor kratom alkaloids (corynantheidine, corynoxine, corynoxine B, 7-hydroxymitragynine, isocorynantheidine) were also quantified (0.01%-2.8% w/w) in the analyzed products; however mitraphylline was below the lower limit of quantification in all analyses.
  3. Vicknasingam B, Chooi WT, Rahim AA, Ramachandram D, Singh D, Ramanathan S, et al.
    Yale J Biol Med, 2020 06;93(2):229-238.
    PMID: 32607084
    Background: Kratom has a long history of traditional medicine use in Southeast Asia. Consumption of kratom products has also been reported in the US and other regions of the world. Pain relief is among many self-reported kratom effects but have not been evaluated in controlled human subject research. Methods: Kratom effects on pain tolerance were assessed in a randomized, placebo-controlled, double-blind study. During a 1-day inpatient stay, participants received a randomized sequence of kratom and placebo decoctions matched for taste and appearance. Pain tolerance was measured objectively in a cold pressor task (CPT) as time (seconds) between the pain onset and the hand withdrawal from the ice bath. Health status, vital signs, objective, and subjective indicators of withdrawal symptoms, self-reported data on lifetime kratom use patterns, and assessments of blinding procedures were also evaluated. Results: Twenty-six males with the mean (SD) age 24.3 (3.4) years were enrolled. They reported the mean (SD) 6.1 (3.2) years of daily kratom consumption. Pain tolerance increased significantly 1 hour after kratom ingestion from the mean (SD) 11.2 (6.7) seconds immediately before to 24.9 (39.4) seconds 1 hour after kratom consumption (F(2,53.7)=4.33, p=0.02). Pain tolerance was unchanged after consuming placebo drinks: 15.0 (19.0) seconds immediately before and 12.0 (8.1) seconds 1 hour after consumption of placebo (F(2,52.8)=0.93, p=0.40). No discomfort or signs of withdrawal were reported or observed during 10-20 hours of kratom discontinuation. Conclusions: Kratom decoction demonstrated a substantial and statistically significant increase in pain tolerance. Further rigorous research on kratom pain-relieving properties and a safety profile is needed.
  4. Hassan Z, Suhaimi FW, Ramanathan S, Ling KH, Effendy MA, Müller CP, et al.
    J. Psychopharmacol. (Oxford), 2019 07;33(7):908-918.
    PMID: 31081443 DOI: 10.1177/0269881119844186
    BACKGROUND: Mitragynine is the major alkaloid of Mitragyna speciosa (Korth.) or Kratom, a psychoactive plant widely abused in Southeast Asia. While addictive effects of the substance are emerging, adverse cognitive effects of this drug and neuropharmacological actions are insufficiently understood.

    AIMS: In the present study, we investigated the effects of mitragynine on spatial learning and synaptic transmission in the CA1 region of the hippocampus.

    METHODS: Male Sprague Dawley rats received daily (for 12 days) training sessions in the Morris water maze, with each session followed by treatment either with mitragynine (1, 5, or 10 mg/kg; intraperitoneally), morphine (5 mg/kg; intraperitoneally) or a vehicle. In the second experiment, we recorded field excitatory postsynaptic potentials in the hippocampal CA1 area in anesthetized rats and assessed the effects of mitragynine on baseline synaptic transmission, paired-pulse facilitation, and long-term potentiation. Gene expression of major memory- and addiction-related genes was investigated and the effects of mitragynine on Ca2+ influx was also examined in cultured primary neurons from E16-E18 rats.

    RESULTS/OUTCOMES: Escape latency results indicate that animals treated with mitragynine displayed a slower rate of acquisition as compared to their control counterparts. Further, mitragynine treatment significantly reduced the amplitude of baseline (i.e. non-potentiated) field excitatory postsynaptic potentials and resulted in a minor suppression of long-term potentiation in CA1. Bdnf and αCaMKII mRNA expressions in the brain were not affected and Ca2+ influx elicited by glutamate application was inhibited in neurons pre-treated with mitragynine.

    CONCLUSIONS/INTERPRETATION: These data suggest that high doses of mitragynine (5 and 10 mg/kg) cause memory deficits, possibly via inhibition of Ca2+ influx and disruption of hippocampal synaptic transmission and long-term potentiation induction.

  5. Kalaiyarasi J, Pandian K, Ramanathan S, Gopinath SCB
    Sci Rep, 2020 07 30;10(1):12860.
    PMID: 32732935 DOI: 10.1038/s41598-020-69578-8
    This research presents a simple, fast and simultaneous electrochemical quantitative determination of nucleobases, for example guanine (G), adenine (A), and thymine (T) in a beef and chicken livers samples to measure the quality of food products based on hybrids of graphitic carbon nitride/Graphene nanoflakes (g-C3N4/GNF) modified electrode. Graphitic carbon nitride (g-C3N4) made of graphite-like covalent link connects nitrogen, nitride, and carbon atoms in the structural design with improved the electrical properties and low band gap semiconductor. The g-C3N4/GNF nanocomposite was synthesized by the hydrothermal treatment to form a porous g-C3N4 interconnected three dimensional (3D) network of g-C3N4 and GNF. The 3D g-C3N4/GNF/GCE was utilized for the detection of nucleic acid bases with a well resolved oxidation peak for the individual analyte. The electrocatalytic current was established to be a linear range from 0.3 × 10-7 to 6.6 × 10-6, 0.3 × 10-7 to 7.3 × 10-6, and 5.3 × 10-6 to 63.3 × 10-4 M for G, A, and T with a detection limit of 4.7, 3.5 and 55 nM, respectively. The diffusion co-efficient and the kinetic parameters were derived from the chronoamperometry technique. The proposed sensing strategy has been effectively used for the application in real sample analysis and observed that the electrode free from the surface fouling.
  6. Singh D, Narayanan S, Vicknasingam BK, Prozialeck WC, Ramanathan S, Zainal H, et al.
    J Psychoactive Drugs, 2018 03 20;50(3):266-274.
    PMID: 29558272 DOI: 10.1080/02791072.2018.1443234
    Kratom (Mitragyna speciosa Korth.) is traditionally used in Southeast Asia for its medicinal value and psychoactive properties. Nonetheless, cessation from regular kratom use is reported to cause unpleasant dose-dependent withdrawal symptoms. This study aims to evaluate the severity of pain and sleep problems following the cessation of kratom tea/juice consumption among regular kratom users. A total of 170 regular users were recruited through snowball sampling for this cross-sectional study. The Brief Pain Inventory (BPI) and Pittsburgh Sleep Quality Index (PSQI) scales were administered to assess the severity of pain and sleep problems. Most participants experienced moderate pain intensity (84%) and moderate pain interference (70%) during kratom cessation; 46% experienced more sleep problems during kratom cessation. Individuals who consumed ≥4 glasses of kratom tea/juice (about 76-115 mg of mitragynine) daily had higher odds of reporting some pain interference (OR: 2.0; CI: 1.04-3.93: p 
  7. Damodaran T, Tan BWL, Liao P, Ramanathan S, Lim GK, Hassan Z
    J Ethnopharmacol, 2018 Oct 05;224:381-390.
    PMID: 29920356 DOI: 10.1016/j.jep.2018.06.020
    ETHNOPHARMACOLOGICAL RELEVANCE: Clitoria ternatea L. (CT), commonly known as Butterfly pea, is used in Indian Ayurvedic medicine to promote brain function and treat mental disorders. Root of CT has been proven to enhance memory, but its role in an animal model of chronic cerebral hypoperfusion (CCH), which has been considered as a major cause of brain disorders, has yet to be explored.

    AIM OF THE STUDY: To assess the motor and cognitive effects of acute oral administration of CT root methanolic extract and hippocampal long-term plasticity in the CA1 region of the CCH rat model.

    MATERIALS AND METHODS: Male Sprague Dawley rats (200-300 g) were subjected to permanent bilateral occlusion of common carotid arteries (PBOCCA) or sham operation. Then, these rats were given oral administration of CT root extract at doses of 100, 200 or 300 mg/kg on day 28 post-surgery and tested using behavioural tests (open-field test, passive avoidance task, and Morris water maze) and electrophysiological recordings (under urethane anaesthesia).

    RESULTS: Treatment with CT root extract at the doses of 200 and 300 mg/kg resulted in a significant enhancement in memory performance in CCH rats induced by PBOCCA. Furthermore, CCH resulted in inhibition of long-term potentiation (LTP) formation in the hippocampus, and CT root extract rescued the LTP impairment. The CT root extract was confirmed to improve the glutamate-induced calcium increase via calcium imaging using primary cultured rat neurons. No significance difference was found in the CaMKII expression. These results demonstrated that CT root extract ameliorates synaptic function, which may contribute to its improving effect on cognitive behaviour.

    CONCLUSIONS: Our findings demonstrated an improving effect of CT root extract on memory in the CCH rat model suggesting that CT root extract could be a potential therapeutic strategy to prevent the progression of cognitive deterioration in vascular dementia (VaD) and Alzheimer's disease (AD) patients.

  8. Shahrir NF, Aziz NRA, Ahmad FL, Muzaid NA, Samat F, Syed Ghazaili SNA, et al.
    Malays Fam Physician, 2022 Nov 30;17(3):53-63.
    PMID: 36606172 DOI: 10.51866/oa.122
    INTRODUCTION: Microalbuminuria presents significant health risks for the progression of endstage renal-failure (ESRF) among type 2 diabetes mellitus (T2DM) patients. This study aims to determine the proportion and associated factors of microalbuminuria among T2DM patients in Kuala Selangor district, Malaysia.

    METHOD: A retrospective cross-sectional study was conducted from December 2020 to February 2021 using secondary data from the National Diabetic Registry (NDR), Malaysia, and reviewed patients' diabetic records for the year 2020. All T2DM patients aged >18 years who were registered with the NDR in 2020 and fulfilled the inclusion and exclusion criteria were included in the study. Descriptive statistics and multiple logistic regression analysis were performed. Data were analysed using SPSS version 26.0. A total of 343 samples were included in this study for the determination of the proportion of microalbuminuria and its associated factors.

    RESULTS: Of 343 respondents, 34.4% had microalbuminuria. HbAlc >7.0% (AdjOR 2.19, 95% CI: 1.35, 3.55, p=0.001), HDL <1.04 mmol/L (AdjOR 2.44, 95% CI: 1.323, 4.52, p=0.004), dyslipidaemia (AdjOR 1.90, 95% CI: 1.03, 3.48, p=0.039), and peripheral neuropathy (AdjOR 3.01, 95% CI: 1.02, 8.93, p=0.047) were significantly associated with microalbuminuria. Conclusion: Microalbuminuria is a modifiable risk factor in preventing the progression of ESRF among T2DM patients. Therefore, identification of factors associated with microalbuminuria among this high-risk group is important to facilitate early screening and prompt treatment to prevent progression of diabetic kidney disease to ESRF.

  9. Whittam DH, Karthikeayan V, Gibbons E, Kneen R, Chandratre S, Ciccarelli O, et al.
    J Neurol, 2020 Dec;267(12):3565-3577.
    PMID: 32623595 DOI: 10.1007/s00415-020-10026-y
    INTRODUCTION: While monophasic and relapsing forms of myelin oligodendrocyte glycoprotein antibody associated disorders (MOGAD) are increasingly diagnosed world-wide, consensus on management is yet to be developed.

    OBJECTIVE: To survey the current global clinical practice of clinicians treating MOGAD.

    METHOD: Neurologists worldwide with expertise in treating MOGAD participated in an online survey (February-April 2019).

    RESULTS: Fifty-two responses were received (response rate 60.5%) from 86 invited experts, comprising adult (78.8%, 41/52) and paediatric (21.2%, 11/52) neurologists in 22 countries. All treat acute attacks with high dose corticosteroids. If recovery is incomplete, 71.2% (37/52) proceed next to plasma exchange (PE). 45.5% (5/11) of paediatric neurologists use IV immunoglobulin (IVIg) in preference to PE. Following an acute attack, 55.8% (29/52) of respondents typically continue corticosteroids for ≥ 3 months; though less commonly when treating children. After an index event, 60% (31/51) usually start steroid-sparing maintenance therapy (MT); after ≥ 2 attacks 92.3% (48/52) would start MT. Repeat MOG antibody status is used by 52.9% (27/51) to help decide on MT initiation. Commonly used first line MTs in adults are azathioprine (30.8%, 16/52), mycophenolate mofetil (25.0%, 13/52) and rituximab (17.3%, 9/52). In children, IVIg is the preferred first line MT (54.5%; 6/11). Treatment response is monitored by MRI (53.8%; 28/52), optical coherence tomography (23.1%; 12/52) and MOG antibody titres (36.5%; 19/52). Regardless of monitoring results, 25.0% (13/52) would not stop MT.

    CONCLUSION: Current treatment of MOGAD is highly variable, indicating a need for consensus-based treatment guidelines, while awaiting definitive clinical trials.

  10. Ramanathan S, Gopinath SCB, Arshad MKM, Poopalan P, Anbu P, Lakshmipriya T, et al.
    Sci Rep, 2019 11 19;9(1):17013.
    PMID: 31745155 DOI: 10.1038/s41598-019-53573-9
    Lung cancer is one of the most serious threats to human where 85% of lethal death caused by non-small cell lung cancer (NSCLC) induced by epidermal growth factor receptor (EGFR) mutation. The present research focuses in the development of efficient and effortless EGFR mutant detection strategy through high-performance and sensitive genosensor. The current amplified through 250 µm sized fingers between 100 µm aluminium electrodes indicates the voltammetry signal generated by means of the mutant DNA sequence hybridization. To enhance the DNA immobilization and hybridization, ∼25 nm sized aluminosilicate nanocomposite synthesized from the disposed joss fly ash was deposited on the gaps between aluminium electrodes. The probe, mutant (complementary), and wild (single-base pair mismatch) targets were designed precisely from the genomic sequences denote the detection of EGFR mutation. Fourier-transform Infrared Spectroscopy analysis was performed at every step of surface functionalization evidences the relevant chemical bonding of biomolecules on the genosensor as duplex DNA with peak response at 1150 cm-1 to 1650 cm-1. Genosensor depicts a sensitive EGFR mutation as it is able to detect apparently at 100 aM mutant against 1 µM DNA probe. The insignificant voltammetry signal generated with wild type strand emphasizes the specificity of genosensor in the detection of single base pair mismatch. The inefficiency of genosensor in detecting EGFR mutation in the absence of aluminosilicate nanocomposite implies the insensitivity of genosensing DNA hybridization and accentuates the significance of aluminosilicate. Based on the slope of the calibration curve, the attained sensitivity of aluminosilicate modified genosensor was 3.02E-4 A M-1. The detection limit of genosensor computed based on 3σ calculation, relative to the change of current proportional to the logarithm of mutant concentration is at 100 aM.
  11. Kaur M, Blair J, Devkota B, Fortunato S, Clark D, Lawrence A, et al.
    Am J Med Genet A, 2023 Aug;191(8):2113-2131.
    PMID: 37377026 DOI: 10.1002/ajmg.a.63247
    Cornelia de Lange Syndrome (CdLS) is a rare, dominantly inherited multisystem developmental disorder characterized by highly variable manifestations of growth and developmental delays, upper limb involvement, hypertrichosis, cardiac, gastrointestinal, craniofacial, and other systemic features. Pathogenic variants in genes encoding cohesin complex structural subunits and regulatory proteins (NIPBL, SMC1A, SMC3, HDAC8, and RAD21) are the major pathogenic contributors to CdLS. Heterozygous or hemizygous variants in the genes encoding these five proteins have been found to be contributory to CdLS, with variants in NIPBL accounting for the majority (>60%) of cases, and the only gene identified to date that results in the severe or classic form of CdLS when mutated. Pathogenic variants in cohesin genes other than NIPBL tend to result in a less severe phenotype. Causative variants in additional genes, such as ANKRD11, EP300, AFF4, TAF1, and BRD4, can cause a CdLS-like phenotype. The common role that these genes, and others, play as critical regulators of developmental transcriptional control has led to the conditions they cause being referred to as disorders of transcriptional regulation (or "DTRs"). Here, we report the results of a comprehensive molecular analysis in a cohort of 716 probands with typical and atypical CdLS in order to delineate the genetic contribution of causative variants in cohesin complex genes as well as novel candidate genes, genotype-phenotype correlations, and the utility of genome sequencing in understanding the mutational landscape in this population.
  12. Ponnusamy Y, Chear NJ, Ramanathan S, Lai CS
    J Ethnopharmacol, 2015 Jun 20;168:305-14.
    PMID: 25858509 DOI: 10.1016/j.jep.2015.03.062
    Dicranopteris linearis is a fern used traditionally for the treatment of skin afflictions such as external wounds, boils and ulcers. However, there are no scientific studies to date to demonstrate its ability to induce wound recovery. The objective of the present study was to explore the wound healing properties of an active fraction of D. linearis through several in vitro assays and to determine its chemical profile.
  13. Ramanathan S, Gopinath SCB, Md Arshad MK, Poopalan P, Anbu P, Lakshmipriya T
    Sci Rep, 2020 Feb 25;10(1):3351.
    PMID: 32099019 DOI: 10.1038/s41598-020-60208-x
    An incredible amount of joss fly ash is produced from the burning of Chinese holy joss paper; thus, an excellent method of recycling joss fly ash waste to extract aluminosilicate nanocomposites is explored. The present research aims to introduce a novel method to recycle joss fly ash through a simple and straightforward experimental procedure involving acidic and alkaline treatments. The synthesized aluminosilicate nanocomposite was characterized to justify its structural and physiochemical characteristics. A morphological analysis was performed with field-emission transmission electron microscopy, and scanning electron microscopy revealed the size of the aluminosilicate nanocomposite to be ~25 nm, while also confirming a uniformly spherical-shaped nanostructure. The elemental composition was measured by energy dispersive spectroscopy and revealed the Si to Al ratio to be 13.24 to 7.96, showing the high purity of the extracted nanocomposite. The roughness and particle distribution were analyzed using atomic force microscopy and a zeta analysis. X-ray diffraction patterns showed a synthesis of faceted and cubic aluminosilicate crystals in the nanocomposites. The presence of silica and aluminum was further proven by X-ray photoelectron spectroscopy, and the functional groups were recognized through Fourier transform infrared spectroscopy. The thermal capacity of the nanocomposite was examined by a thermogravimetric analysis. In addition, the research suggested the promising application of aluminosilicate nanocomposites as drug carriers. The above was justified by an enzyme-linked apta-sorbent assay, which claimed that the limit of the aptasensing aluminosilicate-conjugated ampicillin was two-fold higher than that in the absence of the nanocomposite. The drug delivery property was further justified through an antibacterial analysis against Escherichia coli (gram-negative) and Bacillus subtilis (gram-positive).
  14. Gopinath SCB, Ramanathan S, More M, Patil K, Patil SJ, Patil N, et al.
    Curr Med Chem, 2024;31(12):1464-1484.
    PMID: 37702170 DOI: 10.2174/0929867331666230912101634
    The engineering of nanoscale materials has broadened the scope of nanotechnology in a restricted functional system. Today, significant priority is given to immediate health diagnosis and monitoring tools for point-of-care testing and patient care. Graphene, as a one-atom carbon compound, has the potential to detect cancer biomarkers and its derivatives. The atom-wide graphene layer specialises in physicochemical characteristics, such as improved electrical and thermal conductivity, optical transparency, and increased chemical and mechanical strength, thus making it the best material for cancer biomarker detection. The outstanding mechanical, electrical, electrochemical, and optical properties of two-dimensional graphene can fulfil the scientific goal of any biosensor development, which is to develop a more compact and portable point-of-care device for quick and early cancer diagnosis. The bio-functionalisation of recognised biomarkers can be improved by oxygenated graphene layers and their composites. The significance of graphene that gleans its missing data for its high expertise to be evaluated, including the variety in surface modification and analytical reports. This review provides critical insights into graphene to inspire research that would address the current and remaining hurdles in cancer diagnosis.
  15. Hazim AI, Ramanathan S, Parthasarathy S, Muzaimi M, Mansor SM
    J Physiol Sci, 2014 May;64(3):161-9.
    PMID: 24464759 DOI: 10.1007/s12576-014-0304-0
    The effects of mitragynine on anxiety-related behaviours in the open-field and elevated plus-maze tests were evaluated. Male Sprague-Dawley rats were orally treated with mitragynine (10, 20 and 40 mg/kg) or diazepam (10 mg/kg) 60 min before behavioural testing. Mitragynine doses used in this study were selected on the basis of approximately human equivalent doses with reference to our previous literature reports. Acute administration of mitragynine (10, 20 and 40 mg/kg) or diazepam (10 mg/kg) increased central zone and open arms exploration in the open-field and elevated plus-maze tests respectively. These anxiolytic-like effects of mitragynine were effectively antagonized by intraperitoneal administration of naloxone (2 mg/kg), flumazenil (10 mg/kg), sulpiride (0.5 mg/kg) or SCH 23390 (0.02 mg/kg) 15 min before mitragynine treatments. These findings reveal that the acute administration of mitragynine produces anxiolytic-like effects and this could be possibly attributed to the interactions among opioidergic, GABAergic and dopaminergic systems in brain regions involved in anxiety.
  16. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Pharmacognosy Res, 2010 Jul;2(4):215-20.
    PMID: 21808570 DOI: 10.4103/0974-8490.69107
    The seeds of Swietenia mahagoni have been applied in folk medicine for the treatment of hypertension, diabetes, malaria, amoebiasis, cough, chest pain, and intestinal parasitism. Here we are the first to report on the toxicity of the Swietenia mahagoni crude methanolic (SMCM) seed extract.
  17. Annegowda HV, Anwar LN, Mordi MN, Ramanathan S, Mansor SM
    Pharmacognosy Res, 2010 Nov;2(6):368-73.
    PMID: 21713141 DOI: 10.4103/0974-8490.75457
    This study was designed to evaluate the phenolic content and antioxidant activity of ethanolic extracts from T. catappa leaves obtained by different intervals of sonication.
  18. Sabetghadam A, Ramanathan S, Mansor SM
    Pharmacognosy Res, 2010 May;2(3):181-5.
    PMID: 21808563 DOI: 10.4103/0974-8490.65514
    Mitragyna speciosa Korth is a medicinal plant indigenous to Thailand and Malaysia and has been known for its narcotic and coca-like effects. Many studies have been performed on the antinociceptive effect of the plant extracts of Thai origin; however, limited studies have been reported till date on M. speciosa extracts of Malaysian origin. Various concentrations of alkaloid (5-20 mg/kg), methanolic (50-200 mg/kg), and aqueous (100-400 mg/kg) extracts of Malaysian M. speciosa leaves were prepared and orally administered to nine groups of rats. Morphine (5 mg/kg, s.c.) and aspirin (300 mg/kg, p.o.) were used as control. Antagonism of the antinociceptive activity was evaluated by pretreatment with naloxone at a dose of 2 mg/kg (i.p.). Results showed that oral administration of the alkaloid (20 mg/kg), methanolic (200 mg/kg), and aqueous (400 mg/kg) extracts significantly prolonged the latency of nociceptive response compared with control groups in both hot plate and tail flick tests (P < 0.05). Antinociceptive action of the alkaloid (20 mg/kg), methanolic (200 mg/kg), and aqueous (400 mg/kg) extracts was significantly blocked by naloxone. In conclusion, these results suggest the presence of antinociceptive effect in various extracts of Malaysian M. speciosa leaves. In addition, the antinociceptive effective doses vary depending on the type of solvents used for extraction.
  19. Parthasarathy S, Bin Azizi J, Ramanathan S, Ismail S, Sasidharan S, Said MI, et al.
    Molecules, 2009;14(10):3964-74.
    PMID: 19924042 DOI: 10.3390/molecules14103964
    Studies on the antioxidant and antimicrobial activities of Mitragyna speciosa leaf extracts are lacking. In this study the antioxidant properties of water, methanolic and alkaloid M. speciosa leaf extracts were evaluated using the DPPH (2,2-diphenyl-1- picrylhydrazyl) radical scavenging method. The amount of total phenolics and flavanoid contents were also estimated. The DPPH IC(50) values of the aqueous, alkaloid and methanolic extracts were 213.4, 104.81 and 37.08 microg/mL, respectively. The total phenolic content of the aqueous, alkaloid and methanolic extracts were 66.0 mg, 88.4, 105.6 mg GAE/g, respectively, while the total flavanoid were 28.2, 20.0 and 91.1 mg CAE/g respectively. The antioxidant activities were correlated with the total phenolic content. This result suggests that the relatively high antioxidant activity of the methanolic extract compared to aqueous and alkaloid extract could be possibly be due to its high phenolic content. The aqueous, alkaloid and methanolic extracts were screened for antimicrobial activity. The extracts showed antimicrobial activity against Salmonella typhi and Bacillus subtilis. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 3.12 to 6.25 mg/mL. The alkaloid extract was found to be most effective against all of the tested organisms.
  20. Mustaffa F, Indurkar J, Ismail S, Mordi MN, Ramanathan S, Mansor SM
    Pharmacognosy Res, 2010 Mar;2(2):76-81.
    PMID: 21808545 DOI: 10.4103/0974-8490.62952
    Cinnomomum iners standardized leaves methanolic extract (CSLE) was subjected to analgesic, toxicity and phytochemical studies. The analgesic activity of CSLE was evaluated using formalin, hot plate and tail flick tests at doses of 100, 200 and 500 mg/kg. CSLE showed significant activity (P < 0.05) in the formalin model (late phase) on the rats at doses of 200 and 500 mg/kg. However, CSLE did not show activity in the hot plate and tail flick tests. The results obtained suggest that CSLE acts peripherally to relieve pain. For the toxicity study, CSLE was orally administered to the Swiss albino mice according to the Organization for Economic Co-Operation and Development (OECD) guideline 423. There was no lethality or toxic symptoms observed for all the tested doses throughout the 14-day period. Phytochemical screening of CSLE showed the presence of cardiac glycoside, flavonoid, polyphenol, saponin, sugar, tannin and terpenoid.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links