Displaying all 3 publications

Abstract:
Sort:
  1. Ren T, Feng H, Xu C, Xu Q, Fu B, Azwar E, et al.
    Chemosphere, 2022 Jan 22;294:133710.
    PMID: 35074326 DOI: 10.1016/j.chemosphere.2022.133710
    The usage of fertilizer with high nitrogen content in many countries, as well as its enormous surplus, has a negative impact on the soil ecological environment in agricultural system. This consumption of nitrogen fertilizer can be minimized by applying biochar to maintain the sufficient supply of nitrogen as nutrient to the near-root zone. This study investigated the effects of various amounts of biochar application (450, 900, 1350, and 1800 kg/hm2) and reduction of nitrogen fertilizer amount (10, 15, 20, and 25%) on the nutrients and microorganism community structure in rhizosphere growing tobacco plant. The microorganism community was found essential in improving nitrogen retention. Compared with conventional treatment, an application of biochar in rhizosphere soil increased the content of soil available phosphorus, organic matter and total nitrogen by 21.47%, 26.34%, and 9.52%, respectively. It also increased the abundance of microorganisms that are capable of degrading and utilizing organic matter and cellulose, such as Actinobacteria and Acidobacteria. The relative abundance of Chloroflexi was also increased by 49.67-78.61%, and the Acidobacteria increased by 14.79-39.13%. Overall, the application of biochar with reduced nitrogen fertilizer amount can regulate the rhizosphere microecological environment of tobacco plants and their microbial population structure, thereby promoting soil health for tobacco plant growth while reducing soil acidification and environmental pollution caused by excessive nitrogen fertilizer.
  2. Ren T, Chen N, Wan Mahari WA, Xu C, Feng H, Ji X, et al.
    Environ Res, 2021 01;192:110273.
    PMID: 33002505 DOI: 10.1016/j.envres.2020.110273
    Pot experiments were conducted to investigate the influence of biochar addition and the mechanisms that alleviate Cd stress in the growth of tobacco plant. Cadmium showed an inhibitory effect on tobacco growth at different post-transplantation times, and this increased with the increase in soil Cd concentration. The growth index decreased by more than 10%, and the photosynthetic pigment and photosynthetic characteristics of the tobacco leaf were significantly reduced, and the antioxidant enzyme activity was enhanced. Application of biochar effectively alleviated the inhibitory effect of Cd on tobacco growth, and the alleviation effect of treatments is more significant to the plants with a higher Cd concentration. The contents of chlorophyll a, chlorophyll b, and carotenoids in the leaves of tobacco plants treated with biochar increased by 9.99%, 12.58%, and 10.32%, respectively, after 60 days of transplantation. The photosynthetic characteristics index of the net photosynthetic rate increased by 11.48%, stomatal conductance increased by 11.44%, and intercellular carbon dioxide concentration decreased to 0.92. Based on the treatments, during the growth period, the antioxidant enzyme activities of tobacco leaves comprising catalase, peroxidase, superoxide dismutase, and malondialdehyde increased by 7.62%, 10.41%, 10.58%, and 12.57%, respectively, after the application of biochar. Our results show that biochar containing functional groups can effectively reduce the effect of Cd stress by intensifying the adsorption or passivation of Cd in the soil, thereby, significantly reducing the Cd content in plant leaves, and providing a theoretical basis and method to alleviate soil Cd pollution and effect soil remediation.
  3. Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, et al.
    Sci Total Environ, 2021 Aug 24;802:149835.
    PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835
    Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links