Displaying all 3 publications

  1. Wijesekara P, Ng WH, Feng M, Ren X
    Curr Opin Organ Transplant, 2018 12;23(6):657-663.
    PMID: 30234735 DOI: 10.1097/MOT.0000000000000577
    PURPOSE OF REVIEW: Engineering vasculature that meets an organ's specific physiology and function is a fundamental step in organ bioengineering. In this article, we review approaches for engineering functional vasculature for organ bioengineering, with an emphasis on the engineering of organ-specific endothelium and vasculature.

    RECENT FINDINGS: Recent advances in hydrogel-based engineering of vascularized organ bud enable vascular regeneration in self-assembled cellular niche containing parenchymal and stromal cells. The emerging technology of whole-organ decellularization provides scaffold materials that serve as extracellular niche guiding vascular regeneration to recapitulate native organ's vascular anatomy. Increasing morphological and molecular evidences suggest endothelial heterogeneity across different organs and across different vascular compartments within an organ. Deriving organ-specific endothelium from pluripotent stem cells has been shown to be possible by combining endothelial induction with parenchymal differentiation.

    SUMMARY: Engineering organ-specific vasculature requires the combination of organ-specific endothelium with its unique cellular and extracellular niches. Future investigations are required to further delineate the mechanisms for induction and maintenance of organ-specific vascular phenotypes, and how to incorporate these mechanisms to engineering organ-specific vasculature.

  2. Ren X, Evangelista-Leite D, Wu T, Rajab TK, Moser PT, Kitano K, et al.
    Biomaterials, 2018 11;182:127-134.
    PMID: 30118980 DOI: 10.1016/j.biomaterials.2018.08.012
    Decellularized native extracellular matrix (ECM) biomaterials are widely used in tissue engineering and have reached clinical application as biomesh implants. To enhance their regenerative properties and postimplantation performance, ECM biomaterials could be functionalized via immobilization of bioactive molecules. To facilitate ECM functionalization, we developed a metabolic glycan labeling approach using physiologic pathways to covalently incorporate click-reactive azide ligands into the native ECM of a wide variety of rodent tissues and organs in vivo, and into the ECM of isolated rodent and porcine lungs cultured ex vivo. The incorporated azides within the ECM were preserved after decellularization and served as chemoselective ligands for subsequent bioconjugation via click chemistry. As proof of principle, we generated alkyne-modified heparin, immobilized it onto azide-incorporated acellular lungs, and demonstrated its bioactivity by Antithrombin III immobilization and Factor Xa inhibition. The herein reported metabolic glycan labeling approach represents a novel platform technology for manufacturing click-reactive native ECM biomaterials, thereby enabling efficient and chemoselective functionalization of these materials to facilitate tissue regeneration and repair.
  3. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links