Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Hafeez R, Guo J, Ahmed T, Ibrahim E, Ali MA, Rizwan M, et al.
    Chemosphere, 2024 Apr 04;356:141904.
    PMID: 38582174 DOI: 10.1016/j.chemosphere.2024.141904
    Rice blast, an extremely destructive disease caused by the filamentous fungal pathogen Magnaporthe oryzae, poses a global threat to the production of rice (Oryza sativa L.). The emerging trend of reducing dependence on chemical fungicides for crop protection has increased interest in exploring bioformulated nanomaterials as a sustainable alternative antimicrobial strategy for effectively managing plant diseases. Herein, we used physiomorphological, transcriptomic, and metabolomic methods to investigate the toxicity and molecular action mechanisms of moringa-chitosan nanoparticles (M-CNPs) against M. oryzae. Our results demonstrate that M-CNPs exhibit direct antifungal properties by impeding the growth and conidia formation of M. oryzae in a concentration-dependent manner. Propidium iodide staining indicated concentration-dependent significant apoptosis (91.33%) in the fungus. Ultrastructural observations revealed complete structural damage in fungal cells treated with 200 mg/L M-CNPs, including disruption of the cell wall and destruction of internal organelles. Transcriptomic and metabolomic analyses revealed the intricate mechanism underlying the toxicity of M-CNPs against M. oryzae. The transcriptomics data indicated that exposure to M-CNPs disrupted various processes integral to cell membrane biosynthesis, aflatoxin biosynthesis, transcriptional regulation, and nuclear integrity in M. oryzae., emphasizing the interaction between M-CNPs and fungal cells. Similarly, metabolomic profiling demonstrated that exposure to M-CNPs significantly altered the levels of several key metabolites involved in the integral components of metabolic pathways, microbial metabolism, histidine metabolism, citrate cycle, and lipid and protein metabolism in M. oryzae. Overall, these findings demonstrated the potent antifungal action of M-CNPs, with a remarkable impact at the physiological and molecular level, culminating in substantial apoptotic-like fungal cell death. This research provides a novel perspective on investigating bioformulated nanomaterials as antifungal agents for plant disease control.
  2. Sun R, Balabanova A, Bajada CJ, Liu Y, Kriuchok M, Voolma SR, et al.
    Emotion, 2024 Mar;24(2):397-411.
    PMID: 37616109 DOI: 10.1037/emo0001235
    The COVID-19 pandemic presents challenges to psychological well-being, but how can we predict when people suffer or cope during sustained stress? Here, we test the prediction that specific types of momentary emotional experiences are differently linked to psychological well-being during the pandemic. Study 1 used survey data collected from 24,221 participants in 51 countries during the COVID-19 outbreak. We show that, across countries, well-being is linked to individuals' recent emotional experiences, including calm, hope, anxiety, loneliness, and sadness. Consistent results are found in two age, sex, and ethnicity-representative samples in the United Kingdom (n = 971) and the United States (n = 961) with preregistered analyses (Study 2). A prospective 30-day daily diary study conducted in the United Kingdom (n = 110) confirms the key role of these five emotions and demonstrates that emotional experiences precede changes in well-being (Study 3). Our findings highlight differential relationships between specific types of momentary emotional experiences and well-being and point to the cultivation of calm and hope as candidate routes for well-being interventions during periods of sustained stress. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
  3. Krys K, Kostoula O, van Tilburg WAP, Mosca O, Lee JH, Maricchiolo F, et al.
    Perspect Psychol Sci, 2024 Feb 13.
    PMID: 38350096 DOI: 10.1177/17456916231208367
    Psychological science tends to treat subjective well-being and happiness synonymously. We start from the assumption that subjective well-being is more than being happy to ask the fundamental question: What is the ideal level of happiness? From a cross-cultural perspective, we propose that the idealization of attaining maximum levels of happiness may be especially characteristic of Western, educated, industrial, rich, and democratic (WEIRD) societies but less so for others. Searching for an explanation for why "happiness maximization" might have emerged in these societies, we turn to studies linking cultures to their eco-environmental habitat. We discuss the premise that WEIRD cultures emerged in an exceptionally benign ecological habitat (i.e., faced relatively light existential pressures compared with other regions). We review the influence of the Gulf Stream on the Northwestern European climate as a source of these comparatively benign geographical conditions. We propose that the ecological conditions in which WEIRD societies emerged afforded them a basis to endorse happiness as a value and to idealize attaining its maximum level. To provide a nomological network for happiness maximization, we also studied some of its potential side effects, namely alcohol and drug consumption and abuse and the prevalence of mania. To evaluate our hypothesis, we reanalyze data from two large-scale studies on ideal levels of personal life satisfaction-the most common operationalization of happiness in psychology-involving respondents from 61 countries. We conclude that societies whose members seek to maximize happiness tend to be characterized as WEIRD, and generalizing this across societies can prove problematic if adopted at the ideological and policy level.
  4. Azeem MK, Islam A, Khan RU, Rasool A, Anees Ur Rehman Qureshi M, Rizwan M, et al.
    R Soc Open Sci, 2023 Dec;10(12):231157.
    PMID: 38094268 DOI: 10.1098/rsos.231157
    The present study was aimed at synthesis of polymeric hydrogels for controlled boron (B) release, as B deficiency is a major factor that decreases crops yield. Thus, graphene oxide incorporated guar gum and poly (ethylene glycol) hydrogels were prepared using the Solution Casting method for boron release. 3-Glycidyloxypropyl trimethoxysilane (GLYMOL) was used as a cross-linker. Characterizations of hydrogels were carried out by Fourier Transform Infrared Spectroscopy (FTIR), Thermo-Gravimetric Analysis and Scanning Electron scope. The FTIR outcomes confirmed the existence of functional groups, bindings and development of hydrogel frameworks from incorporated components. The quantity of GLYMOL directly increased the thermal stability and water retention but decreased the swelling %. The maximum swelling for the hydrogel formulations was observed at pH 7. The addition of GLYMOL changed the diffusion from quasi-Fickcian to non-Fickcian diffusion. The maximum swelling quantities of 3822% and 3342% were exhibited by GPP (control) and GPP-8 in distilled water, respectively. Boron release was determined in distilled water and sandy soil by azomethine-H test using UV-Visible spectrophotometer while 85.11% and 73.65% boron was released from BGPP-16, respectively. In short, water retentive, water holding capacities, swelling performances, biodegradability and swelling/deswelling features would offer an ideal platform for boron release in sustained agricultural applications.
  5. Khan MUA, Stojanović GM, Rehman RA, Moradi AR, Rizwan M, Ashammakhi N, et al.
    ACS Omega, 2023 Oct 31;8(43):40024-40035.
    PMID: 37929099 DOI: 10.1021/acsomega.2c06825
    Biopolymer-based bioactive hydrogels are excellent wound dressing materials for wound healing applications. They have excellent properties, including hydrophilicity, tunable mechanical and morphological properties, controllable functionality, biodegradability, and desirable biocompatibility. The bioactive hydrogels were fabricated from bacterial cellulose (BC), gelatin, and graphene oxide (GO). The GO-functionalized-BC (GO-f-BC) was synthesized by a hydrothermal method and chemically crosslinked with bacterial cellulose and gelatin using tetraethyl orthosilicate (TEOS) as a crosslinker. The structural, morphological, and wettability properties were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a universal testing machine (UTM), respectively. The swelling analysis was conducted in different media, and aqueous medium exhibited maximum hydrogel swelling compared to other media. The Franz diffusion method was used to study curcumin (Cur) release (Max = 69.32%, Min = 49.32%), and Cur release kinetics followed the Hixson-Crowell model. Fibroblast (3T3) cell lines were employed to determine the cell viability and proliferation to bioactive hydrogels. Antibacterial activities of bioactive hydrogels were evaluated against infection-causing bacterial strains. Bioactive hydrogels are hemocompatible due to their less than 0.5% hemolysis against fresh human blood. The results show that bioactive hydrogels can be potential wound dressing materials for wound healing applications.
  6. Alotaibi MO, Alotaibi NM, Ghoneim AM, Ain NU, Irshad MA, Nawaz R, et al.
    Chemosphere, 2023 Oct;339:139731.
    PMID: 37557994 DOI: 10.1016/j.chemosphere.2023.139731
    Recently, there has been considerable attention towards the production of environmentally friendly nanoparticles (NPs). In this investigation, the successful synthesis of cerium oxide nanoparticles (CeO2 NPs) was achieved by employing an eco-friendly technique that utilized an extract from the leaves of local plant quinoa (Chenopodium quinoa L.). The synthesized CeO2 NPs were subjected to characterization using state-of-the-art methods. The prepared CeO2 NPs contained a round shape with clusters and have a size of 7-10 nm. To assess how effective CeO2 NPs derived from C. quinoa were against Ustilago tritici, a fungal disease that negatively affects wheat crop globally, a study was performed on two varieties of wheat crop comprised of Arooj (V1) and Akber (V2), cultivated under field conditions. CeO2 NPs were applied foliarly twice to the wheat crop at four different concentrations: T0 (0 mg/L), T1 (50 mg/L), T2 (75 mg/L), and T3 (100 mg/L). The results revealed that the control group (T0) exhibited the highest disease severity index (DSI) with a value of 75% compared to the other concentrations of CeO2 NPs on both varieties. At a concentration of 100 mg/L of CeO2 NPs, the DSI dropped to a minimum of 35% and 37% on both V1 and V2 respectively. These findings indicated that an increase in the concentration of CeO2 NPs has a beneficial impact on disease severity. Similar patterns have also been observed with disease incidence (DI), with the greatest efficacy observed at a concentration of 100 mg/L of CeO2 NPs. Our investigation has shown that CeO2 NPs exhibitd significant antifungal potential against U. tritici which may be a promising strategy to mitigate fungal disease and crop losses globally.
  7. Irshad MA, Sattar S, Nawaz R, Al-Hussain SA, Rizwan M, Bukhari A, et al.
    Ecotoxicol Environ Saf, 2023 Sep 15;263:115231.
    PMID: 37429088 DOI: 10.1016/j.ecoenv.2023.115231
    Water contamination can be detrimental to the human health due to higher concentration of carcinogenic heavy metals such as chromium (Cr) in the wastewater. Many traditional methods are being employed in wastewater treatment plants for Cr removal to control the environmental impacts. Such methods include ion exchange, coagulation, membrane filtration, and chemical precipitation and microbial degradation. Recent advances in materials science and green chemistry have led to the development of nanomaterial that possess high specific surface areas and multiple functions, making them suitable for removing metals such as Cr from wastewater. Literature shows that the most efficient, effective, clean, and long-lasting approach for removing heavy metals from wastewater involves adsorbing heavy metals onto the surface of nanomaterial. This review assesses the removal methods of Cr from wastewater, advantages and disadvantages of using nanomaterial to remove Cr from wastewater and potential negative impacts on human health. The latest trends and developments in Cr removal strategies using nanomaterial adsorption are also explored in the present review.
  8. Rizwan M, Ali S, Javid A, von Fricken ME, Rashid MI
    Acta Trop, 2023 Jul;243:106940.
    PMID: 37160189 DOI: 10.1016/j.actatropica.2023.106940
    Bartonella can infect a variety of mammals including humans and has been detected in the Americas, Europe, Africa, and Asia. Roughly two-thirds of identified Bartonella species are found and maintained in rodent reservoirs, with some of these species linked to human infections. Rodents (N=236) were caught from the Sahiwal division of Punjab, Pakistan and tested for Bartonella using PCR targeting gltA and rpoB genes, followed by sequencing of rpoB-positive samples. Genetic relatedness to other published Bartonella spp. rpoB gene sequences were examined using BLAST and phylogenetic analysis. Overall, 7.62% (18/236) of rodents were positive for both gltA and rpoB fragments. Rattus rattus and R. norvegicus had 7.94% (12/151) and 7.05% (6/85) positivity rates for Bartonella DNA, respectively. Phylogenetic analysis revealed a close relatedness between Bartonella spp. from Pakistan to Bartonella spp. from China, Nepal, and Malaysia. This study is the first reported detection of Bartonella spp. in R. rattus and R. norvegicus from the Sahiwal area of Punjab, Pakistan.
  9. Shafqat SS, Rizwan M, Batool M, Shafqat SR, Mustafa G, Rasheed T, et al.
    Chemosphere, 2023 Mar;318:137920.
    PMID: 36690256 DOI: 10.1016/j.chemosphere.2023.137920
    Water bodies are being polluted rapidly by disposal of toxic chemicals with their huge entrance into drinking water supply chain. Among these pollutants, heavy metal ions (HMIs) are the most challenging one due to their non-biodegradability, toxicity, and ability to biologically hoard in ecological systems, thus posing a foremost danger to human health. This can be addressed by robust, sensitive, selective, and reliable sensing of metal ions which can be achieved by Metal organic frameworks (MOF) based electrochemical sensors. In the present era, MOFs have caught greater interest in a variety of applications including sensing of hazardous pollutants such as heavy metal ions. So, in this review article, types, synthesis and working mechanism of MOF based sensors is explained to give general overview with updated literature. First time, detailed study is done for sensing of metal ions such as chromium, mercury, zinc, copper, manganese, palladium, lead, iron, cadmium and lanthanide by MOFs based electrochemical sensors. The use of MOFs as electrochemical sensors has attractive success story along with some challenges of the area. Considering these challenges, we attempted to highlight the milestone achieved and shortcomings along with future prospective of the MOFs for employing it in electrochemical sensing devices for HMIs. Finally, challenges and future prospects have been discussed to promote the development of MOFs-based sensors in future.
  10. Iftikhar B, Alih SC, Vafaei M, Alrowais R, Bashir MT, Khalil A, et al.
    Heliyon, 2023 Mar;9(3):e14457.
    PMID: 36950647 DOI: 10.1016/j.heliyon.2023.e14457
    The purpose of this research was to conduct a scientometric evaluation of the literature pertaining to plastic sand in order to evaluate its many aspects. Conventional review studies have several limitations when it comes to their capacity to completely and properly link different sections of the published research. Some of the more complicated features of advanced research are co-occurrence analysis, science mapping and co-citation analysis. During the study, the most inventive authors/researchers renowned for citations, the sources with the largest number of publications, the actively involved domains, and co-occurrences of keywords in the research on plastic sand are investigated. This study is limited to scientometric analysis of the available literature data on plastic sand. The VOSviewer application (version 1.6.18) was used to perform the analysis after bibliometric data for 4512 publications were extracted from the Scopus database and utilised in the extraction process from the year 2021 to June 2022. With the support of a statistical and graphical description of researchers and nations that are contributing, this study will aid researchers in the establishment of collaborative ventures and the exchange of fresh techniques and ideas with one another.
  11. Sorokowski P, Kowal M, Sternberg RJ, Aavik T, Akello G, Alhabahba MM, et al.
    Sci Rep, 2023 Jan 14;13(1):773.
    PMID: 36641519 DOI: 10.1038/s41598-022-26663-4
    Recent cross-cultural and neuro-hormonal investigations have suggested that love is a near universal phenomenon that has a biological background. Therefore, the remaining important question is not whether love exists worldwide but which cultural, social, or environmental factors influence experiences and expressions of love. In the present study, we explored whether countries' modernization indexes are related to love experiences measured by three subscales (passion, intimacy, commitment) of the Triangular Love Scale. Analyzing data from 9474 individuals from 45 countries, we tested for relationships with country-level predictors, namely, modernization proxies (i.e., Human Development Index, World Modernization Index, Gender Inequality Index), collectivism, and average annual temperatures. We found that mean levels of love (especially intimacy) were higher in countries with higher modernization proxies, collectivism, and average annual temperatures. In conclusion, our results grant some support to the hypothesis that modernization processes might influence love experiences.
  12. Kirkland K, Van Lange PAM, Van Doesum NJ, Acevedo-Triana C, Amiot CE, Ausmees L, et al.
    Sci Rep, 2022 Dec 21;12(1):22102.
    PMID: 36543793 DOI: 10.1038/s41598-022-25538-y
    People cooperate every day in ways that range from largescale contributions that mitigate climate change to simple actions such as leaving another individual with choice - known as social mindfulness. It is not yet clear whether and how these complex and more simple forms of cooperation relate. Prior work has found that countries with individuals who made more socially mindful choices were linked to a higher country environmental performance - a proxy for complex cooperation. Here we replicated this initial finding in 41 samples around the world, demonstrating the robustness of the association between social mindfulness and environmental performance, and substantially built on it to show this relationship extended to a wide range of complex cooperative indices, tied closely to many current societal issues. We found that greater social mindfulness expressed by an individual was related to living in countries with more social capital, more community participation and reduced prejudice towards immigrants. Our findings speak to the symbiotic relationship between simple and more complex forms of cooperation in societies.
  13. Dejonckheere E, Rhee JJ, Baguma PK, Barry O, Becker M, Bilewicz M, et al.
    Sci Rep, 2022 02 17;12(1):1514.
    PMID: 35177625 DOI: 10.1038/s41598-021-04262-z
    Happiness is a valuable experience, and societies want their citizens to be happy. Although this societal commitment seems laudable, overly emphasizing positivity (versus negativity) may create an unattainable emotion norm that ironically compromises individual well-being. In this multi-national study (40 countries; 7443 participants), we investigate how societal pressure to be happy and not sad predicts emotional, cognitive and clinical indicators of well-being around the world, and examine how these relations differ as a function of countries' national happiness levels (collected from the World Happiness Report). Although detrimental well-being associations manifest for an average country, the strength of these relations varies across countries. People's felt societal pressure to be happy and not sad is particularly linked to poor well-being in countries with a higher World Happiness Index. Although the cross-sectional nature of our work prohibits causal conclusions, our findings highlight the correlational link between social emotion valuation and individual well-being, and suggest that high national happiness levels may have downsides for some.
  14. Rizwan M, Selvanathan V, Rasool A, Qureshi MAUR, Iqbal DN, Kanwal Q, et al.
    Water Air Soil Pollut, 2022;233(12):493.
    PMID: 36466935 DOI: 10.1007/s11270-022-05904-2
    The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.
  15. Burkova VN, Butovskaya ML, Randall AK, Fedenok JN, Ahmadi K, Alghraibeh AM, et al.
    Front Psychol, 2022;13:805586.
    PMID: 35664191 DOI: 10.3389/fpsyg.2022.805586
    The COVID-19 restrictions have impacted people's lifestyles in all spheres (social, psychological, political, economic, and others). This study explored which factors affected the level of anxiety during the time of the first wave of COVID-19 and subsequent quarantine in a substantial proportion of 23 countries, included in this study. The data was collected from May to August 2020 (5 June 2020). The sample included 15,375 participants from 23 countries: (seven from Europe: Belarus, Bulgaria, Croatia, Hungary, Italy, Romania, Russia; 11 from West, South and Southeast Asia: Armenia, India, Indonesia, Iran, Iraq, Jordan, Malaysia, Pakistan, Saudi Arabia, Thailand, Turkey; two African: Nigeria and Tanzania; and three from North, South, and Central America: Brazil, Canada, United States). Level of anxiety was measured by means of the 7-item Generalized Anxiety Disorder Scale (GAD-7) and the 20-item first part of The State-Trait Anxiety Inventory (STAI)-State Anxiety Inventory (SAI). Respondents were also asked about their personal experiences with COVID-19, attitudes toward measures introduced by governments, changes in attitudes toward migrants during a pandemic, family income, isolation conditions, etc. The factor analysis revealed that four factors explained 45.08% of variance in increase of anxiety, and these components were interpreted as follows: (1) personal awareness of the threat of COVID-19, (2) personal reaction toward officially undertaken measures and attitudes to foreigners, (3) personal trust in official sources, (4) personal experience with COVID-19. Three out of four factors demonstrated strong associations with both scales of anxiety: high level of anxiety was significantly correlated with high level of personal awareness of the threat of COVID-19, low level of personal reaction toward officially undertaken measures and attitudes to foreigners, and high level of presence of personal experience with COVID-19. Our study revealed significant main effects of sex, country, and all four factors on the level of anxiety. It was demonstrated that countries with higher levels of anxiety assessed the real danger of a pandemic as higher, and had more personal experience with COVID-19. Respondents who trusted the government demonstrated lower levels of anxiety. Finally, foreigners were perceived as the cause of epidemic spread.
  16. Sorokowska A, Saluja S, Sorokowski P, Frąckowiak T, Karwowski M, Aavik T, et al.
    Pers Soc Psychol Bull, 2021 12;47(12):1705-1721.
    PMID: 33615910 DOI: 10.1177/0146167220988373
    Interpersonal touch behavior differs across cultures, yet no study to date has systematically tested for cultural variation in affective touch, nor examined the factors that might account for this variability. Here, over 14,000 individuals from 45 countries were asked whether they embraced, stroked, kissed, or hugged their partner, friends, and youngest child during the week preceding the study. We then examined a range of hypothesized individual-level factors (sex, age, parasitic history, conservatism, religiosity, and preferred interpersonal distance) and cultural-level factors (regional temperature, parasite stress, regional conservatism, collectivism, and religiosity) in predicting these affective-touching behaviors. Our results indicate that affective touch was most prevalent in relationships with partners and children, and its diversity was relatively higher in warmer, less conservative, and religious countries, and among younger, female, and liberal people. This research allows for a broad and integrated view of the bases of cross-cultural variability in affective touch.
  17. Abouloula CN, Rizwan M, Selvanathan V, Yahya R, Althubeiti K, Alkhammash HI, et al.
    Polymers (Basel), 2021 Oct 26;13(21).
    PMID: 34771242 DOI: 10.3390/polym13213685
    This study explores the possibility of transforming lignocellulose-rich agricultural waste materials into value-added products. Cellulose was extracted from an empty fruit bunch of oil palm and further modified into carboxymethyl cellulose (CMC), a water-soluble cellulose derivative. The CMC was then employed as the polymeric content in fabrication of solid polymer electrolyte (SPE) films incorporated with lithium iodide. To enhance the ionic conductivity of the solid polymer electrolytes, the compositions were optimized with different amounts of glycerol as a plasticizing agent. The chemical and physical effects of plasticizer content on the film composition were studied by Fourier transform infrared (FTIR) and X-ray diffraction (XRD) analysis. FTIR and XRD analysis confirmed the interaction plasticizer with the polymer matrix and the amorphous nature of fabricated SPEs. The highest ionic conductivity of 6.26 × 10-2 S/cm was obtained with the addition of 25 wt % of glycerol. By fabricating solid polymer electrolytes from oil palm waste-derived cellulose, the sustainability of the materials can be retained while reducing the dependence on fossil fuel-derived materials in electrochemical devices.
  18. Haniffa MACM, Munawar K, Chee CY, Pramanik S, Halilu A, Illias HA, et al.
    Carbohydr Polym, 2021 Sep 01;267:118136.
    PMID: 34119125 DOI: 10.1016/j.carbpol.2021.118136
    Cellulose and its forms are widely used in biomedical applications due to their biocompatibility, biodegradability and lack of cytotoxicity. It provides ample opportunities for the functionalization of supported magnetic nanohybrids (CSMNs). Because of the abundance of surface hydroxyl groups, they are surface tunable in either homogeneous or heterogeneous solvents and thus act as a substrate or template for the CSMNs' development. The present review emphasizes on the synthesis of various CSMNs, their physicomagnetic properties, and potential applications such as stimuli-responsive drug delivery systems, MRI, enzyme encapsulation, nucleic acid extraction, wound healing and tissue engineering. The impact of CSMNs on cytotoxicity, magnetic hyperthermia, and folate-conjugates is highlighted in particular, based on their structures, cell viability, and stability. Finally, the review also discussed the challenges and prospects of CSMNs' development. This review is expected to provide CSMNs' development roadmap in the context of 21st-century demands for biomedical therapeutics.
  19. Walter KV, Conroy-Beam D, Buss DM, Asao K, Sorokowska A, Sorokowski P, et al.
    Proc Biol Sci, 2021 Jul 28;288(1955):20211115.
    PMID: 34284630 DOI: 10.1098/rspb.2021.1115
    A wide range of literature connects sex ratio and mating behaviours in non-human animals. However, research examining sex ratio and human mating is limited in scope. Prior work has examined the relationship between sex ratio and desire for short-term, uncommitted mating as well as outcomes such as marriage and divorce rates. Less empirical attention has been directed towards the relationship between sex ratio and mate preferences, despite the importance of mate preferences in the human mating literature. To address this gap, we examined sex ratio's relationship to the variation in preferences for attractiveness, resources, kindness, intelligence and health in a long-term mate across 45 countries (n = 14 487). We predicted that mate preferences would vary according to relative power of choice on the mating market, with increased power derived from having relatively few competitors and numerous potential mates. We found that each sex tended to report more demanding preferences for attractiveness and resources where the opposite sex was abundant, compared to where the opposite sex was scarce. This pattern dovetails with those found for mating strategies in humans and mate preferences across species, highlighting the importance of sex ratio for understanding variation in human mate preferences.
  20. Channa IA, Chandio AD, Rizwan M, Shah AA, Bhatti J, Shah AK, et al.
    Materials (Basel), 2021 May 12;14(10).
    PMID: 34065936 DOI: 10.3390/ma14102496
    Organic photovoltaics (OPVs) die due to their interactions with environmental gases, i.e., moisture and oxygen, the latter being the most dangerous, especially under illumination, due to the fact that most of the active layers used in OPVs are extremely sensitive to oxygen. In this work we demonstrate solution-based effective barrier coatings based on composite of poly(vinyl butyral) (PVB) and mica flakes for the protection of poly (3-hexylthiophene) (P3HT)-based organic solar cells (OSCs) against photobleaching under illumination conditions. In the first step we developed a protective layer with cost effective and environmentally friendly methods and optimized its properties in terms of transparency, barrier improvement factor, and bendability. The developed protective layer maintained a high transparency in the visible region and improved oxygen and moisture barrier quality by the factor of ~7. The resultant protective layers showed ultra-flexibility, as no significant degradation in protective characteristics were observed after 10 K bending cycles. In the second step, a PVB/mica composite layer was applied on top of the P3HT film and subjected to photo-degradation. The P3HT films coated with PVB/mica composite showed improved stability under constant light irradiation and exhibited a loss of <20% of the initial optical density over the period of 150 h. Finally, optimized barrier layers were used as encapsulation for organic solar cell (OSC) devices. The lifetime results confirmed that the stability of the OSCs was extended from few hours to over 240 h in a sun test (65 °C, ambient RH%) which corresponds to an enhanced lifetime by a factor of 9 compared to devices encapsulated with pristine PVB.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links