Displaying publications 1 - 20 of 75 in total

Abstract:
Sort:
  1. Ruszymah BH, Zaiton Z, Aminuddin S, Khalid BA
    Exp. Clin. Endocrinol. Diabetes, 2001;109(4):227-30.
    PMID: 11453035
    The aim of this study was to investigate the effect of altered thyroid status on 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD type 1) and type 2 (11beta-HSD type 2) bioactivity in rat kidney and colon. Male Sprague-Dawley rats (250 g) were treated with either L-thyroxine (T4) or propylthiouracil (PTU) for 4 weeks. Blood were then analysed for serum thyroxine, sodium (Na+) and potassium (K+). The kidneys and colon were assayed for 11beta-HSD type 1 and 11beta-HSD type 2 bioactivity. In T4 treated rats the serum thyroxine was significantly elevated (p<0.05) whilst PTU decreased serum thyroxine significantly (p<0.001) compared to controls. Serum Na+ and K+ were within normal limits. There were no significant changes in 11beta-HSD type 1 bioactivity in both treatment groups compared to controls. However, the 11beta-HSD type 2 bioactivity in rats given thyroxine was significantly higher in the colon (p<0.003) compared to controls. We conclude that altered thyroid status had no effect on 11beta-HSD type 1 bioactivity but 11beta-HSD type 2 bioactivity was elevated in the colon of rats given supplementary thyroxine.
  2. Law JX, Musa F, Ruszymah BH, El Haj AJ, Yang Y
    Med Eng Phys, 2016 Sep;38(9):854-61.
    PMID: 27349492 DOI: 10.1016/j.medengphy.2016.05.017
    Collagen and fibrin are widely used in tissue engineering due to their excellent biocompatibility and bioactivities that support in vivo tissue formation. These two hydrogels naturally present in different wound healing stages with different regulatory effects on cells, and both of them are mechanically weak in the reconstructed hydrogels. We conducted a comparative study by the growth of rat dermal fibroblasts or dermal fibroblasts and epidermal keratinocytes together in collagen and fibrin constructs respectively with and without the reinforcement of electrospun poly(lactic acid) nanofiber mesh. Cell proliferation, gel contraction and elastic modulus of the constructs were measured on the same gels at multiple time points during the 22 day culturing period using multiple non-destructive techniques. The results demonstrated considerably different cellular activities within the two types of constructs. Co-culturing keratinocytes with fibroblasts in the collagen constructs reduced the fibroblast proliferation, collagen contraction and mechanical strength at late culture point regardless of the presence of nanofibers. Co-culturing keratinocytes with fibroblasts in the fibrin constructs promoted fibroblast proliferation but exerted no influence on fibrin contraction and mechanical strength. The presence of nanofibers in the collagen and fibrin constructs played a favorable role on the fibroblast proliferation when keratinocytes were absent. Thus, this study exhibited new evidence of the strong cross-talk between keratinocytes and fibroblasts, which can be used to control fibroblast proliferation and construct contraction. This cross-talk activity is extracellular matrix-dependent in terms of the fibrous network morphology, density and strength.
  3. Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah S, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:34.
    PMID: 19024970
    Normal tracheal mucociliary clearance is the key to maintaining the health and defense of respiratory airway. Therefore the present of cilia and mucous blanket are important for tracheal epithelium to function effectively. In the present study, we prepared a tissue engineered respiratory epithelium construct (TEREC) made of autologous respiratory epithelium cells, fibroblast and fibrin from sheep owns blood which replaced a created tracheal mucosal defect. Scanning electron microscopy (SEM) showed encouraging result where immature cilia were present on the surface of TEREC. This result indicates that engineered respiratory epithelium was able to function as normal tissue.
  4. Shamsul BS, Aminuddin BS, Ng MH, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:196-7.
    PMID: 15468885
    Bone marrow harvested by aspiration contains connective tissue progenitor cells which can be selectively isolated and induced to express bone phenotype in vitro. The osteoblastic progenitor can be estimated by counting the number of cells attach using the haemacytometer. This study was undertaken to test the hypothesis that human aging is associated with a significant change on the number of osteoblastic progenitors in the bone marrow. Bone marrow aspirates were harvested from 38 patients, 14 men (age 11-70) and 24 women (age 10-70) and cultured in F12: DMEM (1:1). In total 15 bone marrow samples have been isolated from patients above 40 years old (men/women) of age. Fourteen (93.3%) of this samples failed to proliferate. Only one (6.7%) bone marrow sample from a male patient, aged 59 years old was successfully cultured. Seventy percent (16/23) of the samples from patient below than 40 years old were successfully cultured. However, our observation on the survival rate for cells of different gender from patient below 40 years old does not indicate any significant difference. From this study, we conclude that the growth of bone marrow stromal cells possibly for bone engineering is better from bone marrow aspirates of younger patient.
  5. Hidayah HN, Mazzre M, Ng AM, Ruszymah BH, Shalimar A
    Med J Malaysia, 2008 Jul;63 Suppl A:39-40.
    PMID: 19024973
    Bone marrow derived Mesenchymal stem cells (MSCs) were evaluated as an alternative source for tissue engineering of peripheral nerves. Human MSCs were subjected to a series of treatment with a reducing agent, retinoic acid and a combination of trophic factors. This treated MSCs differentiated into Schwann cells were characterized in vitro via flow cytometry analysis and immunocytochemically. In contrast to untreated MSCs, differentiated MSCs expressed Schwann cell markers in vitro, as we confirmed by flow cytometry analysis and immunocytochemically. These results suggest that human MSCs can be induced to be a substitute for Schwann cells that may be applied for nerve regeneration since it is difficult to grow Schwann cells in vitro.
  6. Ruszymah BH, Chowdhury SR, Manan NA, Fong OS, Adenan MI, Saim AB
    J Ethnopharmacol, 2012 Mar 27;140(2):333-8.
    PMID: 22301444 DOI: 10.1016/j.jep.2012.01.023
    Centella asiatica is a traditional herbal medicine that has been shown to have pharmacological effect on skin wound healing, and could be potential therapeutic agent for corneal epithelial wound healing.
  7. Munirah S, Samsudin OC, Chen HC, Salmah SH, Aminuddin BS, Ruszymah BH
    J Bone Joint Surg Br, 2007 Aug;89(8):1099-109.
    PMID: 17785753
    Ovine articular chondrocytes were isolated from cartilage biopsy and culture expanded in vitro. Approximately 30 million cells per ml of cultured chondrocytes were incorporated with autologous plasma-derived fibrin to form a three-dimensional construct. Full-thickness punch hole defects were created in the lateral and medial femoral condyles. The defects were implanted with either an autologous 'chondrocyte-fibrin' construct (ACFC), autologous chondrocytes (ACI) or fibrin blanks (AF) as controls. Animals were killed after 12 weeks. The gross appearance of the treated defects was inspected and photographed. The repaired tissues were studied histologically and by scanning electron microscopy analysis. All defects were assessed using the International Cartilage Repair Society (ICRS) classification. Those treated with ACFC, ACI and AF exhibited median scores which correspond to a nearly-normal appearance. On the basis of the modified O'Driscoll histological scoring scale, ACFC implantation significantly enhanced cartilage repair compared to ACI and AF. Using scanning electron microscopy, ACFC and ACI showed characteristic organisation of chondrocytes and matrices, which were relatively similar to the surrounding adjacent cartilage. Implantation of ACFC resulted in superior hyaline-like cartilage regeneration when compared with ACI. If this result is applicable to humans, a better outcome would be obtained than by using conventional ACI.
  8. Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:30-1.
    PMID: 15468804
    Patient own fibrin may act as the safest, cheapest and immediate available biodegradable scaffold material in clinical 1 tissue engineering. This study investigated the feasibility of using patient own fibrin isolated from whole blood to construct a new human cartilage, skin and bone. Constructed in vitro tissues were implanted on the dorsal part of the nude mice for in vivo maturation. After 8 weeks of implantation, the engineered tissues were removed for histological analysis. Our results demonstrated autologous fibrin has great potential as clinical scaffold material to construct various human tissues.
  9. Mohd Heikal MY, Aminuddin BS, Jeevanan J, Chen HC, Sharifah SH, Ruszymah BH
    Cells Tissues Organs (Print), 2010;192(5):292-302.
    PMID: 20616535 DOI: 10.1159/000318675
    The objective of this study was to regenerate the tracheal epithelium using autologous nasal respiratory epithelial cells in a sheep model. Respiratory epithelium and fibroblast cells were harvested from nasal turbinates and cultured for 1 week. After confluence, respiratory epithelium and fibroblast cells were suspended in autologous fibrin polymerized separately to form a tissue-engineered respiratory epithelial construct (TEREC). A 3 × 2 cm² tracheal mucosal defect was created, and implanted with TEREC and titanium mesh as a temporary scaffold. The control groups were divided into 2 groups: polymerized autologous fibrin devoid of cells (group 1), and no construct implanted (group 2). All sheep were euthanized at 4 weeks of implantation. Gross observation of the trachea showed minimal luminal stenosis formation in the experimental group compared to the control groups. Macroscopic evaluation revealed significant mucosal fibrosis in control group 1 (71.8%) as compared to the experimental group (7%). Hematoxylin and eosin staining revealed the presence of minimal overgrowth of fibrous connective tissue covered by respiratory epithelium. A positive red fluorescence staining of PKH26 on engineered tissue 4 weeks after implantation confirmed the presence of cultured nasal respiratory epithelial cells intercalated with native tracheal epithelial cells. Scanning electron microscopy showed the presence of short microvilli representing immature cilia on the surface of the epithelium. Our study showed that TEREC was a good replacement for a tracheal mucosal defect and was able to promote natural regenesis of the tracheal epithelium with minimal fibrosis. This study highlighted a new technique in the treatment of tracheal stenosis.
  10. Munirah S, Ruszymah BH, Samsudin OC, Badrul AH, Azmi B, Aminuddin BS
    J Orthop Surg (Hong Kong), 2008 Aug;16(2):220-9.
    PMID: 18725677
    To evaluate the effect of autologous human serum (AHS) versus pooled human serum (PHS) versus foetal bovine serum (FBS) for growth of articular chondrocytes and formation of chondrocytefibrin constructs.
  11. Chua KH, Aminuddin BS, Fuzina NH, Ruszymah BH
    Singapore Med J, 2007 Apr;48(4):324-32.
    PMID: 17384880
    The objectives of this study were to determine the optimum concentration of basic fibroblast growth factor (bFGF) in foetal bovine serum (FBS) or human serum (HS) supplemented medium for adult human nasal septum chondrocyte culture and to evaluate the potential of cartilage regeneration.
  12. Ude CC, Shamsul BS, Ng MH, Chen HC, Norhamdan MY, Aminuddin BS, et al.
    Tissue Cell, 2012 Jun;44(3):156-63.
    PMID: 22402173 DOI: 10.1016/j.tice.2012.02.001
    Tracking of transplanted cells has become an important procedure in cell therapy. We studied the in vitro dye retention, survival and in vivo tracking of stem cells with PKH26 dye. Sheep BMSCs and ADSCs were labeled with 2, 4 and 8 μmol of PKH26 and monitored for six passages. Labeled BMSCs and ADSCs acquired mean cumulative population doubling of 12.7±0.4 and 14.6±0.5; unlabeled samples had 13.8±0.5 and 15.4±0.6 respectively. Upon staining with 2, 4 and 8 μmol PKH26, BMSCs had retentions of 40.0±5.8, 60.0±2.9 and 95.0±2.9%, while ADSCs had 92.0±1.2, 95.0±1.2 and 98.0±1.2%. ADSCs retentions were significantly higher at 2 and 4 μmol. On dye retention comparison at 8 μmol and 4 μmol for BMSCs and ADSCs; ADSCs were significantly higher at passages 2 and 3. The viability of BMSCs reduced from 94.0±1.2% to 90.0±0.6% and ADSCs from 94.0±1.2% to 52.0±1.2% (p<0.05) after 24h. BMSCs had significant up regulation of the cartilage genes for both the labeled and the unlabeled samples compared to ADSCs (p<0.05). PKH26 fluorescence was detected on the resected portions of the regenerated neo-cartilage. The recommended concentration of PKH26 for ADSCs is 2 μmol and BMSCs is 8 μmol, and they can be tracked up to 49 days.
  13. Hafez P, Jose S, Chowdhury SR, Ng MH, Ruszymah BH, Abdul Rahman Mohd R
    Cell Biol Int, 2016 Jan;40(1):55-64.
    PMID: 26289249 DOI: 10.1002/cbin.10536
    The alarming rate of increase in myocardial infarction and marginal success in efforts to regenerate the damaged myocardium through conventional treatments creates an exceptional avenue for cell-based therapy. Adult bone marrow mesenchymal stem cells (MSCs) can be differentiated into cardiomyocytes, by treatment with 5-azacytidine, thus, have been anticipated as a therapeutic tool for myocardial infarction treatment. In this study, we investigated the ability of basic fibroblastic growth factor (bFGF) and hydrocortisone as a combined treatment to stimulate the differentiation of MSCs into cardiomyocytes. MSCs were isolated from sternal marrow of patients undergoing heart surgery (CABG). The isolated cells were initially monitored for the growth pattern, followed by characterization using ISCT recommendations. Cells were then differentiated using a combination of bFGF and hydrocortisone and evaluated for the expression of characteristic cardiac markers such as CTnI, CTnC, and Cnx43 at protein level using immunocytochemistry and flow cytometry, and CTnC and CTnT at mRNA level. The expression levels and pattern of the cardiac markers upon analysis with ICC and qRT-PCR were similar to that of 5-azacytidine induced cells and cultured primary human cardiomyocytes. However, flow cytometric evaluation revealed that induction with bFGF and hydrocortisone drives MSC differentiation to cardiomyocytes with a marginally higher efficiency. These results indicate that combination treatment of bFGF and hydrocortisone can be used as an alternative induction method for cardiomyogenic differentiation of MSCs for future clinical applications.
  14. Alfaqeh H, Norhamdan MY, Chua KH, Chen HC, Aminuddin BS, Ruszymah BH
    Med J Malaysia, 2008 Jul;63 Suppl A:37-8.
    PMID: 19024972
    This study was to determine if autologous bone marrow mesenchymal stem cells (BMSCs) cultured in chondrogenic medium could repair surgically induced osteoarthritis. Sheep BMSCs were cultured in medium containing 5ng/ml TGFbeta3 + 50ng/ml IGF-1 for three weeks. The cultured cells were then suspended at density of 2x10(6) cell/ml and injected intraarticularly into the osteoarthritic knee joint. After six weeks, the distal head of the femur and the proximal tibial plateau were removed and stained with H&E. The results indicated that knee joints treated with autologous BMSCs cultured in chondrogenic medium showed clear evidence of articular cartilage regeneration in comparison with other groups.
  15. Norhayati MM, Mazlyzam AL, Asmah R, Fuzina H, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:184-5.
    PMID: 15468879
    Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
  16. Norazril SA, Aminuddin BS, Norhayati MM, Mazlyzam AL, Fauziah O, Ruszymah BH
    Med J Malaysia, 2004 May;59 Suppl B:186-7.
    PMID: 15468880
    Chitosan has similar structure to glycosaminoglycans in the tissue, thus may be a good candidates as tissue engineering scaffold. However, to improve their cell attachment ability, we try to incorporate this natural polymer with collagen by combining it via cross-linking process. In this preliminary study we evaluate the cell attachment ability of chitosan-collagen scaffold versus chitosan scaffold alone. Chitosan and collagen were dissolved in 1% acetic acid and then were frozen for 24 hours before the lyophilizing process. Human skin fibroblasts were seeded into both scaffold and were cultured in F12: DMEM (1:1). Metabolic activity assay were used to evaluate cell attachment ability of scaffold for a period of 1, 3, 7 and 14 days. Scanning electron micrographs shows good cell morphology on chitosan-collagen hybrid scaffold. In conclusion, the incorporation of collagen to chitosan will enhance its cell attachment ability and will be a potential scaffold in tissue engineering.
  17. Manira M, Khairul Anuar K, Seet WT, Ahmad Irfan AW, Ng MH, Chua KH, et al.
    Cell Tissue Bank, 2014 Mar;15(1):41-9.
    PMID: 23456438 DOI: 10.1007/s10561-013-9368-y
    Animal-derivative free reagents are preferred in skin cell culture for clinical applications. The aim of this study was to compare the performance and effects between animal-derived trypsin and recombinant trypsin for skin cells culture and expansion. Full thickness human skin was digested in 0.6 % collagenase for 6 h to liberate the fibroblasts, followed by treatment with either animal-derived trypsin; Trypsin EDTA (TE) or recombinant trypsin; TrypLE Select (TS) to liberate the keratinocytes. Both keratinocytes and fibroblasts were then culture-expanded until passage 2. Trypsinization for both cell types during culture-expansion was performed using either TE or TS. Total cells yield was determined using a haemocytometer. Expression of collagen type I, collagen type III (Col-III), cytokeratin 10, and cytokeratin 14 genes were quantified via RT-PCR and further confirmed with immunocytochemical staining. The results of our study showed that the total cell yield for both keratinocytes and fibroblasts treated with TE or TS were comparable. RT-PCR showed that expression of skin-specific genes except Col-III was higher in the TS treated group compared to that in the TE group. Expression of proteins specific to the two cell types were confirmed by immunocytochemical staining in both TE and TS groups. In conclusion, the performance of the recombinant trypsin is comparable with the well-established animal-derived trypsin for human skin cell culture expansion in terms of cell yield and expression of specific cellular markers.
  18. Shalimar A, Sharaf I, Farah Wahida I, Ruszymah BH
    J Orthop Surg (Hong Kong), 2007 Dec;15(3):357-60.
    PMID: 18162686 DOI: 10.1177/230949900701500323
    A Malaysian family with congenital insensitivity to pain with anhydrosis was diagnosed based on clinical symptoms of chronic ulcers, joint deformities, malunited fractures, anhydrosis, and learning disabilities. We detected a compound heterozygous mutation in exon 16: V709L from the mother and G718S from the father. Two novel mutations were identified: at amino acid 709, a change of G to C at nucleotide 2209 (approximately 2209G to C) causing a valine to leucine substitution (V709L), and at amino acid 718, a change of G to A at nucleotide 2236 (approximately 2236G to A) causing a glycine to serine substitution (G718S). Polymorphisms identified were at nucleotides approximately 2113G to C and approximately 2176T to C.
  19. Ng MH, Aminuddin BS, Hamizah S, Lynette C, Mazlyzam AL, Ruszymah BH
    J Tissue Viability, 2009 Nov;18(4):109-16.
    PMID: 19632116 DOI: 10.1016/j.jtv.2009.06.003
    Previous studies suggested telomerase activity as a determinant of cell replicative capacity by delaying cell senescence. This study aimed to evaluate the feasibility of adopting telomerase activity as a selection criterion for in vitro expanded skin cells before autologous transplantation. Fibroblasts and keratinoctyes were derived from the same consenting patients aged 9-69 years, and cultured separately in serum-supplemented and serum-free media, respectively. Telomerase activity of fresh and cultured cells were measured and correlated with cell growth rate, donor age and passage number. The results showed that telomerase activity and cell growth were independent of donor age for both cell types. Telomerase was expressed in freshly digested epidermis and dermis and continued expressing in vitro. Keratinocytes consistently showed 3-12 folds greater telomerase activity than fibroblast both in vivo and in vitro. Conversely, growth rate for fibroblast exceeded that of keratinocyte. Telomerase activity decreased markedly at Passage 6 for keratinocytes and ceased by Passage 3 for fibroblasts. The decrease or cessation of telomerase activity coincided with senescence for keratinocyte but not for fibroblast, implying a telomerase-regulated cell senescence for the former and hence a predictor of replicative capacity for this cell type. Relative telomerase activity for fibroblasts from the younger age group was significantly higher than that from the older age group; 69.7% higher for fresh isolates and 31.1% higher at P0 (p<0.05). No detectable telomerase activity was to be found at later subcultures for both age groups. Similarly for keratinocytes, telomerase activity in the younger age group was significantly higher (p<0.05) compared to that in the older age group; 507.7% at P0, 36.8% at P3 and the difference was no longer significant at P6. In conclusion, the study provided evidence that telomerase sustained the proliferation of keratinocytes but not fibroblasts. Telomerase activity is an important criterion for continued survival and replication of keratinocytes, hence its positive detection before transplantation is desirable. Inferring from our results, the use of keratinocytes from Passage 3 or lesser for construction of skin substitute or cell-based therapy is recommended owing to their sustained telomerase expression.
  20. Awang MA, Firdaus MA, Busra MB, Chowdhury SR, Fadilah NR, Wan Hamirul WK, et al.
    Biomed Mater Eng, 2014;24(4):1715-24.
    PMID: 24948455 DOI: 10.3233/BME-140983
    Earlier studies in our laboratory demonstrated that collagen extracted from ovine tendon is biocompatible towards human dermal fibroblast. To be able to use this collagen as a scaffold in skin tissue engineering, a mechanically stronger scaffold is required that can withstand manipulation before transplantation. This study was conducted to improve the mechanical strength of this collagen sponge using chemical crosslinkers, and evaluate their effect on physical, chemical and biocompatible properties. Collagen sponge was crosslinked with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) and glutaraldehyde (GA). Tensile test, FTIR study and mercury porosimetry were used to evaluate mechanical properties, chemical property and porosity, respectively. MTT assay was performed to evaluate the cytotoxic effect of crosslinked collagen sponge on human dermal fibroblasts. The FTIR study confirmed the successful crosslinking of collagen sponge. Crosslinking with EDC and GA significantly increased the mechanical strength of collagen sponge, with GA being more superior. Crosslinking of collagen sponge significantly reduced the porosity and the effect was predominant in GA-crosslinked collagen sponge. The GA-crosslinked collagen showed significantly lower, 60% cell viability towards human dermal fibroblasts compared to that of EDC-crosslinked collagen, 80% and non-crosslinked collagen, 100%. Although the mechanical strength was better when using GA but the more toxic effect on dermal fibroblast makes EDC a more suitable crosslinker for future skin tissue engineering.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links