Displaying publications 1 - 20 of 136 in total

Abstract:
Sort:
  1. Wong CF, Salleh AB, Basri M, Abd Rahman RN
    Biotechnol Appl Biochem, 2010 Sep;57(1):1-7.
    PMID: 20726840 DOI: 10.1042/BA20100224
    The structural gene of elastase strain K (elastase from Pseudomonas aeruginosa strain K), namely HindIII1500PstI, was successfully sequenced to contain 1497 bp. The amino acid sequence, deduced from the nucleotide sequence, revealed that the mature elastase consists of 301 amino acids, with a molecular mass of 33.1 kDa, and contains a conserved motif HEXXH, zinc ligands and residues involved in the catalysis of elastase strain K. The structural gene was successfully cloned to a shuttle vector, pUCP19, and transformed into Escherichia coli strains TOP10, KRX, JM109 and Tuner™ pLacI as well as P. aeruginosa strains PA01 (A.T.C.C. 47085) and S5, with detection of significant protein expression. Overexpression was detected from transformants KRX/pUCP19/HindIII1500PstI of E. coli and PA01/pUCP19/HindIII1500PstI of P. aeruginosa, with increases in elastolytic activity to 13.83- and 5.04-fold respectively relative to their controls. In addition, recombinant elastase strain K showed considerable stability towards numerous organic solvents such as methanol, ethanol, acetone, toluene, undecan-1-ol and n-dodecane, which typically pose a detrimental effect on enzymes; our finding provides further information to support the potential application of the enzyme in synthetic industries, particularly peptide synthesis.
  2. Chaibakhsh N, Rahman MB, Basri M, Salleh AB, Abd-Aziz S
    Biotechnol J, 2010 Aug;5(8):848-55.
    PMID: 20632329 DOI: 10.1002/biot.201000063
    Dimethyl adipate (DMA) was synthesized by immobilized Candida antarctica lipase B-catalyzed esterification of adipic acid and methanol. To optimize the reaction conditions of ester production, response surface methodology was applied, and the effects of four factors namely, time, temperature, enzyme concentration, and molar ratio of substrates on product synthesis were determined. A statistical model predicted that the maximum conversion yield would be 97.6%, at the optimal conditions of 58.5 degrees C, 54.0 mg enzyme, 358.0 min, and 12:1 molar ratio of methanol to adipic acid. The R(2) (0.9769) shows a high correlation between predicted and experimental values. The kinetics of the reaction was also investigated in this study. The reaction was found to obey the ping-pong bi-bi mechanism with methanol inhibition. The kinetic parameters were determined and used to simulate the experimental results. A good quality of fit was observed between the simulated and experimental initial rates.
  3. Foong PM, Abedi Karjiban R, Normi YM, Salleh AB, Abdul Rahman MB
    Metallomics, 2015 Jan;7(1):156-64.
    PMID: 25412156 DOI: 10.1039/c4mt00163j
    Metal ions are one of the essential elements which are extensively involved in many cellular activities. With rapid advancements in genome sequencing techniques, bioinformatics approaches have provided a promising way to extract functional information of a protein directly from its primary structure. Recent findings have suggested that the metal content of an organism can be predicted from its complete genome sequences. Characterizing the biological metal usage of cold-adapted organisms may help to outline a comprehensive understanding of the metal-partnerships between the psychrophile and its adjacent environment. The focus of this study is targeted towards the analysis of the metal composition of a psychrophilic yeast Glaciozyma antarctica PI12 isolated from sea ice of Antarctica. Since the cellular metal content of an organism is usually reflected in the expressed metal-binding proteins, the putative metal-binding sequences from G. antarctica PI12 were identified with respect to their sequence homologies, domain compositions, protein families and cellular distribution. Most of the analyses revealed that the proteome was enriched with zinc, and the content of metal decreased in the order of Zn > Fe > Mg > Mn, Ca > Cu. Upon comparison, it was found that the metal compositions among yeasts were almost identical. These observations suggested that G. antarctica PI12 could have inherited a conserved trend of metal usage similar to modern eukaryotes, despite its geographically isolated habitat.
  4. Bayat S, Tejo BA, Salleh AB, Abdmalek E, Normi YM, Abdul Rahman MB
    Chirality, 2013 Nov;25(11):726-34.
    PMID: 23966316 DOI: 10.1002/chir.22205
    A series of tripeptide organocatalysts containing a secondary amine group and two amino acids with polar side chain units were developed and evaluated in the direct asymmetric intermolecular aldol reaction of 4-nitrobenzaldehyde and cyclohexanone. The effectiveness of short polar peptides as asymmetric catalysts in aldol reactions to attain high yields of enantio- and diastereoselective isomers were investigated. In a comparison, glutamic acid and histidine produced higher % ee and yields when they were applied as the second amino acid in short trimeric peptides. These short polar peptides were found to be efficient organocatalysts for the asymmetric aldol addition reaction in aqueous media.
  5. Adnani A, Basri M, Chaibakhsh N, Ahangar HA, Salleh AB, Rahman RN, et al.
    Carbohydr Res, 2011 Mar 1;346(4):472-9.
    PMID: 21276966 DOI: 10.1016/j.carres.2010.12.023
    Immobilized Candida antarctica lipase B-catalyzed esterification of xylitol and two fatty acids (capric and caproic acid) were studied in a solvent-free system. The Taguchi orthogonal array method based on three-level-four-variables with nine experiments was applied for the analysis and optimization of the reaction parameters including time, substrate molar ratio, amount of enzyme, and amount of molecular sieve. The obtained conversion was higher in the esterification of xylitol and capric acid with longer chain length. The optimum conditions derived via the Taguchi approach for the synthesis of xylitol caprate and xylitol caproate were reaction time, 29 and 18h; substrate molar ratio, 0.3 and 1.0; enzyme amount, 0.20 and 0.05g, and molecular sieve amount of 0.03g, respectively. The good correlation between the predicted conversions (74.18% and 61.23%) and the actual values (74.05% and 60.5%) shows that the model derived from the Taguchi orthogonal array can be used for optimization and better understanding of the effect of reaction parameters on the enzymatic synthesis of xylitol esters in a solvent-free system.
  6. Teo CY, Tejo BA, Leow ATC, Salleh AB, Abdul Rahman MB
    Chem Biol Drug Des, 2017 Dec;90(6):1134-1146.
    PMID: 28581157 DOI: 10.1111/cbdd.13033
    Protein arginine deiminase type IV (PAD4) is responsible for the posttranslational conversion of peptidylarginine to peptidylcitrulline. Citrullinated protein is the autoantigen in rheumatoid arthritis, and therefore, PAD4 is currently a promising therapeutic target for the disease. Recently, we reported the importance of the furan ring in the structure of PAD4 inhibitors. In this study, the furan ring was incorporated into peptides to act as the "warhead" of the inhibitors for PAD4. IC50 studies showed that the furan-containing peptide-based inhibitors were able to inhibit PAD4 to a better extent than the furan-containing small molecules that were previously reported. The best peptide-based inhibitor inhibited PAD4 reversibly and competitively with an IC50 value of 243.2 ± 2.4 μm. NMR spectroscopy and NMR-restrained molecular dynamic simulations revealed that the peptide-based inhibitor had a random structure. Molecular docking studies showed that the peptide-based inhibitor entered the binding site and interacted with the essential amino acids involved in the catalytic activity. The peptide-based inhibitor could be further developed into a therapeutic drug for rheumatoid arthritis.
  7. Mohamed RA, Salleh AB, Leow ATC, Yahaya NM, Abdul Rahman MB
    Mol Biotechnol, 2017 Jul;59(7):284-293.
    PMID: 28580552 DOI: 10.1007/s12033-017-0012-0
    An enzyme with broad substrate specificity would be an asset for industrial application. T1 lipase apparently has the same active site residues as polyhydroxyalkanoates (PHA) depolymerase. Sequences of both enzymes were studied and compared, and a conserved lipase box pentapeptide region around the nucleophilic serine was detected. The alignment of 3-D structures for both enzymes showed their active site residues were well aligned with an RMSD value of 1.981 Å despite their sequence similarity of only 53.8%. Docking of T1 lipase with P(3HB) gave forth high binding energy of 5.4 kcal/mol, with the distance of 4.05 Å between serine hydroxyl (OH) group of TI lipase to the carbonyl carbon of the substrate, similar to the native PhaZ7 Pl . This suggests the possible ability of T1 lipase to bind P(3HB) in its active site. The ability of T1 lipase in degrading amorphous P(3HB) was investigated on 0.2% (w/v) P(3HB) plate. Halo zone was observed around the colony containing the enzyme which confirms that T1 lipase is indeed able to degrade amorphous P(3HB). Results obtained in this study highlight the fact that T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation activity but amorphous P(3HB) degradation activity as well.
  8. Mohamed RA, Salleh AB, Leow TC, Yahaya NM, Abdul Rahman MB
    Protein Eng. Des. Sel., 2018 06 01;31(6):221-229.
    PMID: 30239965 DOI: 10.1093/protein/gzy023
    A broad substrate specificity enzyme that can act on a wide range of substrates would be an asset in industrial application. T1 lipase known to have broad substrate specificity in its native form apparently exhibits the same active sites as polyhydroxylalkanoate (PHA) depolymerase. PhaZ6Pl is one of the PHA depolymerases that can degrade semicrystalline P(3HB). The objective of this study is to enable T1 lipase to degrade semicrystalline P(3HB) similar to PhaZ6Pl while maintaining its native function. A structural study on PhaZ6Pl contains no lid in its structure and therefore T1 lipase was designed with removal of its lid region. BSLA lipase was chosen as the reference protein for T1 lipase modification since it contains no lid. Initially, structures of both enzymes were compared via protein-protein superimposition in 3D-space and the location of the lid region of T1 lipase was highlighted. A total of three variants of T1 lipase without lid were successfully designed by referring to BSLA lipase (a lipase without lid). The ability of T1 lipase without lid variants in degrading P(3HB) was investigated quantitatively. All the variants showed activity towards the substrate which confirmed that T1 lipase without lid is indeed able to degrade P(3HB). In addition, D2 was recorded to have the highest activity amongst other variants. Results obtained in this study highlighted the fact that native T1 lipase is a versatile hydrolase enzyme which does not only record triglyceride degradation but also P(3HB) by simply removing the lid region.
  9. Yaacob N, Mohamad Ali MS, Salleh AB, Abdul Rahman NA
    PeerJ, 2016;4:e1751.
    PMID: 26989608 DOI: 10.7717/peerj.1751
    Background. Not all yeast alcohol dehydrogenase 2 (ADH2) are repressed by glucose, as reported in Saccharomyces cerevisiae. Pichia stipitis ADH2 is regulated by oxygen instead of glucose, whereas Kluyveromyces marxianus ADH2 is regulated by neither glucose nor ethanol. For this reason, ADH2 regulation of yeasts may be species dependent, leading to a different type of expression and fermentation efficiency. Lachancea fermentati is a highly efficient ethanol producer, fast-growing cells and adapted to fermentation-related stresses such as ethanol and organic acid, but the metabolic information regarding the regulation of glucose and ethanol production is still lacking. Methods. Our investigation started with the stimulation of ADH2 activity from S. cerevisiae and L. fermentati by glucose and ethanol induction in a glucose-repressed medium. The study also embarked on the retrospective analysis of ADH2 genomic and protein level through direct sequencing and sites identification. Based on the sequence generated, we demonstrated ADH2 gene expression highlighting the conserved NAD(P)-binding domain in the context of glucose fermentation and ethanol production. Results. An increase of ADH2 activity was observed in starved L. fermentati (LfeADH2) and S. cerevisiae (SceADH2) in response to 2% (w/v) glucose induction. These suggest that in the presence of glucose, ADH2 activity was activated instead of being repressed. An induction of 0.5% (v/v) ethanol also increased LfeADH2 activity, promoting ethanol resistance, whereas accumulating acetic acid at a later stage of fermentation stimulated ADH2 activity and enhanced glucose consumption rates. The lack in upper stream activating sequence (UAS) and TATA elements hindered the possibility of Adr1 binding to LfeADH2. Transcription factors such as SP1 and RAP1 observed in LfeADH2 sequence have been implicated in the regulation of many genes including ADH2. In glucose fermentation, L. fermentati exhibited a bell-shaped ADH2 expression, showing the highest expression when glucose was depleted and ethanol-acetic acid was increased. Meanwhile, S. cerevisiae showed a constitutive ADH2 expression throughout the fermentation process. Discussion. ADH2 expression in L. fermentati may be subjected to changes in the presence of non-fermentative carbon source. The nucleotide sequence showed that ADH2 transcription could be influenced by other transcription genes of glycolysis oriented due to the lack of specific activation sites for Adr1. Our study suggests that if Adr1 is not capable of promoting LfeADH2 activation, the transcription can be controlled by Rap1 and Sp1 due to their inherent roles. Therefore in future, it is interesting to observe ADH2 gene being highly regulated by these potential transcription factors and functioned as a promoter for yeast under high volume of ethanol and organic acids.
  10. Abdul Rahman MB, Chaibakhsh N, Basri M, Salleh AB, Abdul Rahman RN
    Appl Biochem Biotechnol, 2009 Sep;158(3):722-35.
    PMID: 19132557 DOI: 10.1007/s12010-008-8465-z
    In this study, an artificial neural network (ANN) trained by backpropagation algorithm, Levenberg-Marquadart, was applied to predict the yield of enzymatic synthesis of dioctyl adipate. Immobilized Candida antarctica lipase B was used as a biocatalyst for the reaction. Temperature, time, amount of enzyme, and substrate molar ratio were the four input variables. After evaluating various ANN configurations, the best network was composed of seven hidden nodes using a hyperbolic tangent sigmoid transfer function. The correlation coefficient (R2) and mean absolute error (MAE) values between the actual and predicted responses were determined as 0.9998 and 0.0966 for training set and 0.9241 and 1.9439 for validating dataset. A simulation test with a testing dataset showed that the MAE was low and R2 was close to 1. These results imply the good generalization of the developed model and its capability to predict the reaction yield. Comparison of the performance of radial basis network with the developed models showed that radial basis function was more accurate but its performance was poor when tested with unseen data. In further part of the study, the feedforward backpropagation model was used for prediction of the ester yield within the given range of the main parameters.
  11. Chaibakhsh N, Abdul Rahman MB, Abd-Aziz S, Basri M, Salleh AB, Abdul Rahman RN
    J Ind Microbiol Biotechnol, 2009 Sep;36(9):1149-55.
    PMID: 19479288 DOI: 10.1007/s10295-009-0596-x
    Immobilized Candida antarctica lipase-catalyzed esterification of adipic acid and oleyl alcohol was investigated in a solvent-free system (SFS). Optimum conditions for adipate ester synthesis in a stirred-tank reactor were determined by the response surface methodology (RSM) approach with respect to important reaction parameters including time, temperature, agitation speed, and amount of enzyme. A high conversion yield was achieved using low enzyme amounts of 2.5% w/w at 60 degrees C, reaction time of 438 min, and agitation speed of 500 rpm. The good correlation between predicted value (96.0%) and actual value (95.5%) implies that the model derived from RSM allows better understanding of the effect of important reaction parameters on the lipase-catalyzed synthesis of adipate ester in an organic solvent-free system. Higher volumetric productivity compared to a solvent-based system was also offered by SFS. The results demonstrate that the solvent-free system is efficient for enzymatic synthesis of adipate ester.
  12. Abedi Karjiban R, Abdul Rahman MB, Basri M, Salleh AB, Jacobs D, Abdul Wahab H
    Protein J, 2009 Jan;28(1):14-23.
    PMID: 19130194 DOI: 10.1007/s10930-008-9159-7
    Molecular Dynamics (MD) simulations have been used to understand how protein structure, dynamics, and flexibility are affected by adaptation to high temperature for several years. We report here the results of the high temperature MD simulations of Bacillus stearothermophilus L1 (L1 lipase). We found that the N-terminal moiety of the enzyme showed a high flexibility and dynamics during high temperature simulations which preceded and followed by clear structural changes in two specific regions; the small domain and the main catalytic domain or core domain of the enzyme. These two domains interact with each other through a Zn(2+)-binding coordination with Asp-61 and Asp-238 from the core domain and His-81 and His-87 from the small domain. Interestingly, the His-81 and His-87 were among the highly fluctuated and mobile residues at high temperatures. The results appear to suggest that tight interactions of Zn(2+)-binding coordination with specified residues became weak at high temperature which suggests the contribution of this region to the thermostability of the enzyme.
  13. Omar MN, Salleh AB, Lim HN, Ahmad Tajudin A
    Anal Biochem, 2016 09 15;509:135-141.
    PMID: 27402177 DOI: 10.1016/j.ab.2016.06.030
    Measurement of the uric acid level in the body can be improved by biosensing with respect to the accuracy, sensitivity and time consumption. This study has reported the immobilization of uricase onto graphene oxide (GO) and its function for electrochemical detection of uric acid. Through chemical modification of GO using 1-ethyl-3-(dimethylaminopropyl) carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS) as cross-linking reagents, the enzyme activity of the immobilized uricase was much comparable to the free enzyme with 88% of the activity retained. The modified GO-uricase (GOU) was then subjected to electrocatalytic detection of uric acid (UA) via cyclic voltammetry (CV). For that reason, a glassy carbon electrode (GCE) was modified by adhering the GO along with the immobilized uricase to facilitate the redox reaction between the enzyme and the substrate. The modified GOU/GCE outperformed a bare electrode through the electrocatalytic activity with an amplified electrical signal for the detection of UA. The electrocatalytic response showed a linear dependence on the UA concentration ranging from 0.02 to 0.49 mM with a detection limit of 3.45 μM at 3σ/m. The resulting biosensor also exhibited a high selectivity towards UA in the presence of other interference as well as good reproducibility.
  14. Abd Muain MF, Cheo KH, Omar MN, Amir Hamzah AS, Lim HN, Salleh AB, et al.
    Bioelectrochemistry, 2018 Aug;122:199-205.
    PMID: 29660648 DOI: 10.1016/j.bioelechem.2018.04.004
    Hepatitis B virus core antigen (HBcAg) is the major structural protein of hepatitis B virus (HBV). The presence of anti-HBcAg antibody in a blood serum indicates that a person has been exposed to HBV. This study demonstrated that the immobilization of HBcAg onto the gold nanoparticles-decorated reduced graphene oxide (rGO-en-AuNPs) nanocomposite could be used as an antigen-functionalized surface to sense the presence of anti-HBcAg. The modified rGO-en-AuNPs/HBcAg was then allowed to undergo impedimetric detection of anti-HBcAg with anti-estradiol antibody and bovine serum albumin as the interferences. Upon successful detection of anti-HBcAg in spiked buffer samples, impedimetric detection of the antibody was then further carried out in spiked human serum samples. The electrochemical response showed a linear relationship between electron transfer resistance and the concentration of anti-HBcAg ranging from 3.91ngmL-1 to 125.00ngmL-1 with lowest limit of detection (LOD) of 3.80ngmL-1 at 3σm-1. This established method exhibits potential as a fast and convenient way to detect anti-HBcAg.
  15. Abdul Aziz SFN, Hui OS, Salleh AB, Normi YM, Yusof NA, Ashari SE, et al.
    Anal Bioanal Chem, 2024 Jan;416(1):227-241.
    PMID: 37938411 DOI: 10.1007/s00216-023-05011-z
    This study aims to investigate the influence of copper(II) ions as a cofactor on the electrochemical performance of a biocomposite consisting of a mini protein mimicking uricase (mp20) and zeolitic immidazolate framework-8 (ZIF-8) for the detection of uric acid. A central composite design (CCD) was utilized to optimize the independent investigation, including pH, deposition potential, and deposition time, while the current response resulting from the electrocatalytic oxidation of uric acid was used as the response. The statistical analysis of variance (ANOVA) showed a good correlation between the experimental and predicted data, with a residual standard error percentage (RSE%) of less than 2% for predicting optimal conditions. The synergistic effect of the nanoporous ZIF-8 host, Cu(II)-activated mp20, and reduced graphene oxide (rGO) layer resulted in a highly sensitive biosensor with a limit of detection (LOD) of 0.21 μM and a reproducibility of the response (RSD = 0.63%). The Cu(II)-activated mp20@ZIF-8/rGO/SPCE was highly selective in the presence of common interferents, and the fabricated layer exhibited remarkable stability with signal changes below 4.15% after 60 days. The biosensor's reliable performance was confirmed through real sample analyses of human serum and urine, with comparable recovery values to conventional HPLC.
  16. Ganasen M, Yaacob N, Rahman RN, Leow AT, Basri M, Salleh AB, et al.
    Int J Biol Macromol, 2016 Nov;92:1266-1276.
    PMID: 27506122 DOI: 10.1016/j.ijbiomac.2016.06.095
    Lipolytic enzymes with cold adaptation are gaining increasing interest due to their biotechnological prospective. Previously, a cold adapted family I.3 lipase (AMS8 lipase) was isolated from an Antarctic Pseudomonas. AMS8 lipase was largely expressed in insoluble form. The refolded His-tagged recombinant AMS8 lipase was purified with 23.0% total recovery and purification factor of 9.7. The purified AMS8 lipase migrated as a single band with a molecular weight approximately 65kDa via electrophoresis. AMS8 lipase was highly active at 30°C at pH 10. The half-life of AMS8 lipase was reported at 4 and 2h under the incubation of 30 and 40°C, respectively. The lipase was stable over a broad range of pH. It showed enhancement effect in its relative activity under the presence of Li(+), Na(+), K(+), Rb(+) and Cs(+) after 30min treatment. Heavy metal ions such as Cu(2+), Fe(3+) and Zn(2+) inhibited AMS8 activity. This cold adapted alkalophilic AMS lipase was also active in various organic solvent of different polarity. These unique properties of this biological macromolecule will provide considerable potential for many biotechnological applications and organic synthesis at low temperature.
  17. Said ZSAM, Arifi FAM, Salleh AB, Rahman RNZRA, Leow ATC, Latip W, et al.
    Int J Biol Macromol, 2019 Apr 15;127:575-584.
    PMID: 30658145 DOI: 10.1016/j.ijbiomac.2019.01.056
    The utilization of organic solvents as reaction media for enzymatic reactions provides numerous industrially attractive advantages. However, an adaptation of enzyme towards organic solvent is unpredictable and not fully understood because of limited information on the organic solvent tolerant enzymes. To understand how the enzyme can adapt to the organic solvent environment, structural and computational approaches were employed. A recombinant elastase from Pseudomonas aeruginosa strain K was an organic solvent tolerant zinc metalloprotease was successfully crystallized and diffracted up to 1.39 Å. Crystal structure of elastase from strain K showed the typical, canonical alpha-beta hydrolase fold consisting of 10-helices (118 residues), 10- β-strands (38 residues) and 142 residues were formed other secondary structure such as loop and coil to whole structure. The elastase from Pseusomonas aeruginosa strain K possess His-140, His-144 and Glu-164 served as a ligand for zinc ion. The conserved catalytic triad was composed of Glu-141, Tyr-155 and His-223. Three-dimensional structure features such as calcium-binding and presence of disulphide-bridge contribute to the stabilizing the elastase structure. Molecular dynamic (MD) simulation of elastase revealed that, amino acid residues located at the surface area and disulphide bridge in Cys-30 to Cys-58 were responsible for enzyme stability in organic solvents.
  18. Yaacob N, Ahmad Kamarudin NH, Leow ATC, Salleh AB, Rahman RNZRA, Ali MSM
    Comput Struct Biotechnol J, 2019;17:215-228.
    PMID: 30828413 DOI: 10.1016/j.csbj.2019.01.005
    Pseudomonas fluorescens AMS8 lipase lid 1 structure is rigid and holds unclear roles due to the absence of solvent-interactions. Lid 1 region was stabilized by 17 hydrogen bond linkages and displayed lower mean hydrophobicity (0.596) compared to MIS38 lipase. Mutating lid 1 residues, Thr-52 and Gly-55 to aromatic hydrophobic-polar tyrosine would churned more side-chain interactions between lid 1 and water or toluene. This study revealed that T52Y leads G55Y and its recombinant towards achieving higher solvent-accessible surface area and longer half-life at 25 to 37 °C in 0.5% (v/v) toluene. T52Y also exhibited better substrate affinity with long-chain carbon substrate in aqueous media. The affinity for pNP palmitate, laurate and caprylate increased in 0.5% (v/v) toluene in recombinant AMS8, but the affinity in similar substrates was substantially declined in lid 1 mutated lipases. Regarding enzyme efficiency, the recombinant AMS8 lipase displayed highest value of kcat/Km in 0.5% (v/v) toluene, mainly with pNPC. In both hydrolysis reactions with 0% and 0.5% (v/v) toluene, the enzyme efficiency of G55Y was found higher than T52Y for pNPL and pNPP. At 0.5% (v/v) toluene, both mutants showed reductions in activation energy and enthalpy values as temperature increased from 25 to 35 °C, displaying better catalytic functions. Only T52Y exhibited increase in entropy values at 0.5% (v/v) toluene indicating structure stability. As a conclusion, Thr-52 and Gly-55 are important residues for lid 1 stability as their existence helps to retain the geometrical structure of alpha-helix and connecting hinge.
  19. Hamzah HH, Yusof NA, Salleh AB, Bakar FA
    Sensors (Basel), 2011;11(8):7302-13.
    PMID: 22164018 DOI: 10.3390/s110807302
    Fabrication of a test strip for detection of benzoic acid was successfully implemented by immobilizing tyrosinase, phenol and 3-methyl-2-benzothiazolinone hydrazone (MBTH) onto filter paper using polystyrene as polymeric support. The sensing scheme was based on the decreasing intensity of the maroon colour of the test strip when introduced into benzoic acid solution. The test strip was characterized using optical fiber reflectance and has maximum reflectance at 375 nm. It has shown a highly reproducible measurement of benzoic acid with a calculated RSD of 0.47% (n = 10). The detection was optimized at pH 7. A linear response of the biosensor was obtained in 100 to 700 ppm of benzoic acid with a detection limit (LOD) of 73.6 ppm. At 1:1 ratio of benzoic acid to interfering substances, the main interfering substance is boric acid. The kinetic analyses show that, the inhibition of benzoic is competitive inhibitor and the inhibition constant (K(i)) is 52.9 ppm. The activity of immobilized tyrosinase, phenol, and MBTH in the test strip was fairly sustained during 20 days when stored at 3 °C. The developed test strip was used for detection of benzoic acid in food samples and was observed to have comparable results to the HPLC method, hence the developed test strip can be used as an alternative to HPLC in detecting benzoic acid in food products.
  20. Mat Hadzir N, Basri M, Abdul Rahman MB, Salleh AB, Raja Abdul Rahman RN, Basri H
    AAPS PharmSciTech, 2013 Mar;14(1):456-63.
    PMID: 23386307 DOI: 10.1208/s12249-013-9929-1
    Fatty acid esters are long-chain esters, produced from the reaction of fatty acids and alcohols. They possess potential applications in cosmetic and pharmaceutical formulations due to their excellent wetting behaviour at interfaces and a non-greasy feeling when applied on the skin surfaces. This preliminary work was carried out to construct pseudo-ternary phase diagrams for oleyl laurate, oleyl stearate and oleyl oleate with surfactants and piroxicam. Then, the preparation and optimization study via 'One-At-A-Time Approach' were carried out to determine the optimum amount of oil, surfactants and stabilizer using low-energy emulsification method. The results revealed that multi-phase region dominated the three pseudo-ternary phase diagrams. A composition was chosen from each multi-phase region for preparing the nanoemulsions systems containing piroxicam by incorporating a hydrocolloid stabilizer. The results showed that the optimum amount (w/w) of oil for oleyl laurate nanoemulsions was 30 and 20 g (w/w) for oleyl stearate nanoemulsions and oleyl oleate nanoemulsions. For each nanoemulsions system, the amount of mixed surfactants and stabilizer needed for the emulsification to take place was found to be 10 and 0.5 g (w/w), respectively. The emulsification process via high-energy emulsification method successfully produced nano-sized range particles. The nanoemulsions systems passed the centrifugation test and freeze-thaw cycle with no phase failures, and stable for 3 months at various storage temperatures (3°C, 25°C and 45°C). The results proved that the prepared nanoemulsions system cannot be formed spontaneously, and thus, energy input was required to produce nano-sized range particles.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links