Displaying publications 1 - 20 of 137 in total

Abstract:
Sort:
  1. Rahman RN, Salleh AB, Basri M, Wong CF
    Int J Mol Sci, 2011;12(9):5797-814.
    PMID: 22016627 DOI: 10.3390/ijms12095797
    Recombinant elastase strain K overexpressed from E. coli KRX/pCon2(3) was purified to homogeneity by a combination of hydrophobic interaction chromatography and ion exchange chromatography, with a final yield of 48% and a 25-fold increase in specific activity. The purified protein had exhibited a first ever reported homodimer size of 65 kDa by SDS-PAGE and MALDI-TOF, a size which is totally distinct from that of typically reported 33 kDa monomer from P. aeruginosa. The organic solvent stability experiment had demonstrated a stability pattern which completely opposed the rules laid out in previous reports in which activity stability and enhancement were observed in hydrophilic organic solvents such as DMSO, methanol, ethanol and 1-propanol. The high stability and enhancement of the enzyme in hydrophilic solvents were explained from the view of alteration in secondary structures. Elastinolytic activation and stability were observed in 25 and 50% of methanol, respectively, despite slight reduction in α-helical structure caused upon the addition of the solvent. Further characterization experiments had postulated great stability and enhancement of elastase strain K in broad range of temperatures, pHs, metal ions, surfactants, denaturing agents and substrate specificity, indicating its potential application in detergent formulation.
  2. Teo CY, Shave S, Chor AL, Salleh AB, Rahman MB, Walkinshaw MD, et al.
    BMC Bioinformatics, 2012;13 Suppl 17:S4.
    PMID: 23282142 DOI: 10.1186/1471-2105-13-S17-S4
    BACKGROUND: Rheumatoid arthritis (RA) is an autoimmune disease with unknown etiology. Anticitrullinated protein autoantibody has been documented as a highly specific autoantibody associated with RA. Protein arginine deiminase type 4 (PAD4) is the enzyme responsible for catalyzing the conversion of peptidylarginine into peptidylcitrulline. PAD4 is a new therapeutic target for RA treatment. In order to search for inhibitors of PAD4, structure-based virtual screening was performed using LIDAEUS (Ligand discovery at Edinburgh university). Potential inhibitors were screened experimentally by inhibition assays.

    RESULTS: Twenty two of the top-ranked water-soluble compounds were selected for inhibitory screening against PAD4. Three compounds showed significant inhibition of PAD4 and their IC50 values were investigated. The structures of the three compounds show no resemblance with previously discovered PAD4 inhibitors, nor with existing drugs for RA treatment.

    CONCLUSION: Three compounds were discovered as potential inhibitors of PAD4 by virtual screening. The compounds are commercially available and can be used as scaffolds to design more potent inhibitors against PAD4.

  3. Ahmad Nadzirin I, Chor ALT, Salleh AB, Rahman MBA, Tejo BA
    Comput Biol Chem, 2021 Jun;92:107487.
    PMID: 33957477 DOI: 10.1016/j.compbiolchem.2021.107487
    Rheumatoid arthritis (RA) is an inflammatory autoimmune disease affecting about 0.24 % of the world population. Protein arginine deiminase type 4 (PAD4) is believed to be responsible for the occurrence of RA by catalyzing citrullination of proteins. The citrullinated proteins act as autoantigens by stimulating an immune response. Citrullinated α-enolase has been identified as one of the autoantigens for RA. Hence, α-enolase serves as a suitable template for design of potential peptide inhibitors against PAD4. The binding affinity of α-enolase-derived peptides and PAD4 was virtually determined using PatchDock and HADDOCK docking programs. Synthesis of the designed peptides was performed using a solid phase peptide synthesis method. The inhibitory potential of each peptide was determined experimentally by PAD4 inhibition assay and IC50 measurement. PAD4 assay data show that the N-P2 peptide is the most favourable substrate among all peptides. Further modification of N-P2 by changing the Arg residue to canavanine [P2 (Cav)] rendered it an inhibitor against PAD4 by reducing the PAD4 activity to 35 % with IC50 1.39 mM. We conclude that P2 (Cav) is a potential inhibitor against PAD4 and can serve as a starting point for the development of even more potent inhibitors.
  4. Kamarudin NH, Rahman RN, Ali MS, Leow TC, Basri M, Salleh AB
    Mol Biotechnol, 2014 Aug;56(8):747-57.
    PMID: 24771007 DOI: 10.1007/s12033-014-9753-1
    Terminal moieties of most proteins are long known to be disordered and flexible. To unravel the functional role of these regions on the structural stability and biochemical properties of AT2 lipase, four C-terminal end residues, (Ile-Thr-Arg-Lys) which formed a flexible, short tail-like random-coil segment were targeted for mutation. Swapping of the tail-like region had resulted in an improved crystallizability and anti-aggregation property along with a slight shift of the thermostability profile. The lipolytic activity of mutant (M386) retained by 43 % compared to its wild-type with 18 % of the remaining activity at 45 °C. In silico analysis conducted at 25 and 45 °C was found to be in accordance to the experimental findings in which the RMSD values of M386 were more stable throughout the total trajectory in comparison to its wild-type. Terminal moieties were also observed to exhibit large movement and flexibility as denoted by high RMSF values at both dynamics. Variation in organic solvent stability property was detected in M386 where the lipolytic activity was stimulated in the presence of 25 % (v/v) of DMSO, isopropanol, and diethyl ether. This may be worth due to changes in the surface charge residues at the mutation point which probably involve in protein-solvent interaction.
  5. Abdulmalek E, Arumugam M, Mizan HN, Abdul Rahman MB, Basri M, Salleh AB
    ScientificWorldJournal, 2014;2014:756418.
    PMID: 24587751 DOI: 10.1155/2014/756418
    Here, we focused on a simple enzymatic epoxidation of alkenes using lipase and phenylacetic acid. The immobilised Candida antarctica lipase B, Novozym 435 was used to catalyse the formation of peroxy acid instantly from hydrogen peroxide (H2O2) and phenylacetic acid. The peroxy phenylacetic acid generated was then utilised directly for in situ oxidation of alkenes. A variety of alkenes were oxidised with this system, resulting in 75-99% yield of the respective epoxides. On the other hand, the phenylacetic acid was recovered from the reaction media and reused for more epoxidation. Interestingly, the waste phenylacetic acid had the ability to be reused for epoxidation of the 1-nonene to 1-nonene oxide, giving an excellent yield of 90%.
  6. Ali MS, Said ZS, Rahman RN, Chor AL, Basri M, Salleh AB
    Int J Mol Sci, 2013 Aug 28;14(9):17608-17.
    PMID: 23989606 DOI: 10.3390/ijms140917608
    Seeding is a versatile method for optimizing crystal growth. Coupling this technique with capillary counter diffusion crystallization enhances the size and diffraction quality of the crystals. In this article, crystals for organic solvent-tolerant recombinant elastase strain K were successfully produced through microseeding with capillary counter-diffusion crystallization. This technique improved the nucleation success rate with a low protein concentration (3.00 mg/mL). The crystal was grown in 1 M ammonium phosphate monobasic and 0.1 M sodium citrate tribasic dihydrate pH 5.6. The optimized crystal size was 1 × 0.1 × 0.05 mm³. Elastase strain K successfully diffracted up to 1.39 Å at SPring-8, Japan, using synchrotron radiation for preliminary data diffraction analysis. The space group was determined to be monoclinic space group P12(1)1 with unit cell parameters of a = 38.99 Ǻ, b = 90.173 Å and c = 40.60 Å.
  7. Mohamad Ali MS, Mohd Fuzi SF, Ganasen M, Abdul Rahman RN, Basri M, Salleh AB
    Biomed Res Int, 2013;2013:925373.
    PMID: 23738333 DOI: 10.1155/2013/925373
    The psychrophilic enzyme is an interesting subject to study due to its special ability to adapt to extreme temperatures, unlike typical enzymes. Utilizing computer-aided software, the predicted structure and function of the enzyme lipase AMS8 (LipAMS8) (isolated from the psychrophilic Pseudomonas sp., obtained from the Antarctic soil) are studied. The enzyme shows significant sequence similarities with lipases from Pseudomonas sp. MIS38 and Serratia marcescens. These similarities aid in the prediction of the 3D molecular structure of the enzyme. In this study, 12 ns MD simulation is performed at different temperatures for structural flexibility and stability analysis. The results show that the enzyme is most stable at 0°C and 5°C. In terms of stability and flexibility, the catalytic domain (N-terminus) maintained its stability more than the noncatalytic domain (C-terminus), but the non-catalytic domain showed higher flexibility than the catalytic domain. The analysis of the structure and function of LipAMS8 provides new insights into the structural adaptation of this protein at low temperatures. The information obtained could be a useful tool for low temperature industrial applications and molecular engineering purposes, in the near future.
  8. Ruslan R, Abd Rahman RN, Leow TC, Ali MS, Basri M, Salleh AB
    Int J Mol Sci, 2012;13(1):943-60.
    PMID: 22312296 DOI: 10.3390/ijms13010943
    Mutant D311E and K344R were constructed using site-directed mutagenesis to introduce an additional ion pair at the inter-loop and the intra-loop, respectively, to determine the effect of ion pairs on the stability of T1 lipase isolated from Geobacillus zalihae. A series of purification steps was applied, and the pure lipases of T1, D311E and K344R were obtained. The wild-type and mutant lipases were analyzed using circular dichroism. The T(m) for T1 lipase, D311E lipase and K344R lipase were approximately 68.52 °C, 70.59 °C and 68.54 °C, respectively. Mutation at D311 increases the stability of T1 lipase and exhibited higher T(m) as compared to the wild-type and K344R. Based on the above, D311E lipase was chosen for further study. D311E lipase was successfully crystallized using the sitting drop vapor diffusion method. The crystal was diffracted at 2.1 Å using an in-house X-ray beam and belonged to the monoclinic space group C2 with the unit cell parameters a = 117.32 Å, b = 81.16 Å and c = 100.14 Å. Structural analysis showed the existence of an additional ion pair around E311 in the structure of D311E. The additional ion pair in D311E may regulate the stability of this mutant lipase at high temperatures as predicted in silico and spectroscopically.
  9. Abd Rahman RN, Shariff FM, Basri M, Salleh AB
    Int J Mol Sci, 2012;13(7):9207-17.
    PMID: 22942761 DOI: 10.3390/ijms13079207
    The crystallization of proteins makes it possible to determine their structure by X-ray crystallography, and is therefore important for the analysis of protein structure-function relationships. L2 lipase was crystallized by using the J-tube counter diffusion method. A crystallization consisting of 20% PEG 6000, 50 mM MES pH 6.5 and 50 mM NaCl was found to be the best condition to produce crystals with good shape and size (0.5 × 0.1 × 0.2 mm). The protein concentration used for the crystallization was 3 mg/mL. L2 lipase crystal has two crystal forms, Shape 1 and Shape 2. Shape 2 L2 lipase crystal was diffracted at 1.5 Å and the crystal belongs to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 72.0, b = 81.8, c = 83.4 Å, α = β = γ = 90°. There is one molecule per asymmetric unit and the solvent content of the crystals is 56.9%, with a Matthew's coefficient of 2.85 Å Da(-1). The 3D structure of L2 lipase revealed topological organization of α/β-hydrolase fold consisting of 11 β-strands and 13 α-helices. Ser-113, His-358 and Asp-317 were assigned as catalytic triad residues. One Ca(2+) and one Zn(2+) were found in the L2 lipase molecule.
  10. Shariff FM, Rahman RN, Basri M, Salleh AB
    Int J Mol Sci, 2011;12(5):2917-34.
    PMID: 21686158 DOI: 10.3390/ijms12052917
    A thermophilic lipolytic bacterium identified as Bacillus sp. L2 via 16S rDNA was previously isolated from a hot spring in Perak, Malaysia. Bacillus sp. L2 was confirmed to be in Group 5 of bacterial classification, a phylogenically and phenotypically coherent group of thermophilic bacilli displaying very high similarity among their 16S rRNA sequences (98.5-99.2%). Polymerase chain reaction (PCR) cloning of L2 lipase gene was conducted by using five different primers. Sequence analysis of the L2 lipase gene revealed an open reading frame (ORF) of 1251 bp that codes for 417 amino acids. The signal peptides consist of 28 amino acids. The mature protein is made of 388 amino acid residues. Recombinant lipase was successfully overexpressed with a 178-fold increase in activity compared to crude native L2 lipase. The recombinant L2 lipase (43.2 kDa) was purified to homogeneity in a single chromatography step. The purified lipase was found to be reactive at a temperature range of 55-80 °C and at a pH of 6-10. The L2 lipase had a melting temperature (Tm) of 59.04 °C when analyzed by circular dichroism (CD) spectroscopy studies. The optimum activity was found to be at 70 °C and pH 9. Lipase L2 was strongly inhibited by ethylenediaminetetraacetic acid (EDTA) (100%), whereas phenylmethylsulfonyl fluoride (PMSF), pepstatin-A, 2-mercaptoethanol and dithiothreitol (DTT) inhibited the enzyme by over 40%. The CD spectra of secondary structure analysis showed that the L2 lipase structure contained 38.6% α-helices, 2.2% ß-strands, 23.6% turns and 35.6% random conformations.
  11. Ebrahimpour A, Rahman RN, Basri M, Salleh AB
    Bioresour Technol, 2011 Jul;102(13):6972-81.
    PMID: 21531550 DOI: 10.1016/j.biortech.2011.03.083
    The mature ARM lipase gene was cloned into the pTrcHis expression vector and over-expressed in Escherichia coli TOP10 host. The optimum lipase expression was obtained after 18 h post induction incubation with 1.0mM IPTG, where the lipase activity was approximately 1623-fold higher than wild type. A rapid, high efficient, one-step purification of the His-tagged recombinant lipase was achieved using immobilized metal affinity chromatography with 63.2% recovery and purification factor of 14.6. The purified lipase was characterized as a high active (7092 U mg(-1)), serine-hydrolase, thermostable, organic solvent tolerant, 1,3-specific lipase with a molecular weight of about 44 kDa. The enzyme was a monomer with disulfide bond(s) in its structure, but was not a metalloenzyme. ARM lipase was active in a broad range of temperature and pH with optimum lipolytic activity at pH 8.0 and 65°C. The enzyme retained 50% residual activity at pH 6.0-7.0, 50°C for more than 150 min.
  12. Abd Rahman NF, Basri M, Rahman MB, Rahman RN, Salleh AB
    Bioresour Technol, 2011 Feb;102(3):2168-76.
    PMID: 21050749 DOI: 10.1016/j.biortech.2010.10.034
    Engkabang fat esters were produced via alcoholysis reaction between Engkabang fat and oleyl alcohol, catalyzed by Lipozyme RM IM. The reaction was carried out in a 500 ml Stirred tank reactor using heptane and hexane as solvents. Response surface methodology (RSM) based on a four-factor-five-level Central composite design (CCD) was applied to evaluate the effects of synthesis parameters, namely temperature, substrate molar ratio (oleyl alcohol: Engkabang fat), enzyme amount and impeller speed. The optimum yields of 96.2% and 91.4% were obtained for heptane and hexane at the optimum temperature of 53.9°C, impeller speeds of 309.5 and 309.0 rpm, enzyme amounts of 4.82 and 5.65 g and substrate molar ratios of 2.94 and 3.39:1, respectively. The actual yields obtained compared well with the predicted values of 100.0% and 91.5%, respectively. Meanwhile, the properties of the esters show that they are suitable to be used as ingredient for cosmetic applications.
  13. Ashari SE, Mohamad R, Ariff A, Basri M, Salleh AB
    J Oleo Sci, 2009;58(10):503-10.
    PMID: 19745577
    Kojic acid monooleate is a fatty acid derivative of kojic acid which can be widely used as a skin whitening agent in a cosmetic applications. In avoiding any possible harmful effects from chemically synthesized product, the enzymatic synthesis appears to be the best way to satisfy the consumer demand nowadays. The ability of immobilized lipase from Rhizomucor meihei (lipozyme RMIM) to catalyze the direct esterification of kojic acid and oleic acid was investigated. Response Surface Methodology (RSM) and 5-level-4-factor central composite rotatable were employed to evaluate the effects of synthesis parameters such as enzyme amount (0.1-0.4 g), temperature (30-60 degrees C), substrate molar ratio (1-4 mmol, kojic acid:oleic acid) and reaction time (24-48 h) on percentage molar conversion to kojic acid monooleate. Analysis of the product using TLC, GC and FTIR showed the presence of kojic acid monooleate. The optimal conditions for the enzymatic reaction were obtained after analysis with backward elimination using 0.17 g of enzyme and 4 mmol of substrate at 52.50 degrees C for 42 h. Under these conditions the esterification percentage was 37.21%. The results demonstrated that response surface methodology can be applied effectively to optimize the lipase-catalysed synthesis of kojic acid monooleate. The optimum conditions can be used to scale up the process.
  14. Keng PS, Basri M, Ariff AB, Abdul Rahman MB, Abdul Rahman RN, Salleh AB
    Bioresour Technol, 2008 Sep;99(14):6097-104.
    PMID: 18243690 DOI: 10.1016/j.biortech.2007.12.049
    Lipase-catalyzed production of palm esters by alcoholysis of palm oil with oleyl alcohol in n-hexane was performed in 2L stirred-tank reactor (STR). Investigation on the performance of reactor operation was carried out in batch mode STR with single impeller mounted on the centrally located shaft. Rushton turbine (RT) impellers provide the highest reaction yield (95.8%) at lower agitation speed as compared to AL-hydrofoil (AL-H) and 2-bladed elephant ear (EE) impellers. Homogenous enzyme particles suspension was obtained at 250 rpm by using RT impeller. At higher impeller speed, the shear effect on the enzyme particles caused by agitation has decreased the reaction performance. Palm esters reaction mixture in STR follows Newtons' law due to the linear relation between the shear stress (tau) and shear rate (dupsilon/dy). High stability of Lipozyme RM IM was observed as shown by its ability to be repeatedly used to give high percentage yield (79%) of palm esters even after 15 cycles of reaction. The process was successfully scale-up to 75 L STR (50 L working volume) based on a constant impeller tip speed approach, which gave the yield of 97.2% after 5h reaction time.
  15. Leow TC, Rahman RN, Basri M, Salleh AB
    Extremophiles, 2007 May;11(3):527-35.
    PMID: 17426920
    A thermoalkaliphilic T1 lipase gene of Geobacillus sp. strain T1 was overexpressed in pGEX vector in the prokaryotic system. Removal of the signal peptide improved protein solubility and promoted the binding of GST moiety to the glutathione-Sepharose column. High-yield purification of T1 lipase was achieved through two-step affinity chromatography with a final specific activity and yield of 958.2 U/mg and 51.5%, respectively. The molecular mass of T1 lipase was determined to be approximately 43 kDa by gel filtration chromatography. T1 lipase had an optimum temperature and pH of 70 degrees C and pH 9, respectively. It was stable up to 65 degrees C with a half-life of 5 h 15 min at pH 9. It was stable in the presence of 1 mM metal ions Na(+), Ca(2+), Mn(2+), K(+) and Mg(2+ ), but inhibited by Cu(2+), Fe(3+) and Zn(2+). Tween 80 significantly enhanced T1 lipase activity. T1 lipase was active towards medium to long chain triacylglycerols (C10-C14) and various natural oils with a marked preference for trilaurin (C12) (triacylglycerol) and sunflower oil (natural oil). Serine and aspartate residues were involved in catalysis, as its activity was strongly inhibited by 5 mM PMSF and 1 mM Pepstatin. The T(m) for T1 lipase was around 72.2 degrees C, as revealed by denatured protein analysis of CD spectra.
  16. Rahman RN, Geok LP, Basri M, Salleh AB
    Bioresour Technol, 2005 Mar;96(4):429-36.
    PMID: 15491823
    The physical factors affecting the production of an organic solvent-tolerant protease from Pseudomonas aeruginosa strain K was investigated. Growth and protease production were detected from 37 to 45 degrees C with 37 degrees C being the optimum temperature for P. aeruginosa. Maximum enzyme activity was achieved at static conditions with 4.0% (v/v) inoculum. Shifting the culture from stationary to shaking condition decreased the protease production (6.0-10.0% v/v). Extracellular organic solvent-tolerant protease was detected over a broad pH range from 6.0 to 9.0. However, the highest yield of protease was observed at pH 7.0. Neutral media increased the protease production compared to acidic or alkaline media.
  17. Rahman MB, Basri M, Hussein MZ, Rahman RN, Zainol DH, Salleh AB
    Appl Biochem Biotechnol, 2004 8 12;118(1-3):313-20.
    PMID: 15304759
    Synthesis of layered double hydroxides (LDHs) of Zn/Al-NO3- hydrotalcite (HIZAN) and Zn/Al-diocytyl sodium sulfosuccinate (DSS) nanocomposite (NAZAD) with a molar ratio of Zn/Al of 4:1 were carried out by coprecipitation through continuous agitation. Their structures were determined using X-ray diffractometer spectra, which showed that basal spacing for LDH synthesized by both methods was about 8.89 A. An expansion of layered structure of about 27.9 A was observed to accommodate the surfactant anion between the interlayer. This phenomenon showed that the intercalation process took place between the LDH interlayer. Lipase from Candida rugosa was immobilized onto these materials by physical adsorption method. It was found that the protein loading onto NAZAD is higher than HIZAN. The activity of immobilized lipase was investigated through esterification of oleic acid and 1-butanol in hexane. The effects of pore size, surface area, reaction temperature, thermostability of the immobilized lipases, storage stability in organic solvent, and leaching studies were investigated. Stability was found to be the highest in the nanocomposite NAZAD.
  18. Basri M, Samsudin S, Ahmad MB, Razak CN, Salleh AB
    Appl Biochem Biotechnol, 1999 Sep;81(3):205-17.
    PMID: 15304777
    Lipase from Candida rugosa was immobilized by entrapment on poly(N-vinyl- 2-pyrrolidone-co-2-hydroxyethyl methacrylate) (poly[VP-co-HEMA]) hydrogel, and divinylbenzene was the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases was also determined. Increasing the percentage of composition of VP from 0 to 90, which corresponds to the increase in the hydrophilicity of the hydrogels, increased the activity of the immobilized enzyme. Lipase immobilized on VP(%):HEMA(%) 90:10 exhibited the highest activity. Lipase immobilized on VP(%):HEMA(%) 50:50 showed the highest thermal, solvent, storage, and operational stability compared to lipase immobilized on other compositions of hydrogels as well as the native lipase.
  19. Rahman RN, Baharum SN, Basri M, Salleh AB
    Anal Biochem, 2005 Jun 15;341(2):267-74.
    PMID: 15907872
    An organic solvent-tolerant S5 lipase was purified by affinity chromatography and anion exchange chromatography. The molecular mass of the lipase was estimated to be 60 kDa with 387 purification fold. The optimal temperature and pH were 45 degrees C and 9.0, respectively. The purified lipase was stable at 45 degrees C and pH 6-9. It exhibited the highest stability in the presence of various organic solvents such as n-dodecane, 1-pentanol, and toluene. Ca2+ and Mg2+ stimulated lipase activity, whereas EDTA had no effect on its activity. The S5 lipase exhibited the highest activity in the presence of palm oil as a natural oil and triolein as a synthetic triglyceride. It showed random positional specificity on the thin-layer chromatography.
  20. Basri M, Ampon K, Yunus WM, Razak CN, Salleh AB
    J Chem Technol Biotechnol, 1994 Jan;59(1):37-44.
    PMID: 7764496
    A simple and effective method of lipase immobilization is described. Lipase from Candida rugosa was first modified with several hydrophobic modifiers before being adsorbed on to organic polymer beads. The soluble hydrophobic lipase derivatives adsorbed more strongly on to the various polymers as compared with the native lipase. The optimal adsorption temperature of the native and modified lipases on all the polymers was 40 degrees C. The optimal pH of adsorption was between 6 and 7. Lipase immobilized in this manner produced high catalytic recoveries which are affected by the type of modifiers, degree of modification and type of supports used. Monomethoxypolyethylene glycol (1900) activated with p-nitrophenyl chloroformate was found to be the best modifier of the enzyme at 95% modification, for adsorption to the polymers. Increasing the degree of modification of the enzyme increased the activity which was immobilized. Generally, both native and hydrophobic lipase derivatives showed higher specific activities when immobilized on polar polymers compared with non-polar polymers.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links