Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Nguyen Thi le T, Sarmiento ME, Calero R, Camacho F, Reyes F, Hossain MM, et al.
    Tuberculosis (Edinb), 2014 Sep;94(5):475-81.
    PMID: 25034135 DOI: 10.1016/j.tube.2014.06.004
    The most important targets for vaccine development are the proteins that are highly expressed by the microorganisms during infection in-vivo. A number of Mycobacterium tuberculosis (Mtb) proteins are also reported to be expressed in-vivo at different phases of infection. In the present study, we analyzed multiple published databases of gene expression profiles of Mtb in-vivo at different phases of infection in animals and humans and selected 38 proteins that are highly expressed in the active, latent and reactivation phases. We predicted T- and B-cell epitopes from the selected proteins using HLAPred for T-cell epitope prediction and BCEPred combined with ABCPred for B-cell epitope prediction. For each selected proteins, regions containing both T- and B-cell epitopes were identified which might be considered as important candidates for vaccine design against tuberculosis.
  2. Sarmiento ME, Alvarez N, Chin KL, Bigi F, Tirado Y, García MA, et al.
    Tuberculosis (Edinb), 2019 03;115:26-41.
    PMID: 30948174 DOI: 10.1016/j.tube.2019.01.003
    Even after decades searching for a new and more effective vaccine against tuberculosis, the scientific community is still pursuing this goal due to the complexity of its causative agent, Mycobacterium tuberculosis (Mtb). Mtb is a microorganism with a robust variety of survival mechanisms that allow it to remain in the host for years. The structure and nature of the Mtb envelope play a leading role in its resistance and survival. Mtb has a perfect machinery that allows it to modulate the immune response in its favor and to adapt to the host's environmental conditions in order to remain alive until the moment to reactivate its normal growing state. Mtb cell envelope protein, carbohydrate and lipid components have been the subject of interest for developing new vaccines because most of them are responsible for the pathogenicity and virulence of the bacteria. Many indirect evidences, mainly derived from the use of monoclonal antibodies, support the potential protective role of Mtb envelope components. Subunit and DNA vaccines, lipid extracts, liposomes and membrane vesicle formulations are some examples of technologies used, with encouraging results, to evaluate the potential of these antigens in the protective response against Mtb.
  3. Chin KL, Sarmiento ME, Mustapha ZA, Jani J, Jamal NB, Stanis CS, et al.
    Tuberculosis (Edinb), 2020 12;125:102003.
    PMID: 33099253 DOI: 10.1016/j.tube.2020.102003
    Tuberculosis (TB) is the deadliest of infectious diseases. TB diagnosis, based on sputum microscopy, culture, and nucleic acid amplification tests (NAATs) to identify its main causative agent, Mycobacterium tuberculosis (MTB), remains challenging. The current available NAATs, endorsed by World Health Organization (WHO), can differentiate MTB from some MTB complex (MTBC) members. Using bioinformatics, we identified a single nucleotide polymorphism (SNP) in lprM (Rv1970) gene that differentiate MTB from other MTBC members. A forward mismatch amplification mutation assay (MAMA) primer was designed for the targeted mutation and was used in a semi-nested melt-MAMA qPCR (lprM-MAMA). Using the optimized protocol, lprM-MAMA was positive with all MTB reference and clinical strains, and negative with other MTBC members, non-tuberculous mycobacteria (NTM) and other non-mycobacterial (NM) reference strains. The limit of detection (LOD) of lprM-MAMA was 76.29 fg. Xpert® MTB/RIF (Xpert)-positive sputum samples were also positive by lprM-MAMA, except for samples classified as having "very low" bacterial load by Xpert. Xpert-negative sputum samples were also negative by lprM-MAMA. In conclusion, lprM-MAMA demonstrated to be a useful tool for specific MTB diagnosis. Further evaluation with higher number of reference strains, including NTM and NM; and sputum samples are required to determine its potential for clinical application.
  4. Semail N, Suraiya S, Calero R, Mirabal M, Carrillo H, Ezzeddin Kamil MH, et al.
    Tuberculosis (Edinb), 2020 09;124:101965.
    PMID: 32692651 DOI: 10.1016/j.tube.2020.101965
    The purpose of this study was to investigate the composition of throat microbiota in pulmonary tuberculosis patients (PTB) in comparison to healthy tuberculin skin test positive (TSTp) and negative (TSTn) individuals. Throat swabs samples were collected, and the microbiota was characterized. Richer operational taxonomic units (OTUs) were present in PTB group, compared to TSTp and TSTn. Regarding alpha diversity analysis there was a higher community diversity in TSTn compared to TSTp. Beta diversity analysis showed different species composition in TSTp compared to TSTn and PTB. There was higher presence of Firmicutes in PTB and TSTn compared to TSTp group at phylum level. At the genus level, Leuconostoc and Enterococcus were higher in TSTn compared to TSTp and Pediococcus, Chryseobacterium, Bifidobacterium, Butyrivibrio, and Bulleidia were higher in PTB compared to TSTn. Streptococcus was higher in TSTn compared to PTB and Lactobacillus in PTB compared to TSTp. At species level, Streptococcus sobrinus and Bulleidia moorei were higher in PTB compared to TSTn individuals, while Lactobacillus salivarius was higher in PTB compared to TSTp. The differences in the microbiome composition could influence the resistance/susceptibility to Mtb infection.
  5. Chin KL, Sarmiento ME, Norazmi MN, Acosta A
    Tuberculosis (Edinb), 2018 12;113:139-152.
    PMID: 30514496 DOI: 10.1016/j.tube.2018.09.008
    Tuberculosis (TB), caused by Mycobacterium tuberculosis complex (MTBC), is an infectious disease with more than 10.4 million cases and 1.7 million deaths reported worldwide in 2016. The classical methods for detection and differentiation of mycobacteria are: acid-fast microscopy (Ziehl-Neelsen staining), culture, and biochemical methods. However, the microbial phenotypic characterization is time-consuming and laborious. Thus, fast, easy, and sensitive nucleic acid amplification tests (NAATs) have been developed based on specific DNA markers, which are commercially available for TB diagnosis. Despite these developments, the disease remains uncontrollable. The identification and differentiation among MTBC members with the use of NAATs remains challenging due, among other factors, to the high degree of homology within the members and mutations, which hinders the identification of specific target sequences in the genome with potential impact in the diagnosis and treatment outcomes. In silico methods provide predictive identification of many new target genes/fragments/regions that can specifically be used to identify species/strains, which have not been fully explored. This review focused on DNA markers useful for MTBC detection, species identification and antibiotic resistance determination. The use of DNA targets with new technological approaches will help to develop NAATs applicable to all levels of the health system, mainly in low resource areas, which urgently need customized methods to their specific conditions.
  6. Law CT, Camacho F, Garcia-Alles LF, Gilleron M, Sarmiento ME, Norazmi MN, et al.
    Tuberculosis (Edinb), 2019 01;114:9-16.
    PMID: 30711162 DOI: 10.1016/j.tube.2018.11.002
    Tuberculosis (TB) is the main cause of mortality among all infectious diseases. The presentation of lipids by CD1b molecules and the interactions of the CD1b-lipid complexes with the immune receptors are important for the understanding of the immune response to Mycobacterium tuberculosis (Mtb), and to develop TB control methods. A specific domain antibody (dAbk11) recognizing the complex of CD1b with Mtb sulphoglycolipid (Ac2SGL) had been previously developed. In order to study the interactions of dAbk11 with Ac2SGL:CD1b, the conformation of Ac2SGL within CD1b was first modelled. The orientation of dAbκ11 with Ac2SGL:CD1b was then predicted by a docking experiment and the complex was sampled using molecular dynamics simulation. Data showed that dAbκ11 Tyr32 OH plays a decisive role in interacting with Ac2SGL alkyl tail HO17. The binding free energy calculation showed that Ac2SGL establish strong hydrophobic interactions with dAbκ11. The model also predicted a higher affinity for the natural sulfoglycolipid (Ac2SGL) than the synthetic analogue (SGL12), which was supported by the ELISA data. These results shed light on the likely mechanism of interactions between Ac2SGL:CD1b and dAbκ11, thus making possible to envision the strategies for dAbκ11 optimization for possible future applications.
  7. Tirado Y, Puig A, Alvarez N, Borrero R, Aguilar A, Camacho F, et al.
    Tuberculosis (Edinb), 2016 12;101:44-48.
    PMID: 27865396 DOI: 10.1016/j.tube.2016.07.017
    Tuberculosis (TB) remains an important cause of mortality and morbidity. The TB vaccine, BCG, is not fully protective against the adult form of the disease and is unable to prevent its transmission although it is still useful against severe childhood TB. Hence, the search for new vaccines is of great interest. In a previous study, we have shown that proteoliposomes obtained from Mycobacterium smegmatis (PLMs) induced cross reactive humoral and cellular response against Mycobacterium tuberculosis (Mtb) antigens. With the objective to evaluate the protective capability of PLMs, a murine model of progressive pulmonary TB was used. Animals immunized with PLMs with and without alum (PLMs/PLMsAL respectively) showed protection compared to non-immunized animals. Mice immunized with PLMsAL induced similar protection as that of BCG. Animals immunized with BCG, PLMs and PLMsAL showed a significant decrease in tissue damage (percentage of pneumonic area/lung) compared to non-immunized animals, with a more prominent effect in BCG vaccinated mice. The protective effect of the administration of PLMs in mice supports its future evaluation as experimental vaccine candidate against Mtb.
  8. Chin KL, Anibarro L, Sarmiento ME, Acosta A
    Trop Med Infect Dis, 2023 Jan 28;8(2).
    PMID: 36828505 DOI: 10.3390/tropicalmed8020089
    Globally, it is estimated that one-quarter of the world's population is latently infected with Mycobacterium tuberculosis (Mtb), also known as latent tuberculosis infection (LTBI). Recently, this condition has been referred to as tuberculosis infection (TBI), considering the dynamic spectrum of the infection, as 5-10% of the latently infected population will develop active TB (ATB). The chances of TBI development increase due to close contact with index TB patients. The emergence of multidrug-resistant TB (MDR-TB) and the risk of development of latent MDR-TB has further complicated the situation. Detection of TBI is challenging as the infected individual does not present symptoms. Currently, there is no gold standard for TBI diagnosis, and the only screening tests are tuberculin skin test (TST) and interferon gamma release assays (IGRAs). However, these tests have several limitations, including the inability to differentiate between ATB and TBI, false-positive results in BCG-vaccinated individuals (only for TST), false-negative results in children, elderly, and immunocompromised patients, and the inability to predict the progression to ATB, among others. Thus, new host markers and Mtb-specific antigens are being tested to develop new diagnostic methods. Besides screening, TBI therapy is a key intervention for TB control. However, the long-course treatment and associated side effects result in non-adherence to the treatment. Additionally, the latent MDR strains are not susceptible to the current TBI treatments, which add an additional challenge. This review discusses the current situation of TBI, as well as the challenges and efforts involved in its control.
  9. Alvarez N, Infante JF, Borrero R, Mata D, Payan JB, Hossain MM, et al.
    Malays J Med Sci, 2014 May;21(3):31-7.
    PMID: 25246833 MyJurnal
    Humoral and cellular immune responses are associated with protection against extracellular and intracellular pathogens, respectively. In the present study, we evaluated the effect of receiving human secretory immunoglobulin A (hsIgA) on the histopathology of the lungs of mice challenged with virulent Mycobacterium tuberculosis.
  10. Wong WK, Mohd-Nor N, Noordin R, Foo PC, Mohamed Z, Haq JA, et al.
    Parasitol Res, 2019 Sep;118(9):2635-2642.
    PMID: 31363922 DOI: 10.1007/s00436-019-06406-7
    The geographical distribution of tuberculosis (TB) overlaps with various parasitic infections. Uncovering the characteristics of coinfecting parasites that potentially affect the host susceptibility to TB is pertinent as it may provide input to current TB therapeutic and prophylactic measures. The present study was aimed at examining the types of parasitic infections in TB patients and healthy TB contacts (HC) in Orang Asli, Malaysian aborigines, who dwelled in the co-endemic areas. Stool and serum samples were collected from Orang Asli who fulfilled the selection criteria and provided written informed consents. Selected parasitic infections in the two study groups were determined by stool examination and commercial serum antibody immunoassays. The prevalence of parasitic infections in TB and HC participants were 100% (n = 82) and 94.6% (n = 55) respectively. The parasitic infections comprised toxocariasis, trichuriasis, amoebiasis, toxoplasmosis, hookworm infection, ascariasis, strongyloidiasis, and brugian filariasis, in decreasing order of prevalence. Overall, helminth or protozoa infection did not show any significant association with the study groups. However, when the species of the parasite was considered, individuals exposed to trichuriasis and toxoplasmosis showed significant odds reduction (odds ratio (OR) 0.338; 95% confidence interval (CI) 0.166, 0.688) and odds increment (OR 2.193; 95% CI 1.051, 4.576) to have active pulmonary TB, respectively. In conclusion, trichuriasis and toxoplasmosis may have distinct negative and positive associations respectively with the increase of host susceptibility to TB.
  11. Sheffee NS, Rubio-Reyes P, Mirabal M, Calero R, Carrillo-Calvet H, Chen S, et al.
    Nanomedicine, 2021 06;34:102374.
    PMID: 33675981 DOI: 10.1016/j.nano.2021.102374
    Despite recent advances in diagnosis, tuberculosis (TB) remains one of the ten leading causes of death worldwide. Here, we engineered Mycobacterium tuberculosis (Mtb) proteins (ESAT6, CFP10, and MTB7.7) to self-assemble into core-shell nanobeads for enhanced TB diagnosis. Respective purified Mtb antigen-coated polyester beads were characterized and their functionality in TB diagnosis was tested in whole blood cytokine release assays. Sensitivity and specificity were studied in 11 pulmonary TB patients (PTB) and 26 healthy individuals composed of 14 Tuberculin Skin Test negative (TSTn) and 12 TST positive (TSTp). The production of 6 cytokines was determined (IFNγ, IP10, IL2, TNFα, CCL3, and CCL11). To differentiate PTB from healthy individuals (TSTp + TSTn), the best individual cytokines were IL2 and CCL11 (>80% sensitivity and specificity) and the best combination was IP10 + IL2 (>90% sensitivity and specificity). We describe an innovative approach using full-length antigens attached to biopolyester nanobeads enabling sensitive and specific detection of human TB.
  12. Sarmiento ME, Chin KL, Lau NS, Aziah I, Norazmi MN, Acosta A, et al.
    Mitochondrial DNA B Resour, 2021 May 23;6(6):1710-1714.
    PMID: 34104748 DOI: 10.1080/23802359.2021.1930213
    This paper reports on the complete mitochondrial (mt) genome of a horseshoe crab, Tachypleus gigas (T. gigas), in Kuala Kemaman, Terengganu, Malaysia. Whole-genome sequencing of hemocyte DNA was performed with Illumina HiSeq system and the generated reads were de novo assembled with ABySS 2.1.5 and reassembled using mitoZ against Carcinoscorpius rotundicauda and Limulus polyphemus, resulting in a contig of 15 Kb. Phylogenetic analysis of the assembled mt genome suggests that the Tachypleus gigas is closely related to Tachypleus tridentatus than to Carcinoscorpius rotundicauda.
  13. Yu CY, Ang GY, Chua AL, Tan EH, Lee SY, Falero-Diaz G, et al.
    J Microbiol Methods, 2011 Sep;86(3):277-82.
    PMID: 21571011 DOI: 10.1016/j.mimet.2011.04.020
    Cholera is a communicable disease caused by consumption of contaminated food and water. This potentially fatal intestinal infection is characterised by profuse secretion of rice watery stool that can rapidly lead to severe dehydration and shock, thus requiring treatment to be given immediately. Epidemic and pandemic cholera are exclusively associated with Vibrio cholerae serogroups O1 and O139. In light of the need for rapid diagnosis of cholera and to prevent spread of outbreaks, we have developed and evaluated a direct one-step lateral flow biosensor for the simultaneous detection of both V. cholerae O1 and O139 serogroups using alkaline peptone water culture. Serogroup specific monoclonal antibodies raised against lipopolysaccharides (LPS) were used to functionalize the colloidal gold nanoparticles for dual detection in the biosensor. The assay is based on immunochromatographic principle where antigen-antibody reaction would result in the accumulation of gold nanoparticles and thus, the appearance of a red line on the strip. The dry-reagent dipstick format of the biosensor ensure user-friendly application, rapid result that can be read with the naked eyes and cold-chain free storage that is well-suited to be performed at resource-limited settings.
  14. Mohd Amiruddin MN, Ang GY, Yu CY, Falero-Diaz G, Otero O, Reyes F, et al.
    J Microbiol Methods, 2020 09;176:106003.
    PMID: 32702386 DOI: 10.1016/j.mimet.2020.106003
    Mycobacterium tuberculosis (Mtb) is a pathogenic bacterium that causes tuberculosis (TB). This contagious disease remains a severe health problem in the world. The disease is transmitted via inhalation of airborne droplets carrying Mtb from TB patients. Early detection of the disease is vital to prevent transmission of the infection to people in close contact with the patients. To date, there is a need of a simple, rapid, sensitive and specific diagnostic test for TB. Previous studies showed the potential of Mtb 16 kDa antigen (Ag16) in TB diagnosis. In this study, lateral flow immunoassay, also called simple strip immunoassay or immunochromatographic test (ICT) for detection of Ag16 was developed (Mtb-strip) and assessed as a potential rapid TB diagnosis method. A monoclonal antibody against Ag16 was optimized as the capturing and detection antibody on the Mtb-strip. Parameters affecting the performance of the Mtb-strip were also optimized before a complete prototype was developed. Analytical sensitivity showed that Mtb-strip was capable to detect as low as 125 ng of purified Ag16. The analytical sensitivity of Mtb-strip suggests its potential usefulness in different clinical applications.
  15. Tye GJ, Lew MH, Choong YS, Lim TS, Sarmiento ME, Acosta A, et al.
    J Immunol Res, 2015;2015:916780.
    PMID: 26146643 DOI: 10.1155/2015/916780
    Development of vaccines for infectious diseases has come a long way with recent advancements in adjuvant developments and discovery of new antigens that are capable of eliciting strong immunological responses for sterile eradication of disease. Tuberculosis (TB) that kills nearly 2 million of the population every year is also one of the highlights of the recent developments. The availability or not of diagnostic methods for infection has implications for the control of the disease by the health systems but is not related to the immune surveillance, a phenomenon derived from the interaction between the bacteria and their host. Here, we will review the immunology of TB and current vaccine candidates for TB. Current strategies of developing new vaccines against TB will also be reviewed in order to further discuss new insights into immunotherapeutic approaches involving adjuvant and antigens combinations that might be of potential for the control of TB.
  16. Chin KL, Anis FZ, Sarmiento ME, Norazmi MN, Acosta A
    J Immunol Res, 2017;2017:5212910.
    PMID: 28713838 DOI: 10.1155/2017/5212910
    Tuberculosis (TB) is an airborne infection caused by Mycobacterium tuberculosis (Mtb). About one-third of the world's population is latently infected with TB and 5-15% of them will develop active TB in their lifetime. It is estimated that each case of active TB may cause 10-20 new infections. Host immune response to Mtb is influenced by interferon- (IFN-) signaling pathways, particularly by type I and type II interferons (IFNs). The latter that consists of IFN-γ has been associated with the promotion of Th1 immune response which is associated with protection against TB. Although this aspect remains controversial at present due to the lack of established correlates of protection, currently, there are different prophylactic, diagnostic, and immunotherapeutic approaches in which IFNs play an important role. This review summarizes the main aspects related with the biology of IFNs, mainly associated with TB, as well as presents the main applications of these cytokines related to prophylaxis, diagnosis, and immunotherapy of TB.
  17. Jumat MI, Sarmiento ME, Acosta A, Chin KL
    J Appl Microbiol, 2023 Jun 01;134(6).
    PMID: 37197901 DOI: 10.1093/jambio/lxad104
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of mortality due to infectious diseases, only surpassed in 2020 by COVID-19. Despite the development in diagnostics, therapeutics, and evaluation of new vaccines for TB, this infectious disease remains uncontrollable due to the emergence of multidrug-resistant (MDR) and extremely drug-resistant (XDR) TB, among other factors. The development in transcriptomics (RNomics) has enabled the study of gene expression in TB. It is considered that non-coding RNAs (ncRNAs) from host [microRNAs (miRNAs)] and Mtb [small RNAs (sRNAs)] are important elements in TB pathogenesis, immune resistance, and susceptibility. Many studies have shown the importance of host miRNAs in regulating immune response against Mtb via in vitro and in vivo mice models. The bacterial sRNAs play a major role in survival, adaptation, and virulence. Here, we review the characterization and function of host and bacteria ncRNAs in TB and their potential use in clinical applications as diagnostic, prognostic, and therapeutic biomarkers.
  18. Camacho F, Sarmiento ME, Reyes F, Kim L, Huggett J, Lepore M, et al.
    Int J Mycobacteriol, 2016 06;5(2):120-7.
    PMID: 27242221 DOI: 10.1016/j.ijmyco.2015.12.002
    OBJECTIVE/BACKGROUND: The development of new tools capable of targeting Mycobacterium tuberculosis (Mtb)-infected cells have potential applications in diagnosis, treatment, and prevention of tuberculosis. In Mtb-infected cells, CD1b molecules present Mtb lipids to the immune system (Mtb lipid-CD1b complexes). Because of the lack of CD1b polymorphism, specific Mtb lipid-CD1b complexes could be considered as universal Mtb infection markers. 2-Stearoyl-3-hydroxyphthioceranoyl-2'-sulfate-α-α'-d-trehalose (Ac2SGL) is specific for Mtb, and is not present in other mycobacterial species. The CD1b-Ac2SGL complexes are expressed on the surface of human cells infected with Mtb. The aim of this study was to generate ligands capable of binding these CD1b-Ac2SGL complexes.

    METHODS: A synthetic human scFv phage antibody library was used to select phage-displayed antibody fragments that recognized CD1b-Ac2SGL using CD1b-transfected THP-1 cells loaded with Ac2SGL.

    RESULTS: One clone, D11-a single, light-variable domain (kappa) antibody (dAbκ11)-showed high relative binding to the Ac2SGL-CD1b complex.

    CONCLUSION: A ligand recognizing the Ac2SGL-CD1b complex was obtained, which is a potential candidate to be further tested for diagnostic and therapeutic applications.

  19. Amila A, Acosta A, Sarmiento ME, Suraiya S, Zafarina Z, Panneerchelvam S, et al.
    Int J Mycobacteriol, 2015 Dec;4(4):341-6.
    PMID: 26964819 DOI: 10.1016/j.ijmyco.2015.06.009
    MicroRNAs (miRNAs) play an important role in diseases development. Therefore, human miRNAs may be able to inhibit the survival of Mycobacterium tuberculosis (Mtb) in the human host by targeting critical genes of the pathogen. Mutations within miRNAs can alter their target selection, thereby preventing them from inhibiting Mtb genes, thus increasing host susceptibility to the disease.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links