Displaying publications 1 - 20 of 84 in total

Abstract:
Sort:
  1. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  2. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Phys Rev Lett, 2014 Apr 25;112(16):161802.
    PMID: 24815637
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7  fb-1 of proton-proton collision data at s=8  TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.
  3. CMS Collaboration, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014 09 26;74(9):3036.
    PMID: 25814912
    Searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and [Formula: see text], [Formula: see text], and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy [Formula: see text] with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 [Formula: see text]. The observed event rates are in agreement with expectations from the standard model. These results probe charginos and neutralinos with masses up to 720 [Formula: see text], and sleptons up to 260 [Formula: see text], depending on the model details.
  4. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2014 10 15;74(10):3076.
    PMID: 25814871
    Observation of the diphoton decay mode of the recently discovered Higgs boson and measurement of some of its properties are reported. The analysis uses the entire dataset collected by the CMS experiment in proton-proton collisions during the 2011 and 2012 LHC running periods. The data samples correspond to integrated luminosities of 5.1[Formula: see text]at [Formula: see text] and 19.7[Formula: see text]at 8[Formula: see text] . A clear signal is observed in the diphoton channel at a mass close to 125[Formula: see text] with a local significance of [Formula: see text], where a significance of [Formula: see text] is expected for the standard model Higgs boson. The mass is measured to be [Formula: see text] , and the best-fit signal strength relative to the standard model prediction is [Formula: see text][Formula: see text][Formula: see text]. Additional measurements include the signal strength modifiers associated with different production mechanisms, and hypothesis tests between spin-0 and spin-2 models.
  5. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Mar 13;114(10):101801.
    PMID: 25815923
    Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7  fb^{-1} of data from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thereby substantially extending a previous limit published by the CDF Collaboration.
  6. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Oct 09;125(15):152001.
    PMID: 33095627 DOI: 10.1103/PhysRevLett.125.152001
    Using a data sample of proton-proton collisions at sqrt[s]=13  TeV, corresponding to an integrated luminosity of 140  fb^{-1} collected by the CMS experiment in 2016-2018, the B_{s}^{0}→X(3872)ϕ decay is observed. Decays into J/ψπ^{+}π^{-} and K^{+}K^{-} are used to reconstruct, respectively, the X(3872) and ϕ. The ratio of the product of branching fractions B[B_{s}^{0}→X(3872)ϕ]B[X(3872)→J/ψπ^{+}π^{-}] to the product B[B_{s}^{0}→ψ(2S)ϕ]B[ψ(2S)→J/ψπ^{+}π^{-}] is measured to be [2.21±0.29(stat)±0.17(syst)]%. The ratio B[B_{s}^{0}→X(3872)ϕ]/B[B^{0}→X(3872)K^{0}] is found to be consistent with one, while the ratio B[B_{s}^{0}→X(3872)ϕ]/B[B^{+}→X(3872)K^{+}] is two times smaller. This suggests a difference in the production dynamics of the X(3872) in B^{0} and B_{s}^{0} meson decays compared to B^{+}. The reported observation may shed new light on the nature of the X(3872) particle.
  7. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2020;80(8):752.
    PMID: 32852485 DOI: 10.1140/epjc/s10052-020-8168-3
    A data sample of events from proton-proton collisions with at least two jets, and two isolated same-sign or three or more charged leptons, is studied in a search for signatures of new physics phenomena. The data correspond to an integrated luminosity of

    137




    fb


    -
    1




    at a center-of-mass energy of

    13

    TeV

    , collected in 2016-2018 by the CMS experiment at the LHC. The search is performed using a total of 168 signal regions defined using several kinematic variables. The properties of the events are found to be consistent with the expectations from standard model processes. Exclusion limits at 95% confidence level are set on cross sections for the pair production of gluinos or squarks for various decay scenarios in the context of supersymmetric models conserving or violating R parity. The observed lower mass limits are as large as

    2.1

    TeV

    for gluinos and

    0.9

    TeV

    for top and bottom squarks. To facilitate reinterpretations, model-independent limits are provided in a set of simplified signal regions.
  8. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Oct 09;125(15):151802.
    PMID: 33095594 DOI: 10.1103/PhysRevLett.125.151802
    The first observation is reported of the combined production of three massive gauge bosons (VVV with V=W, Z) in proton-proton collisions at a center-of-mass energy of 13 TeV. The analysis is based on a data sample recorded by the CMS experiment at the CERN LHC corresponding to an integrated luminosity of 137  fb^{-1}. The searches for individual WWW, WWZ, WZZ, and ZZZ production are performed in final states with three, four, five, and six leptons (electrons or muons), or with two same-sign leptons plus one or two jets. The observed (expected) significance of the combined VVV production signal is 5.7 (5.9) standard deviations and the corresponding measured cross section relative to the standard model prediction is 1.02_{-0.23}^{+0.26}. The significances of the individual WWW and WWZ production are 3.3 and 3.4 standard deviations, respectively. Measured production cross sections for the individual triboson processes are also reported.
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Jan 11;122(1):011803.
    PMID: 31012697 DOI: 10.1103/PhysRevLett.122.011803
    A search is performed for dark matter particles produced in association with a top quark pair in proton-proton collisions at sqrt[s]=13  TeV. The data correspond to an integrated luminosity of 35.9  fb^{-1} recorded by the CMS detector at the LHC. No significant excess over the standard model expectation is observed. The results are interpreted using simplified models of dark matter production via spin-0 mediators that couple to dark matter particles and to standard model quarks, providing constraints on the coupling strength between the mediator and the quarks. These are the most stringent collider limits to date for scalar mediators, and the most stringent for pseudoscalar mediators at low masses.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Apr 05;122(13):132001.
    PMID: 31012626 DOI: 10.1103/PhysRevLett.122.132001
    Signals consistent with the B_{c}^{+}(2S) and B_{c}^{*+}(2S) states are observed in proton-proton collisions at sqrt[s]=13  TeV, in an event sample corresponding to an integrated luminosity of 143  fb^{-1}, collected by the CMS experiment during the 2015-2018 LHC running periods. These excited b[over ¯]c states are observed in the B_{c}^{+}π^{+}π^{-} invariant mass spectrum, with the ground state B_{c}^{+} reconstructed through its decay to J/ψπ^{+}. The two states are reconstructed as two well-resolved peaks, separated in mass by 29.1±1.5(stat)±0.7(syst)  MeV. The observation of two peaks, rather than one, is established with a significance exceeding five standard deviations. The mass of the B_{c}^{+}(2S) meson is measured to be 6871.0±1.2(stat)±0.8(syst)±0.8(B_{c}^{+})  MeV, where the last term corresponds to the uncertainty in the world-average B_{c}^{+} mass.
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Aug 07;125(6):061801.
    PMID: 32845700 DOI: 10.1103/PhysRevLett.125.061801
    The first observation of the tt[over ¯]H process in a single Higgs boson decay channel with the full reconstruction of the final state (H→γγ) is presented, with a significance of 6.6 standard deviations (σ). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2σ. The measurements are based on a sample of proton-proton collisions at a center-of-mass energy sqrt[s]=13  TeV collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137  fb^{-1}. The cross section times branching fraction of the tt[over ¯]H process is measured to be σ_{tt[over ¯]H}B_{γγ}=1.56_{-0.32}^{+0.34}  fb, which is compatible with the standard model prediction of 1.13_{-0.11}^{+0.08}  fb. The fractional contribution of the CP-odd component is measured to be f_{CP}^{Htt}=0.00±0.33.
  12. Sirunyan AM, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2021 Jun 25;126(25):252003.
    PMID: 34241504 DOI: 10.1103/PhysRevLett.126.252003
    The Ξ_{b}^{-}π^{+}π^{-} invariant mass spectrum is investigated with an event sample of proton-proton collisions at sqrt[s]=13  TeV, collected by the CMS experiment at the LHC in 2016-2018 and corresponding to an integrated luminosity of 140  fb^{-1}. The ground state Ξ_{b}^{-} is reconstructed via its decays to J/ψΞ^{-} and J/ψΛK^{-}. A narrow resonance, labeled Ξ_{b}(6100)^{-}, is observed at a Ξ_{b}^{-}π^{+}π^{-} invariant mass of 6100.3±0.2(stat)±0.1(syst)±0.6(Ξ_{b}^{-})  MeV, where the last uncertainty reflects the precision of the Ξ_{b}^{-} baryon mass. The upper limit on the Ξ_{b}(6100)^{-} natural width is determined to be 1.9  MeV at 95% confidence level. The low Ξ_{b}(6100)^{-} signal yield observed in data does not allow a measurement of the quantum numbers of the new state. However, following analogies with the established excited Ξ_{c} baryon states, the new Ξ_{b}(6100)^{-} resonance and its decay sequence are consistent with the orbitally excited Ξ_{b}^{-} baryon, with spin and parity quantum numbers J^{P}=3/2^{-}.
  13. Sirunyan AM, Tumasyan A, Adam W, Andrejkovic JW, Bergauer T, Chatterjee S, et al.
    Phys Rev Lett, 2021 Jun 25;126(25):252002.
    PMID: 34241533 DOI: 10.1103/PhysRevLett.126.252002
    A fiducial cross section for Wγ production in proton-proton collisions is measured at a center-of-mass energy of 13 TeV in 137  fb^{-1} of data collected using the CMS detector at the LHC. The W→eν and μν decay modes are used in a maximum-likelihood fit to the lepton-photon invariant mass distribution to extract the combined cross section. The measured cross section is compared with theoretical expectations at next-to-leading order in quantum chromodynamics. In addition, 95% confidence level intervals are reported for anomalous triple-gauge couplings within the framework of effective field theory.
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2021 Sep 03;127(10):102002.
    PMID: 34533355 DOI: 10.1103/PhysRevLett.127.102002
    The CMS experiment at the LHC has measured the differential cross sections of Z bosons decaying to pairs of leptons, as functions of transverse momentum and rapidity, in lead-lead collisions at a nucleon-nucleon center-of-mass energy of 5.02  TeV. The measured Z boson elliptic azimuthal anisotropy coefficient is compatible with zero, showing that Z bosons do not experience significant final-state interactions in the medium produced in the collision. Yields of Z bosons are compared to Glauber model predictions and are found to deviate from these expectations in peripheral collisions, indicating the presence of initial collision geometry and centrality selection effects. The precision of the measurement allows, for the first time, for a data-driven determination of the nucleon-nucleon integrated luminosity as a function of lead-lead centrality, thereby eliminating the need for its estimation based on a Glauber model.
  15. Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, Erö J, et al.
    Phys Rev Lett, 2021 Sep 17;127(12):122001.
    PMID: 34597080 DOI: 10.1103/PhysRevLett.127.122001
    The first measurement of the dependence of γγ→μ^{+}μ^{-} production on the multiplicity of neutrons emitted very close to the beam direction in ultraperipheral heavy ion collisions is reported. Data for lead-lead interactions at sqrt[s_{NN}]=5.02  TeV, with an integrated luminosity of approximately 1.5  nb^{-1}, are collected using the CMS detector at the LHC. The azimuthal correlations between the two muons in the invariant mass region 88.3. The back-to-back correlation structure from leading-order photon-photon scattering is found to be significantly broader for events with a larger number of emitted neutrons from each nucleus, corresponding to interactions with a smaller impact parameter. This observation provides a data-driven demonstration that the average transverse momentum of photons emitted from relativistic heavy ions has an impact parameter dependence. These results provide new constraints on models of photon-induced interactions in ultraperipheral collisions. They also provide a baseline to search for possible final-state effects on lepton pairs caused by traversing a quark-gluon plasma produced in hadronic heavy ion collisions.
  16. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Jun 08;120(23):231801.
    PMID: 29932697 DOI: 10.1103/PhysRevLett.120.231801
    The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of sqrt[s]=7, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9  fb^{-1}, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, τ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is 1.26_{-0.26}^{+0.31}.
  17. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Oct 05;121(14):141802.
    PMID: 30339442 DOI: 10.1103/PhysRevLett.121.141802
    This Letter presents the results of a search for pair-produced particles of masses above 100 GeV that each decay into at least four quarks. Using data collected by the CMS experiment at the LHC in 2015-2016, corresponding to an integrated luminosity of 38.2  fb^{-1}, reconstructed particles are clustered into two large jets of similar mass, each consistent with four-parton substructure. No statistically significant excess of data over the background prediction is observed in the distribution of average jet mass. Pair-produced squarks with dominant hadronic R-parity-violating decays into four quarks and with masses between 0.10 and 0.72 TeV are excluded at 95% confidence level. Similarly, pair-produced gluinos that decay into five quarks are also excluded with masses between 0.10 and 1.41 TeV at 95% confidence level. These are the first constraints that have been placed on pair-produced particles with masses below 400 GeV that decay into four or five quarks, bridging a significant gap in the coverage of R-parity-violating supersymmetry parameter space.
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Sep 27;123(13):131802.
    PMID: 31697516 DOI: 10.1103/PhysRevLett.123.131802
    A search for a light charged Higgs boson (H^{+}) decaying to a W boson and a CP-odd Higgs boson (A) in final states with eμμ or μμμ is performed using data from pp collisions at sqrt[s]=13  TeV, recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of 35.9  fb^{-1}. In this search, it is assumed that the H^{+} boson is produced in decays of top quarks, and the A boson decays to two oppositely charged muons. The presence of signals for H^{+} boson masses between 100 and 160 GeV and A boson masses between 15 and 75 GeV is investigated. No evidence for the production of the H^{+} boson is found. Upper limits at 95% confidence level are obtained on the combined branching fraction for the decay chain, t→bH^{+}→bW^{+}A→bW^{+}μ^{+}μ^{-}, of 1.9×10^{-6} to 8.6×10^{-6}, depending on the masses of the H^{+} and A bosons. These are the first limits for these decay modes of the H^{+} and A bosons.
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2020 Jan 31;124(4):041803.
    PMID: 32058742 DOI: 10.1103/PhysRevLett.124.041803
    The first search for supersymmetry in events with an experimental signature of one soft, hadronically decaying τ lepton, one energetic jet from initial-state radiation, and large transverse momentum imbalance is presented. These event signatures are consistent with direct or indirect production of scalar τ leptons (τ[over ˜]) in supersymmetric models that exhibit coannihilation between the τ[over ˜] and the lightest neutralino (χ[over ˜]_{1}^{0}), and that could generate the observed relic density of dark matter. The data correspond to an integrated luminosity of 77.2  fb^{-1} of proton-proton collisions at sqrt[s]=13  TeV collected with the CMS detector at the LHC in 2016 and 2017. The results are interpreted in a supersymmetric scenario with a small mass difference (Δm) between the chargino (χ[over ˜]_{1}^{±}) or next-to-lightest neutralino (χ[over ˜]_{2}^{0}), and the χ[over ˜]_{1}^{0}. The mass of the τ[over ˜] is assumed to be the average of the χ[over ˜]_{1}^{±} and χ[over ˜]_{1}^{0} masses. The data are consistent with standard model background predictions. Upper limits at 95% confidence level are set on the sum of the χ[over ˜]_{1}^{±}, χ[over ˜]_{2}^{0}, and τ[over ˜] production cross sections for Δm(χ[over ˜]_{1}^{±},χ[over ˜]_{1}^{0})=50  GeV, resulting in a lower limit of 290 GeV on the mass of the χ[over ˜]_{1}^{±}, which is the most stringent to date and surpasses the bounds from the LEP experiments.
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 06;123(23):231803.
    PMID: 31868480 DOI: 10.1103/PhysRevLett.123.231803
    A search for narrow low-mass resonances decaying to quark-antiquark pairs is presented. The search is based on proton-proton collision events collected at 13 TeV by the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 35.9  fb^{-1}, recorded in 2016. The search considers the case where the resonance has high transverse momentum due to initial-state radiation of a hard photon. To study this process, the decay products of the resonance are reconstructed as a single large-radius jet with two-pronged substructure. The signal would be identified as a localized excess in the jet invariant mass spectrum. No evidence for such a resonance is observed in the mass range 10 to 125 GeV. Upper limits at the 95% confidence level are set on the coupling strength of resonances decaying to quark pairs. The results obtained with this photon trigger strategy provide the first direct constraints on quark-antiquark resonance masses below 50 GeV obtained at a hadron collider.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links