Displaying publications 1 - 20 of 104 in total

Abstract:
Sort:
  1. Sabet NS, Subramaniam G, Navaratnam P, Sekaran SD
    Diagn Microbiol Infect Dis, 2006 Sep;56(1):13-8.
    PMID: 16650954
    For rapid identification of methicillin-resistant Staphylococcus aureus, molecular methods are generally targeting mecA and species-specific genes. Sa442 DNA fragment is a popular species-specific target. However, recently, there have been few reports on S. aureus isolates that are negative for Sa442 fragment; therefore, use of single gene or DNA-fragment-specific polymerase chain reaction (PCR) for identification of microbial isolate may result in misidentification. This study includes CoA gene in parallel with Sa442 marker for identification of S. aureus. This further improves the specificity of the assay by checking for 2 determinants simultaneously for the identification of S. aureus and can prevent misidentification of S. aureus isolates lacking Sa442 DNA fragment. In this study, the newly developed triplex real-time PCR assay was compared with a quadruplex conventional gel-based PCR assay using the same primer sets in both assays. The dual-labeled TaqMan probes (ProOligo, France) for these primers were specifically designed and used in a real-time PCR assay. The clinical isolates (n = 152) were subjected to both PCR assays. The results obtained from both assays proved that the primer and probe sets were 100% sensitive and 100% specific for identification of S. aureus and detection of methicillin resistance. This triplex real-time PCR assay represents a rapid and powerful method for S. aureus identification and detection of methicillin resistance.
  2. Gebriel AM, Subramaniam G, Sekaran SD
    Trop Biomed, 2006 Dec;23(2):194-207.
    PMID: 17322822 MyJurnal
    The detection of leptospires in patient blood in the first week of the disease using PCR provides an early diagnostic tool. PCR using two sets of primers (G1/G2 and B64-I/B64-II) tested with samples seeded with 23 leptospiral strains from pathogenic and non-pathogenic strains was able to amplify leptospiral DNA from pathogenic strains only. Of the 39 antibody negative samples collected from patients suspected for leptospirosis, only 1 sample (2.6%) was PCR positive. Using LSSP-PCR, the G2 primers allowed the characterization of Leptopira species to 10 different genetic signatures which may have epidemiological value in determining species involved in outbreaks. Leptospiral outer membrane proteins from three strains were purified and reacted against patients sera and gave rise to different profiles for pathogenic and non-pathogenic strains. Lymphocytes of mice injected with OMPs proliferated and released IFN(-3) when stimulated in vitro using Leptospira OMP as antigens. This suggests that an immune response could be established using leptospiral OMPs as a putative vaccine. OMPs were also used in a Dot-ELISA to detect antibodies against Leptospira pathogens in humans.
  3. Sabet NS, Subramaniam G, Navaratnam P, Sekaran SD
    J Microbiol Methods, 2007 Jan;68(1):157-62.
    PMID: 16935372
    In this study we describe a triplex real-time PCR assay that enables the identification of S. aureus and detection of two important antibiotic resistant genes simultaneously using real-time PCR technology in a single assay. In this triplex real-time PCR assay, the mecA (methicillin resistant), femA (species specific S. aureus) and aacA-aphD (aminoglycoside resistant) genes were detected in a single test using dual-labeled Taqman probes. The assay gives simultaneous information for the identification of S. aureus and detection of methicillin and aminoglycoside resistance in staphylococcal isolates. 152 clinical isolates were subjected to this triplex real-time PCR assay. The results of the triplex real-time PCR assay correlated with the results of the phenotypic antibiotic susceptibility testing. The results obtained from triplex real-time PCR assay shows that the primer and probe sets were specific for the identification of S. aureus and were able to detect methicillin- and aminoglycoside-resistant genes. The entire assay can be performed within 3 h which is a very rapid method that can give simultaneous information for the identification of S. aureus and antibiotic resistance pattern of a staphylococcal isolate. The application of this rapid method in microbiology laboratories would be a valuable tool for the rapid identification of the S. aureus isolates and determination of their antibiotic resistance pattern with regards to methicillin and aminoglycosides.
  4. Sabet NS, Subramaniam G, Navaratnam P, Sekaran SD
    Int J Antimicrob Agents, 2007 May;29(5):582-5.
    PMID: 17314034
    A triplex real-time polymerase chain reaction (PCR) assay was used for the simultaneous detection of mecA (methicillin resistance), ermA (erythromycin resistance) and femA (Staphylococcus aureus identification) genes in a single assay. Among 93 clinical S. aureus hospital isolates, there were 48 methicillin-resistant S. aureus (MRSA) and 45 methicillin-sensitive S. aureus (MSSA) isolates. Screening the isolates using the triplex real-time PCR assay, the mecA, ermA and femA genes were detected in all MRSA isolates. The triplex real-time PCR assay was completed within 3h and is a useful genotypic method for detecting the resistance determinants as well as for the identification of S. aureus isolates. These findings will assist the clinical laboratory in identifying these resistance genes and S. aureus rapidly, thus benefiting patient therapy. This study represents a valuable source of information for researchers to study the local antibiotic resistance pattern, which can increase our knowledge of the antibiotic resistance profile, using real-time PCR technology.
  5. Yong YK, Thayan R, Chong HT, Tan CT, Sekaran SD
    Singapore Med J, 2007 Jul;48(7):662-8.
    PMID: 17609830
    Dengue fever and dengue haemorrhagic fever currently rank highly among the newly-emerging infectious diseases, and are considered to be the most important arboviral disease worldwide. The definitive diagnosis is culture analysis, but practical considerations limit its use. Also, the period for viral detection is limited. Within a day or two after fever subsides, rising levels of antibodies interfere with viral cultures. An alternative to this quandary is the use of viral RNA detection assays. In our laboratory, a reverse transcriptase polymerase chain reaction (RT-PCR) assay was developed using a set of degenerate primers.
  6. Wong EH, Subramaniam G, Navaratnam P, Sekaran SD
    Indian J Med Microbiol, 2007 Oct;25(4):391-4.
    PMID: 18087092
    Fluorescent in situ hybridization (FISH) was carried out using two different oligonucleotide probes specific for Pseudomonas spp. and Acinetobacter spp. These probes were tested against different organisms and were found to be highly specific. Sensitivity testing showed that the probes were able to detect as low as 10 3 CFU/mL. In addition, FISH was carried out directly on positive blood culture samples and the detection of microorganisms took less than 2 h. We believe that FISH is a rapid method that can be used as a routine laboratory diagnostic technique for the detection of Acinetobacter spp. and Pseudomonas spp. in clinical samples.
  7. Sekaran SD, Artsob H
    Expert Opin Med Diagn, 2007 Dec;1(4):521-30.
    PMID: 23496358 DOI: 10.1517/17530059.1.4.521
    Flaviviruses constitute a genus of viruses that are important etiologic agents of human disease, causing clinical disease ranging from fever to severe manifestations, such as encephalitis and hemorrhagic fever. Serology is presently the most frequently used means of diagnosing flavivirus infections. However, other diagnostic tests may be employed, such as molecular detection, virus isolation and antigen-capture procedures. The applicability of the latter three diagnostic procedures can be expected to vary depending upon the infecting flavivirus, as some flaviviruses, such as dengue, display high and long-term viremias, whereas other flaviviruses produce no, or barely detectable, viremias. Molecular diagnostic techniques have been successfully applied to the diagnosis of flavivirus infections and have the advantage of rapidity, sensitivity and specific identification of the infecting virus. However, it is important to ensure that the right detection tools are employed (for example, appropriate primers and probes to detect the specific virus) and that the laboratory maintains a high proficiency in their testing procedures. Some of the studies that have been employed in the diagnosis of flavivirus infections are reviewed in this article. It seems that there is the potential to develop testing algorithms that successfully employ molecular diagnostics alone or in conjunction with other laboratory techniques for the diagnosis of acute human flavivirus infections.
  8. Kumari N, Subramaniam G, Navaratnam P, Sekaran SD
    Indian J Med Microbiol, 2008 5 1;26(2):148-50.
    PMID: 18445951
    Genes encoding the quinolones resistance determining regions (QRDRs) in Streptococcus pneumoniae were detected by PCR and the sequence analysis was carried out to identify point mutations within these regions. The study was carried out to observe mutation patterns among S. pneumoniae strains in Malaysia. Antimicrobial susceptibility testing of 100 isolates was determined against various antibiotics, out of which 56 strains were categorised to have reduced susceptibility to ciprofloxacin (>or=2 microg/mL). These strains were subjected to PCR amplification for presence of the gyrA, parC , gyrB and parE genes. Eight representative strains with various susceptibilities to fluoroquinolones were sequenced. Two out of the eight isolates that were sequenced were shown to have a point mutation in the gyrA gene at position Ser81. The detection of mutation at codon Ser81 of the gyrA gene suggested the potential of developing fluoroquinolone resistance among S. pneumoniae isolates in Malaysia. However, further experimental work is required to confirm the involvement of this mutation in the development of fluoroquinolone resistance in Malaysia.
  9. Kumari N, Navaratnam P, Sekaran SD
    J Infect Dev Ctries, 2008 Jun 01;2(3):193-9.
    PMID: 19738350
    BACKGROUND: Streptococcus pneumoniae is a major human pathogen. The emergence of penicillin resistant strains since the 1970s has been life threatening and the evolution of the bacteria have enabled itself to develop resistance to many other antibiotics such as the macrolides and the fluoroquinolones. This study aims to characterize S. pneumoniae isolates for the presence of penicillin and macrolide resistance genes.

    METHODOLOGY: One hundred and twenty clinical isolates of S. pneumoniae were obtained from patients of University Malaya Medical Centre (UMMC). The strains were screened using a multiplex real-time PCR method for the presence of alterations in the genes encoding the penicillin binding proteins: pbp2b, macrolide resistance determinant ermB and the pneumolysin gene, ply. Dual-labelled Taqman probes were used in the real-time detection method comprising three different genes labeled with individual fluorophores at different wavelengths. One hundred and twenty isolates from bacterial cultures and isolates directly from blood cultures samples were analyzed using this assay.

    RESULTS: A multiplex PCR comprising the antibiotic resistance genes, ermB and and pneumolysin gene (ply), a S. pneumoniae species specific gene, was developed to characterize strains of S. pneumoniae. Out of the 120 pneumococcal isolates, 58 strains were categorized as Penicillin Sensitive Streptococcus pneumoniae (PSSP), 36 as Penicillin Intermediate Streptococcus pneumoniae (PISP) and 26 as Penicillin Resistant Streptococcus pneumoniae (PRSP). All the 58 PSSP strains harboured the pbp2b gene while the 36 PISP and 26 PRSP strains did not harbour this gene, thus suggesting reduced susceptibility to penicillin. Resistance to erythromycin was observed in 47 of the pneumococcal strains while 15 and 58 were intermediate and sensitive to this drug respectively. Susceptibility testing to other beta-lactams (CTX and CRO) also showed reduced susceptibility among the strains within the PISP and PRSP groups but most PSSP strains were sensitive to other antibiotics.

    CONCLUSION: The characterization of pneumococcal isolates for penicillin and erythromycin resistance genes could be useful to predict the susceptibility of these isolates to other antibiotics, especially beta-lactams drugs. We have developed an assay with a shorter turnaround time to determine the species and resistance profile of Streptococcus pneumoniae with respect to penicillin and macrolides using the Real Time PCR format with fluorescent labeled Taqman probes, hence facilitating earlier and more definitive antimicrobial therapy which may lead to better patient management.

  10. Desa MN, Sekaran SD, Vadivelu J, Parasakthi N
    Epidemiol Infect, 2008 Jul;136(7):940-2.
    PMID: 17678563
    Choline-binding proteins (CBP) have been associated with the pathogenesis of Streptococcus pneumoniae. We screened, using PCR, for the presence of genes (cbpA, D, E, G) encoding these proteins in 34 isolates of pneumococci of known serotypes and penicillin susceptibility from invasive and non-invasive disease. All isolates harboured cbpD and cbpE whereas cbpA and cbpG were found in 47% and 59% respectively; the latter were more frequent in vaccine-associated types and together accounted for 77% of these isolates. No association was observed with penicillin susceptibility but 85% of non-invasive isolates were positive for these genes.
  11. Hwa WE, Subramaniam G, Navaratnam P, Sekaran SD
    J Microbiol Immunol Infect, 2009 Feb;42(1):54-62.
    PMID: 19424559
    To detect and characterize class 1 integrons among carbapenem-resistant strains of Acinetobacter spp. at University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia.
  12. Osman O, Fong MY, Sekaran SD
    J Gen Virol, 2009 Mar;90(Pt 3):678-686.
    PMID: 19218214 DOI: 10.1099/vir.0.005306-0
    The full-length genomes of two DENV-1 viruses isolated during the 2005-2006 dengue incidents in Brunei were sequenced. Twenty five primer sets were designed to amplify contiguous overlapping fragments of approximately 500-600 base pairs spanning the entire sequence of the genome. The amplified PCR products were sent to a commercial laboratory for sequencing and the nucleotides and the deduced amino acids were determined. Sequence analysis of the envelope gene at the nucleotide and amino acid levels between the two isolates showed 92 and 96 % identity, respectively. Comparison of the envelope gene sequences with 68 other DENV-1 viruses of known genotypes placed the two isolates into two different genotypic groups. Isolate DS06/210505 belongs to genotype V together with some of the recent isolates from India (2003) and older isolates from Singapore (1990) and Burma (1976), while isolate DS212/110306 was clustered in genotype IV with the prototype Nauru strain (1974) and with some of the recent isolates from Indonesia (2004) and the Philippines (2002, 2001). In the full-length genome analysis at the nucleotide level, isolate DS06/210505 showed 94 % identity to the French Guyana strain (1989) in genotype V while isolate DS212/110306 had 96 % identity to the Nauru Island strain (1974) in genotype IV. This work constitutes the first complete genetic characterization of not only Brunei DENV-1 virus isolates, but also the first strain from Borneo Island. This study was the first to report the isolation of dengue virus in the country.
  13. Wong EW, Yusof MY, Mansor MB, Anbazhagan D, Ong SY, Sekaran SD
    Singapore Med J, 2009 Aug;50(8):822-6.
    PMID: 19710984
    The AdeABC pump of Acinetobacter spp. confers resistance to various antibiotic classes. This pump is composed of the AdeA, AdeB, and AdeC proteins where AdeB is a member of the resistance-nodulation-division efflux pump superfamily. The adeA, adeB, and adeC genes are contiguous and adjacent to adeS and adeR, which are transcribed in the opposite direction and which specify proteins homologous to sensors and regulators of two-component systems, respectively. In this study, an attempt is made to elucidate the role of the AdeABC efflux pump in carbapenem resistance in Acinetobacter spp.
  14. Wang SM, Sekaran SD
    J Clin Microbiol, 2010 Aug;48(8):2793-7.
    PMID: 20573879 DOI: 10.1128/JCM.02142-09
    Early definitive diagnosis of dengue virus infection may help in the timely management of dengue virus infection. We evaluated the Standard Diagnostics (SD, South Korea) dengue virus nonstructural protein NS1 antigen enzyme-linked immunosorbent assay (SD dengue NS1 Ag ELISA) for the detection of dengue virus NS1 antigen in patients' sera, using a total of 399 serum samples in a comparison with real-time reverse transcription (RT)-PCR, an in-house IgM capture (MAC)-ELISA, and a hemagglutination inhibition (HI) assay. Of the 320 dengue sera, 205 (64%) tested positive for NS1 antigen compared to 300 (93.75%) by either MAC-ELISA or RT-PCR, 161 (50.31%) by RT-PCR, and 226 (70.36%) by MAC-ELISA only. The assay was able to detect NS1 antigen in convalescent-phase sera until day 14 of infection. The NS1 detection rate is inversely proportional while the IgM detection rate is directly proportional to the presence of IgG antibodies. The overall sensitivity and specificity of the SD dengue NS1 Ag ELISA in the detection of "confirmed dengue virus" sera are 76.76% and 98.31%, respectively. This suggests that the SD kit is highly specific and sensitive for the detection of NS1 antigen. However, caution is needed when the kit is used as a single assay, as detection in samples that contained the virus was only about 81.97%. Combining this assay with an IgM and/or IgG assay will increase the sensitivity of detection, especially in areas with a higher prevalence of secondary dengue virus infections.
  15. Wang SM, Sekaran SD
    Am J Trop Med Hyg, 2010 Sep;83(3):690-5.
    PMID: 20810840 DOI: 10.4269/ajtmh.2010.10-0117
    A commercial Dengue Duo rapid test kit was evaluated for early dengue diagnosis by detection of dengue virus NS1 antigen and immunoglobulin M (IgM)/IgG antibodies. A total of 420 patient serum samples were subjected to real-time reverse transcription-polymerase chain reaction (RT-PCR), in-house IgM capture enzyme-linked immunosorbent assay (ELISA), hemagglutination inhibition assay, and the SD Dengue Duo rapid test. Of the 320 dengue acute and convalescent sera, dengue infection was detected by either serology or RT-PCR in 300 samples (93.75%), as compared with 289 samples (90.31%) in the combined SD Duo NS1/IgM. The NS1 detection rate is inversely proportional, whereas the IgM detection rate is directly proportional to the presence of IgG antibodies. The sensitivity and specificity in diagnosing acute dengue infection in the SD Duo NS1/IgM were 88.65% and 98.75%, respectively. The assay is sensitive and highly specific. Detection of both NS1 and IgM by SD Duo gave comparable detection rate by either serology or RT-PCR.
  16. Tan HY, Nagoor NH, Sekaran SD
    Trop Biomed, 2010 Dec;27(3):430-41.
    PMID: 21399583 MyJurnal
    The major outer membrane protein (OmpH) of 4 local Malaysian strains of Pasteurella multocida serotype B:2 were characterized in comparison to ATCC strains. Three major peptide bands of MW 26, 32 and 37 kDa were characterized using SDSPAGE. Two of these fragments, the 32 kDa and 37 kDa were observed to be more reactive with a mouse polyclonal antiserum in all of the local isolates as well as the ATCC strains in a Western blot. However, the 32 kDa fragment was found to cross react with other Gram negative bacteria. Therefore, the 37 kDa OmpH was selected as vaccine candidate. The 37 kDa ompH gene of the isolated strain 1710 was cloned into an Escherichia coli expression vector to produce large amounts of recombinant OmpH (rOmpH). The 37 kDa ompH gene of strain 1710 was sequenced. In comparison to a reference strain X-73 of the ompH of P. multocida, 39bp was found deleted in the 37 kDa ompH gene. However, the deletion did not shift the reading frame or change the amino acid sequence. The rOmpH was used in a mice protection study. Mice immunized and challenged intraperitoneally resulted 100% protection against P. multocida whilst mice immunized subcutaneously and challenged intraperitoneally only resulted 80% protection. The rOmpH is therefore a suitable candidate for vaccination field studies. The same rOmpH was also used to develop a potential diagnostic kit in an ELISA format.
  17. Appanna R, Ponnampalavanar S, Lum Chai See L, Sekaran SD
    PLoS One, 2010;5(9).
    PMID: 20927388 DOI: 10.1371/journal.pone.0013029
    The human leukocyte antigen alleles have been implicated as probable genetic markers in predicting the susceptibility and/or protection to severe manifestations of dengue virus (DENV) infection. In this present study, we aimed to investigate for the first time, the genotype variants of HLA Class 1(-A and -B) of DENV infected patients against healthy individuals in Malaysia.
  18. Tang YQ, Jaganath IB, Sekaran SD
    PLoS One, 2010;5(9):e12644.
    PMID: 20838625 DOI: 10.1371/journal.pone.0012644
    Phyllanthus is a traditional medicinal plant that has been used in the treatment of many diseases including hepatitis and diabetes. The main aim of the present work was to investigate the potential cytotoxic effects of aqueous and methanolic extracts of four Phyllanthus species (P.amarus, P.niruri, P.urinaria and P.watsonii) against skin melanoma and prostate cancer cells.
  19. Lee ML, Tan NH, Fung SY, Sekaran SD
    PMID: 21059402 DOI: 10.1016/j.cbpc.2010.11.001
    The major l-amino acid oxidase (LAAO, EC 1.4.3.2) of king cobra (Ophiophagus hannah) venom is known to be an unusual form of snake venom LAAO as it possesses unique structural features and unusual thermal stability. The antibacterial effects of king cobra venom LAAO were tested against several strains of clinical isolates including Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli using broth microdilution assay. For comparison, the antibacterial effects of several antibiotics (cefotaxime, kanamycin, tetracycline, vancomycin and penicillin) were also examined using the same conditions. King cobra venom LAAO was very effective in inhibiting the two Gram-positive bacteria (S. aureus and S. epidermidis) tested, with minimum inhibitory concentration (MIC) of 0.78μg/mL (0.006μM) and 1.56μg/mL (0.012μM) against S. aureus and S. epidermidis, respectively. The MICs are comparable to the MICs of the antibiotics tested, on a weight basis. However, the LAAO was only moderately effective against three Gram-negative bacteria tested (P. aeruginosa, K. pneumoniae and E. coli), with MIC ranges from 25 to 50μg/mL (0.2-0.4μM). Catalase at the concentration of 1mg/mL abolished the antibacterial effect of LAAO, indicating that the antibacterial effect of the enzyme involves generation of hydrogen peroxide. Binding studies indicated that king cobra venom LAAO binds strongly to the Gram-positive S. aureus and S. epidermidis, but less strongly to the Gram-negative E. coli and P. aeruginosa, indicating that specific binding to bacteria is important for the potent antibacterial activity of the enzyme.
  20. Anbazhagan D, Mui WS, Mansor M, Yan GO, Yusof MY, Sekaran SD
    Braz J Microbiol, 2011 Apr;42(2):448-58.
    PMID: 24031653 DOI: 10.1590/S1517-83822011000200006
    Nosocomial infections are major clinical threats to hospitalised patients and represent an important source of morbidity and mortality. It is necessary to develop rapid detection assays of nosocomial pathogens for better prognosis and initiation of antimicrobial therapy in patients. In this study, we present the development of molecular methods for the detection of six common nosocomial pathogens including Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. Conventional multiplex PCR and SYBR Green based real time PCR assays were performed using genus and species specific primers. Blind testing with 300 clinical samples was also carried out. The two assays were found to be sensitive and specific. Eubacterial PCR assay exhibited positive results for 46 clinical isolates from which 43 samples were detected by real time PCR assay. The sensitivity of the assay is about 93.7% in blind test isolates. The PCR results were reconfirmed using the conventional culture method. This assay has the potential to be a rapid, accurate and highly sensitive molecular diagnostic tool for simultaneous detection of Escherichia coli, Staphylococcus aureus, Streptococcus pneumoniae, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. This assay has the potential to detect nosocomial pathogens within 5 to 6 hours, helping to initiate infection control measures and appropriate treatment in paediatric and elderly (old aged) patients, pre-and post surgery patients and organ transplant patients and thus reduces their hospitalization duration.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links