Displaying publications 1 - 20 of 53 in total

Abstract:
Sort:
  1. Mansor M, Al-Obaidi JR, Ismail IH, Abidin MAZ, Zakaria AF, Lau BYC, et al.
    Mol Immunol, 2023 Mar;155:44-57.
    PMID: 36696839 DOI: 10.1016/j.molimm.2022.12.016
    INTRODUCTION: Goat's milk thought to be a good substitute for cow's milk protein allergic (CMPA) individuals. However, there is growing evidence that their proteins have cross-reactivities with cow's milk allergens. This study aimed to profile and compare milk proteins from different goat breeds that have cross-reactivity to cow's milk allergens.

    METHODOLOGY: Proteomics was used to compare protein extracts of skim milk from Saanen, Jamnapari, and Toggenburg. Cow's milk was used as a control. IgE-immunoblotting and mass spectrometry were used to compare and identify proteins that cross-reacted with serum IgE from CMPA patients (n = 10).

    RESULTS: The analysis of IgE-reactive proteins revealed that the protein spots identified with high confidence were proteins homologous to common cow's milk allergens such as α-S1-casein (αS1-CN), β-casein (β-CN), κ-casein (κ-CN), and beta-lactoglobulin (β-LG). Jamnapari's milk proteins were found to cross-react with four major milk allergens: α-S1-CN, β-CN, κ-CN, and β-LG. Saanen goat's milk proteins, on the other hand, cross-reacted with two major milk allergens, α-S1-CN and β-LG, whereas Toggenburg goat's milk proteins only react with one of the major milk allergens, κ-CN.

    CONCLUSION: These findings may help in the development of hypoallergenic goat milk through cross-breeding strategies of goat breeds with lower allergenic milk protein contents.

  2. Zulkafflee NS, Mohd Redzuan NA, Hanafi Z, Selamat J, Ismail MR, Praveena SM, et al.
    PMID: 31795132 DOI: 10.3390/ijerph16234769
    Rice ingestion is one of the major pathways for heavy metal bioaccumulation in human. This study aimed to measure the heavy metal content of paddy soils and its bioavailability in paddy grain in order to assess the health risk. In total, 10 rice samples (50 g each) of paddy plants were harvested from the Selangor and Terengganu areas of Malaysia to assess the bioavailability of heavy metal (As, Cd, Cu, Cr, and Pb) using the in vitro digestion model of Rijksinstituut voor Volksgezondheid en Milieu. The bioavailability of heavy metal concentrations in rice samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings showed the bioavailability of heavy metal concentrations was decreased in the order Cr > Cu > Pb > As > Cd. Chromium was found to be the most abundant bioavailable heavy metal in cooked rice, which was the result of its high content in paddy soil. Hazard Quotient values for the bioavailability of the heavy metal studied were less than one indicating no non-carcinogenic health risks for adults and children. Meanwhile, the total Lifetime Cancer Risk exceeded the acceptable value showing a potential of carcinogenic health risk for both adults and children. The application of in vitro digestion model in assessing bioavailability of heavy metal produces a more realistic estimation of human health risks exposure. However, a regular monitoring of pollution in Selangor and Terengganu areas is crucial since the exposure of heavy metals through rice consumption poses the potential non-carcinogenic and carcinogenic health risk to the local residents.
  3. Yazid SNE, Tajudin NI, Razman NAA, Selamat J, Ismail SI, Sanny M, et al.
    Mycotoxin Res, 2023 Aug;39(3):177-192.
    PMID: 37219742 DOI: 10.1007/s12550-023-00484-4
    The present work investigated the potential of fungal species from grain maize farms in Malaysia as antagonists against the indigenous mycotoxigenic fungal species and their subsequent mycotoxin production. Dual-culture assay was conducted on grain maize agar (GMA) with 12 strains of potential fungal antagonists namely Bjerkandra adusta, Penicillium janthinellum, Schizophyllum commune, Trametes cubensis, Trichoderma asperelloides, Trichoderma asperellum, Trichoderma harzianum, and Trichoderma yunnanense against seven mycotoxigenic strains namely Aspergillus flavus, Aspergillus niger, Fusarium verticillioides, and Fusarium proliferatum producing aflatoxins, ochratoxin A, and fumonisins, respectively. Based on fungal growth inhibition, Trichoderma spp. showed the highest inhibitory activity (73-100% PIRG, Percentage Inhibition of Radial Growth; 28/0 ID, Index of Dominance) against the tested mycotoxigenic strains. Besides, B. adusta and Tra. cubensis showed inhibitory activity against some of the tested mycotoxigenic strains. All fungal antagonists showed varying degrees of mycotoxin reduction. Aflatoxin B1 produced by A. flavus was mainly reduced by P. janthinellum, Tra. cubensis, and B. adusta to 0 ng/g. Ochratoxin A produced by A. niger was mainly reduced by Tri. harzianum and Tri. asperellum to 0 ng/g. Fumonisin B1 and FB2 produced by F. verticillioides was mainly reduced by Tri. harzianum, Tri. asperelloides, and Tri. asperellum to 59.4 and 0 µg/g, respectively. Fumonisin B1 and FB2 produced by F. proliferatum were mainly reduced by Tri. asperelloides and Tri. harzianum to 244.2 and 0 µg/g, respectively. This is the first study that reports on the efficacy of Tri. asperelloides against FB1, FB2, and OTA, P. janthinellum against AFB1, and Tra. cubensis against AFB1.
  4. Zakaria Z, Zulkafflee NS, Mohd Redzuan NA, Selamat J, Ismail MR, Praveena SM, et al.
    Plants (Basel), 2021 May 26;10(6).
    PMID: 34073642 DOI: 10.3390/plants10061070
    Rice is a worldwide staple food and heavy metal contamination is often reported in rice production. Heavy metal can originate from natural sources or be present through anthropogenic contamination. Therefore, this review summarizes the current status of heavy metal contamination in paddy soil and plants, highlighting the mechanism of uptake, bioaccumulation, and health risk assessment. A scoping search employing Google Scholar, Science Direct, Research Gate, Scopus, and Wiley Online was carried out to build up the review using the following keywords: heavy metals, absorption, translocation, accumulation, uptake, biotransformation, rice, and human risk with no restrictions being placed on the year of study. Cadmium (Cd), arsenic (As), and lead (Pb) have been identified as the most prevalent metals in rice cultivation. Mining and irrigation activities are primary sources, but chemical fertilizer and pesticide usage also contribute to heavy metal contamination of paddy soil worldwide. Further to their adverse effect on the paddy ecosystem by reducing the soil fertility and grain yield, heavy metal contamination represents a risk to human health. An in-depth discussion is further offered on health risk assessments by quantitative measurement to identify potential risk towards heavy metal exposure via rice consumption, which consisted of in vitro digestion models through a vital ingestion portion of rice.
  5. Sarker MZ, Selamat J, Habib AS, Ferdosh S, Akanda MJ, Jaffri JM
    Int J Mol Sci, 2012;13(9):11312-22.
    PMID: 23109854 DOI: 10.3390/ijms130911312
    Fish oil was extracted from the viscera of African Catfish using supercritical carbon dioxide (SC-CO(2)). A Central Composite Design of Response Surface methodology (RSM) was employed to optimize the SC-CO(2) extraction parameters. The oil yield (Y) as response variable was executed against the four independent variables, namely pressure, temperature, flow rate and soaking time. The oil yield varied with the linear, quadratic and interaction of pressure, temperature, flow rate and soaking time. Optimum points were observed within the variables of temperature from 35 °C to 80 °C, pressure from 10 MPa to 40 MPa, flow rate from 1 mL/min to 3 mL/min and soaking time from 1 h to 4 h. However, the extraction parameters were found to be optimized at temperature 57.5 °C, pressure 40 MPa, flow rate 2.0 mL/min and soaking time 2.5 h. At this optimized condition, the highest oil yields were found to be 67.0% (g oil/100 g sample on dry basis) in the viscera of catfish which was reasonable to the yields of 78.0% extracted using the Soxhlet method.
  6. Murugaiah C, Noor ZM, Mastakim M, Bilung LM, Selamat J, Radu S
    Meat Sci, 2009 Sep;83(1):57-61.
    PMID: 20416658 DOI: 10.1016/j.meatsci.2009.03.015
    A method utilizing PCR-restriction fragment length polymorphism (RFLP) in the mitochondrial genes was developed for beef (Bos taurus), pork (Sus scrofa), buffalo (Bubalus bubali), quail (Coturnix coturnix), chicken (Gallus gallus), goat (Capra hircus), rabbit (Oryctolagus cuniculus) species identification and Halal authentication. PCR products of 359-bp were successfully obtained from the cyt b gene of these six meats. AluI, BsaJI, RsaI, MseI, and BstUI enzymes were identified as potential restriction endonucleases to differentiate the meats. The genetic differences within the cyt b gene among the meat were successfully confirmed by PCR-RFLP. A reliable typing scheme of species which revealed the genetic differences among the species was developed.
  7. Peter Mshelia L, Selamat J, Iskandar Putra Samsudin N, Rafii MY, Abdul Mutalib NA, Nordin N, et al.
    Toxins (Basel), 2020 07 28;12(8).
    PMID: 32731333 DOI: 10.3390/toxins12080478
    Climate change is primarily manifested by elevated temperature and carbon dioxide (CO2) levels and is projected to provide suitable cultivation grounds for pests and pathogens in the otherwise unsuitable regions. The impacts of climate change have been predicted in many parts of the world, which could threaten global food safety and food security. The aim of the present work was therefore to examine the interacting effects of water activity (aw) (0.92, 0.95, 0.98 aw), CO2 (400, 800, 1200 ppm) and temperature (30, 35 °C and 30, 33 °C for Fusarium verticillioides and F. graminearum, respectively) on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum isolated from maize. To determine fungal growth, the colony diameters were measured on days 1, 3, 5, and 7. The mycotoxins produced were quantified using a quadrupole-time-of-flight mass spectrometer (QTOF-MS) combined with ultra-high-performance liquid chromatography (UHPLC) system. For F. verticillioides, the optimum conditions for growth of fumonisin B1 (FB1), and fumonisin B2 (FB2) were 30 °C + 0.98 aw + 400 ppm CO2. These conditions were also optimum for F. graminearum growth, and zearalenone (ZEA) and deoxynivalenol (DON) production. Since 30 °C and 400 ppm CO2 were the baseline treatments, it was hence concluded that the elevated temperature and CO2 levels tested did not seem to significantly impact fungal growth and mycotoxin production of acclimatised Fusarium isolates. To the best of our knowledge thus far, the present work described for the first time the effects of simulated climate change conditions on fungal growth and mycotoxin production of acclimatised isolates of F. verticillioides and F. graminearum.
  8. Shamsudin S, Selamat J, Sanny M, Jambari NN, Sukor R, Praveena SM, et al.
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858787 DOI: 10.3390/molecules25173874
    Heterocyclic amines (HCAs) are carcinogenic food toxicants formed in cooked meats, which may increase the risk of cancer development in humans. Therefore, in this study, the effect of stingless bee honey from different botanical origins on the formation of HCAs in grilled beef satay was investigated. HCAs concentration in grilled beef satay was determined by using high performance liquid chromatography (HPLC). In total, six of the most toxigenic HCAs representing aminoimidazo-azaarenes (AIAs) (MeIQx, 4,8-DiMeIQx, and PhIP) and amino carbolines (norharman, harman, and AαC) groups were identified in all the beef samples investigated. A significant reduction in HCAs was observed in grilled beef marinated in honey as compared to beef samples marinated in table sugar (control), in which the reduction of 95.14%, 88.45%, 85.65%, and 57.22% was observed in gelam, starfruit, acacia, and Apis honey marinades, respectively. According to the partial least squares regression (PLS) model, the inhibition of HCAs in grilled beef was shown to be significantly correlated to the antioxidant activity (IC50) of the honey samples. Therefore, the results of this study revealed that the addition of stingless bee honey could play an important role in reducing HCAs in grilled beef.
  9. Azman NI, Wan-Mustapha WN, Goh YM, Hassim HA, Selamat J, Samsudin NIP
    Int J Food Microbiol, 2021 Jun 02;347:109205.
    PMID: 33901942 DOI: 10.1016/j.ijfoodmicro.2021.109205
    The present work aimed to determine the prevalence of aflatoxigenic Aspergillus section Flavi on different types of dairy goat's feed samples obtained from four dairy goat's farms around the central region of Peninsular Malaysia, and to examine the effects of climatic conditions (temperature, relative humidity) of the dairy goat's farms, and their feeding and storage practices on the fungal prevalence of different types of dairy goat's feed. A total of 60 goat's feed samples were obtained, and their proximate composition and water activity were determined, following which they were cultivated on DRBC and AFPA for total fungal load and Aspergillus section Flavi load determination, respectively. Fungal isolates were identified morphologically, and toxigenicity potentials of Aspergillus section Flavi isolates were determined using CCA. The temperature and relative humidity data of all farms were obtained from the Malaysian Meteorological Department. The total fungal loads (on DRBC) of the goat's feed samples were log 0.767 to 7.071 CFU/g which included the common feed contaminants such as Aspergillus, Fusarium, and Penicillium. The Aspergillus section Flavi loads (on AFPA) were log 0.667 to 3.206 CFU/g. Farm A yielded the highest number of Aspergillus section Flavi isolates as well as the highest number of aflatoxigenic isolates. It was found that climatic conditions and different practices between farms positively influenced the fungal prevalence on goat's feed samples based on the Pearson correlation analysis. The prevalence of mycotoxigenic isolates on goat's feed warrants for urgent intervention to ensure that goats are being fed with nutritionally adequate and safe feed. The presence of aflatoxigenic Aspergillus section Flavi isolates indicates the risk of aflatoxin B1 contamination on the goat's feed, aflatoxicosis development in the goats, and aflatoxin M1 bio-transformation in the goat's milk. This is a potential threat to the flourishing goat's milk industry in Malaysia.
  10. Nematbakhsh S, Pei Pei C, Selamat J, Nordin N, Idris LH, Abdull Razis AF
    Genes (Basel), 2021 03 13;12(3).
    PMID: 33805667 DOI: 10.3390/genes12030414
    In the poultry industry, excessive fat deposition is considered an undesirable factor, affecting feed efficiency, meat production cost, meat quality, and consumer's health. Efforts to reduce fat deposition in economically important animals, such as chicken, can be made through different strategies; including genetic selection, feeding strategies, housing, and environmental strategies, as well as hormone supplementation. Recent investigations at the molecular level have revealed the significant role of the transcriptional and post-transcriptional regulatory networks and their interaction on modulating fat metabolism in chickens. At the transcriptional level, different transcription factors are known to regulate the expression of lipogenic and adipogenic genes through various signaling pathways, affecting chicken fat metabolism. Alternatively, at the post-transcriptional level, the regulatory mechanism of microRNAs (miRNAs) on lipid metabolism and deposition has added a promising dimension to understand the structural and functional regulatory mechanism of lipid metabolism in chicken. Therefore, this review focuses on the progress made in unraveling the molecular function of genes, transcription factors, and more notably significant miRNAs responsible for regulating adipogenesis, lipogenesis, and fat deposition in chicken. Moreover, a better understanding of the molecular regulation of lipid metabolism will give researchers novel insights to use functional molecular markers, such as miRNAs, for selection against excessive fat deposition to improve chicken production efficiency and meat quality.
  11. Azri FA, Selamat J, Sukor R, Yusof NA, Raston NHA, Eissa S, et al.
    Anal Bioanal Chem, 2021 Jun;413(15):3861-3872.
    PMID: 34021369 DOI: 10.1007/s00216-021-03336-1
    Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target. The originally selected zearalenone (ZEA) aptamer was 80-mer in length and shown to bind the target with a high affinity (Kd = 41 ± 5 nM). Herein, computational docking simulation was performed with 15 truncated variants to determine the predicted binding energy and responsible binding site of the aptamer-analyte complex. The results revealed that 5 truncated variants had binding energy lower than - 7.0 kcal/mol. Circular dichroism analysis was performed on the shortlisted aptamer and the conformational change of aptamers was observed with the presence of an analyte. Aptamer Z3IN (29-mer) was chosen as the most enhanced affinity for its target with a dissociation constant of 11.77 ± 1.44 nM. The aptamer was further applied in the electrochemical aptasensor of ZEA based on an indirect competitive format. The results demonstrated that the truncated aptamer leads to an enhancement of the sensitivity of the biosensor.
  12. Tan C, Selamat J, Jambari NN, Sukor R, Murugesu S, Khatib A
    Foods, 2021 Sep 14;10(9).
    PMID: 34574284 DOI: 10.3390/foods10092174
    Globally, village chicken is popular and is known as a premium meat with a higher price. Food fraud can occur by selling other chicken breeds at a premium price in local markets. This study aimed to distinguish local village chicken from other chicken breeds available in the market, namely, colored broiler (Hubbard), broiler (Cobb), and spent laying hen (Dekalb) in pectoralis major and serum under commercial conditions using an untargeted metabolomics approach. Both pectoralis major and serum were analyzed using gas chromatography-mass spectrometry (GC-MS). The principal component analysis (PCA) results distinguished four different chicken breeds into three main groups for pectoralis major and serum. A total of 30 and 40 characteristic metabolites were identified for pectoralis major and serum, respectively. The four chicken breeds were characterized by the abundance of metabolites such as amino acids (L-glutamic acid, L-threonine, L-serine, L-leucine), organic acids (L-lactic acid, succinic acid, 3-hydroxybutyric acid), sugars (D-allose, D-glucose), sugar alcohols (myo-inositol), and fatty acids (linoleic acid). Our results suggest that an untargeted metabolomics approach using GC-MS and PCA could discriminate chicken breeds for pectoralis major and serum under commercial conditions. In this study, village chicken could only be distinguished from colored broiler (Hubbard) by serum samples.
  13. Norlia M, Nor-Khaizura MAR, Selamat J, Abu Bakar F, Radu S, Chin CK
    PMID: 29912639 DOI: 10.1080/19440049.2018.1488276
    The peanut supply chain in Malaysia is dominated by three main stakeholders (importers, manufacturers, retailers). The present study aimed to determine the levels and critical points of aflatoxin and fungal contamination in peanuts along the supply chain. Specifically, two types of raw peanuts and six types of peanut-based products were collected (N = 178). Samples were analysed for aflatoxins by using high-performance liquid chromatography. Results revealed that the aflatoxin contamination was significantly higher (P ≤ 0.05) in raw peanuts and peanut-based products from the retailers. However, there was no significant difference (P ≥ 0.05) in fungal contamination for both types of peanuts except for the total fungal count in raw peanuts from the retailers. Furthermore, raw peanut kernels from the retailers were the most contaminated ones ranged from
  14. Yazid SNE, Thanggavelu H, Mahror N, Selamat J, Samsudin NIP
    Int J Food Microbiol, 2018 Oct 03;282:57-65.
    PMID: 29913332 DOI: 10.1016/j.ijfoodmicro.2018.06.007
    In studying the ecophysiology of fungal phytopathogens, several stages are involved (in vitro, greenhouse, in planta). Most in vitro studies extensively utilise the general growth media such as Potato Dextrose Agar and Malt Extract Agar. Although the crop components in these media serve as excellent carbon sources and yield luxuriant growth, they are not naturally contaminated with Aspergillus flavus and thus might result in under- or overestimation of its actual toxigenic potentials. Empirical data on the formulation of semi-synthetic growth medium mimicking the natural crop commonly contaminated by A. flavus for the ecophysiological studies in vitro are scarce. The present work was aimed at investigating the ecophysiology of A. flavus on commercial growth media (PDA, MEA); formulating maize- and peanut-based semi-synthetic growth media using two methods of raw material preparation (milling, hot water extraction) at different concentrations (1, 3, 5, 7, 9% w/v), and comparing the ecophysiological parameters between commercial and formulated growth media. Growth rates were obtained by computing the hyphal expansion data into y = mx + c equation. AFB1 was quantified using high performance liquid chromatography with fluorescence detector. Formulated media were found to yield significantly higher growth rates when compared to commercial media. However, commercial media yielded significantly higher AFB1 when compared to all formulated media. Between the two formulations, milling yielded significantly higher growth rates and AFB1 when compared to hot water extraction. Although in vitro data cannot directly extrapolate in planta performance, results obtained in the present work can be used to gauge the actual toxigenic potential of A. flavus in maize and peanut agro-ecosystems.
  15. Sepahpour S, Selamat J, Khatib A, Manap MYA, Abdull Razis AF, Hajeb P
    PMID: 29913103 DOI: 10.1080/19440049.2018.1488085
    Natural antioxidants in spices and herbs have attracted considerable attention as potential inhibitors against the formation of mutagenic heterocyclic amines (HCAs) in heat-processed meat. In this study, the inhibitory activity of four spices/herbs and their mixtures on HCAs formation in grilled beef were examined. A simplex centroid mixture design with four components comprising turmeric, curry leaf, torch ginger and lemon grass in 19 different proportions were applied on beef samples before grilling at 240 ºC for 10 min. The HCAs were extracted from the samples using solid phase extraction (SPE) method and analysed using Liquid chromatography mass spectrometry LC-MS/MS. All spices/herbs in single or mixture forms were found to reduce total HCA concentrations in marinated grilled beef ranging from 21.2% for beef marinated with curry leaf to 94.7% for the combination of turmeric and lemon grass (50:50 w/w). At the optimum marinade formula (turmeric: lemon grass 52.4%: 47.6%), concentration of 2-amino-3-methylimidazo[4,5-f]quinolone (IQ), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), Harman, Norharman and AαC were 2.2, 1.4, 0.5, 2.8 and 1.2 ng/g, respectively. The results of the mutagenic activity demonstrated that this optimised marinade formula significantly (p 
  16. Fakhlaei R, Selamat J, Razis AFA, Sukor R, Ahmad S, Amani Babadi A, et al.
    Molecules, 2021 Oct 15;26(20).
    PMID: 34684803 DOI: 10.3390/molecules26206222
    Honey is prone to be adulterated through mixing with sugars, cheap and low-quality honey, and other adulterants. Consumption of adulterated honey may cause several health issues such as weight gain, diabetes, and liver and kidney dysfunction. Therefore, studying the impact of consumption of adulterated honey on consumers is critical since there is a lack of study in this field. Hence, the aims of this paper were: (1) to determine the lethal concentration (LC50) of adulterated honey using zebrafish embryo, (2) to elucidate toxicology of selected adulterated honey based on lethal dose (LD50) using adult zebrafish, (3) to determine the effects of adulterated honey on histological changes of zebrafish, and (4) to screen the metabolites profile of adulterated honey by using zebrafish blood serum. The LC50 of Heterotrigona itama honey (acacia honey) and its sugar adulterants (light corn sugar, cane sugar, inverted sugar, and palm sugar in the proportion of 1-3% (w/w) from the total volume) was determined by the toxicological assessment of honey samples on zebrafish embryos (different exposure concentrations in 24, 48, 72, and 96 h postfertilization (hpf)). Pure H. itama honey represents the LC50 of 34.40 ± 1.84 (mg/mL) at 96 hpf, while the inverted sugar represents the lowest LC50 (5.03 ± 0.92 mg/mL) among sugar adulterants. The highest concentration (3%) of sugar adulterants were used to study the toxicology of adulterated honey using adult zebrafish in terms of acute, prolong-acute, and sub-acute tests. The results of the LD50 from the sub-acute toxicity test of pure H. itama honey was 2.33 ± 0.24 (mg/mL). The histological studies of internal organs showed a lesion in the liver, kidney, and spleen of adulterated treated-honey groups compared to the control group. Furthermore, the LC-MS/MS results revealed three endogenous metabolites in both the pure and adulterated honey treated groups, as follows: (1) S-Cysteinosuccinic acid, (2) 2,3-Diphosphoglyceric acid, and (3) Cysteinyl-Tyrosine. The results of this study demonstrated that adulterated honey caused mortality, which contributes to higher toxicity, and also suggested that the zebrafish toxicity test could be a standard method for assessing the potential toxicity of other hazardous food additives. The information gained from this research will permit an evaluation of the potential risk associated with the consumption of adulterated compared to pure honey.
  17. Rahman MAH, Selamat J, Samsudin NIP, Shaari K, Mahror N, John JM
    Food Sci Nutr, 2022 Nov;10(11):3993-4002.
    PMID: 36348788 DOI: 10.1002/fsn3.2995
    Aspergillus section Flavi constitutes several species of opportunistic fungi, notable among them are A. flavus and A. parasiticus, capable of surviving harsh conditions and colonizing a wide range of agricultural products pre- and postharvest. Physical and chemical control methods are widely applied in order to mitigate the invasion of A. flavus in crops. However, physical control is not suitable for large scale and chemical control often leads to environmental pollution, whereas biological control offers a safer, environmentally friendly, and economical alternative. The present study aimed to investigate the antagonism of several non-aflatoxigenic A. flavus strains against the aflatoxigenic ones in vitro (semisynthetic peanut growth medium; MPA) in terms of colony growth rate and AFB1 inhibition. Different peanut concentrations were used to obtain the optimum peanut concentration in the formulated growth medium. A dual culture assay was performed to assess the antagonism of nonaflatoxigenic strains against the aflatoxigenic ones. Results revealed that 9% MPA exhibited the highest growth and AFB1 inhibition by nonaflatoxigenic strains. It was also found that different nonaflatoxigenic strains exhibited different antagonism against the aflatoxigenic ones which ranged from 11.09 ± 0.65% to 14.06 ± 0.14% for growth inhibition, and 53.97 ± 2.46% to 72.64 ± 4.54% for AFB1 inhibition. This variability could be due to the difference in antagonistic metabolites produced by different nonaflatoxigenic strains assessed in the present study. Metabolomics study to ascertain the specific metabolites that conferred the growth and aflatoxin inhibition is ongoing.
  18. Sibuar AA, Zulkafflee NS, Selamat J, Ismail MR, Lee SY, Abdull Razis AF
    PMID: 35055550 DOI: 10.3390/ijerph19020731
    Rice is one of the major crops as well as the staple food in Malaysia. However, historical mining activity has raised a concern regarding heavy metal contamination in paddy plants, especially in Perak, a state with major tin mining during the late nineteenth century. Therefore, the objective of this study is to investigate the heavy metals (As, Cd, Pb, Cu, Cr) contamination in paddy soils and paddy plants in three districts in Perak. The content of heavy metals was determined using ICP-MS, while the absorption and transferability of heavy metals in the paddy plants were investigated through enrichment (EF) and translocation (TF) factors. Principal component analysis (PCA) was employed to recognize the pattern of heavy metal contaminations in different sampling areas. Health risk assessment was performed through calculation of various indices. The quantification results showed that root contained highest concentration of the studied heavy metals, with As exhibiting the highest concentration. The EF results revealed the accumulation of As, Cu, and Cr in the rice grains while PCA showed the different compositional pattern in the different sampling areas. The health risk assessment disclosed both noncarcinogenic and carcinogenic risks in the local adults and children. Overall, findings from this study show that heavy metal contamination poses potential health risks to the residents and control measure is required.
  19. Hamidi EN, Hajeb P, Selamat J, Lee SY, Abdull Razis AF
    PMID: 35055557 DOI: 10.3390/ijerph19020736
    Exposure to polycyclic aromatic hydrocarbons (PAHs) through diet is gaining concern due to the risk it poses to human health. This study evaluated the bioaccessibility of PAHs contained in charcoal-grilled beef and chicken in different segments of the gastrointestinal tract (GIT) with regard to the degree of doneness and fat content of the meats. The levels of 15 PAHs in the grilled meat samples and bioaccessible fractions were determined using high-performance liquid chromatography (HPLC) equipped with PAH column, and UV and fluorescence detectors. Total PAHs were found in beef (30.73 ng/g) and chicken (70.93 ng/g) before its digestion, and different PAHs' bioaccessibility were observed in the different segments of GIT, with the highest in the stomach followed by the small intestine, despite the relatively higher bioaccessibility of individual PAHs in grilled beef as compared to those in grilled chicken. Additionally, the PAHs' bioaccessibility increased with the increase in the degree of doneness. Positive linear correlation was observed for the PAHs' bioaccessibility and the fat contents of grilled meat. Overall, this study highlights the influence of meat doneness (cooking time) and fat contents on the bioaccessibility and bioaccumulation of PAHs.
  20. Dirong G, Nematbakhsh S, Selamat J, Chong PP, Idris LH, Nordin N, et al.
    Molecules, 2021 Oct 28;26(21).
    PMID: 34770913 DOI: 10.3390/molecules26216502
    Chicken is known to be the most common meat type involved in food mislabeling and adulteration. Establishing a method to authenticate chicken content precisely and identifying chicken breeds as declared in processed food is crucial for protecting consumers' rights. Categorizing the authentication method into their respective omics disciplines, such as genomics, transcriptomics, proteomics, lipidomics, metabolomics, and glycomics, and the implementation of bioinformatics or chemometrics in data analysis can assist the researcher in improving the currently available techniques. Designing a vast range of instruments and analytical methods at the molecular level is vital for overcoming the technical drawback in discriminating chicken from other species and even within its breed. This review aims to provide insight and highlight previous and current approaches suitable for countering different circumstances in chicken authentication.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links