Displaying all 6 publications

Abstract:
Sort:
  1. Gao P, Mohd Noor NQI, Md Shaarani S
    PMID: 33356490 DOI: 10.1080/10408398.2020.1866490
    Food safety issues associated with aquatic food products become more important with the increasing consumption and followed by its ongoing challenges. The objective of this paper is to review the food safety hazards and health risks related to aquatic food products for the Southeast Asian region. These hazards can be categorized as microplastics (MPs) hazard, biological hazards (pathogenic bacteria, biogenic amines, viruses, parasites), and chemical hazards (antimicrobial, formaldehyde, heavy metal). In different Southeast Asian countries, the potential health risks of aquatic food products brought by food hazards to consumers were at different intensity and classes. Among all these hazards, pathogenic bacteria, antimicrobials, and heavy metal were a particular concern in the Southeast Asian region. With environmental changes, evolving consumption patterns, and the globalization of trade, new food safety challenges are created, which put forward higher requirements on food technologies, food safety regulations, and international cooperation.
  2. Rovina K, Siddiquee S, Md Shaarani S
    Drug Chem Toxicol, 2021 Sep;44(5):447-457.
    PMID: 31020858 DOI: 10.1080/01480545.2019.1601210
    A novel nanocomposite film of chitosan/graphene oxide (CHIT/GO)/multi-walled carbon nanotubes (MWCNTs)/gold nanoparticles (AuNPs) was applied to fabricate glassy carbon electrode (CHIT/GO/MWCNTs/AuNPs/GCE) for the determination of Tartrazine (TZ), synthetic dyes in food products. The electrochemical sensors found it to be highly sensitive by combining the signal amplification properties of GO and the excellent electronic and antifouling properties of MWCNTs. The CHIT/GO/MWCNTs/AuNPs/GCE exhibited as superior electron transfer materials and possesses intercalation properties which provide synergistic influence on the increment of the current signals. The optimum conditions were found at pH 7, 30 s, and 0.3 Vs-1. The modified GCE obtained with a linear response ranging from 10 to 100 mg mL-1 (r2 = 0.99037) with a sensitivity of 0.018 μA μM-1. The limit of detection (LOD) and quantification obtained were 1.45 and 4.83 mg mL-1, respectively. The determination of TZ in spiked samples was reliable with recovery percentage from 94.52 to 109.0%. The developed sensor successfully tested in the determination of TZ analyte in commercial candy, jelly, and soft drinks with acceptable results.
  3. Gao P, Mohd Noor NQI, Mohamad Razali UH, Mohd Yusop MH, Md Shaarani S
    Heliyon, 2023 Oct;9(10):e20835.
    PMID: 37916100 DOI: 10.1016/j.heliyon.2023.e20835
    Contamination of marine fish with the widespread distribution of anthropogenic particles (APs) becomes increasingly severe, however, related research on the assessment of the occurrence of APs in the edible tissue of commercial fish is scarce. The objective of this study was to evaluate the features of APs pollution based on seven species of commercial marine fish (n = 12 per species) and investigate the accumulation of APs in different tissues of fish namely gill and gastrointestinal tract (GIT), and muscle. The results show that a total of 62 APs were detected in 33 out of 84 (39.3%) fresh fish samples using a micro-Raman spectrometer which in particular is characterized by a blue color, shape-like fiber, and size smaller than 0.5 mm. Among them, 47 (75.8%) particles were identified as pigments such as indigo, chrome yellow-orange, disperse yellow, and pigment black. The other 11 (17.7%) particles were plastic including polypropylene (PP), polyethylene terephthalate (PET), and polyacrylonitrile (PAN). And the rest 4 (6.5%) particles were anthropogenic cellulose fibers. Muscle tissue from six species of fish was detected to contain a total of 15 APs. Based on the total mean of APs found in fish muscle (0.018 AP items/g tissue) and on the consumption of fish in Malaysia (59 kg/capita/year), the estimated human intake of APs through fish consumption was 1062 AP items/year/capita. Considering that food consumption is an important route of human exposure to APs, it is suggested to add APs testing into the guidelines of food safety management systems and adopt mitigation measures to reduce the APs pollution in food.
  4. Shaarani S, Hamid SS, Mohd Kaus NH
    Pharmacognosy Res, 2017 Jan-Mar;9(1):12-20.
    PMID: 28250648 DOI: 10.4103/0974-8490.199774
    BACKGROUND: This study reports on hydrophobic drug thymoquinone (TQ), an active compound found in the volatile oil of Nigella sativa that exhibits anticancer activities. Nanoformulation of this drug could potentially increase its bioavailability to specific target cells.

    OBJECTIVE: The aim of this study was to formulate TQ into polymer micelle, Pluronic F127 (5.0 wt %) and Pluronic F68 (0.1 wt %), as a drug carrier to enhance its solubility and instability in aqueous media.

    MATERIALS AND METHODS: Polymeric micelles encapsulated TQ were prepared by the microwave-assisted solvent evaporation technique. Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometer were utilized for qualitative confirmation of micelles encapsulation. The surface morphology and mean particle size of the prepared micelles were determined by using transmission electron microscopy (TEM). Cytotoxicity effect was studied using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay.

    RESULTS: Dynamic laser light scattering (DLS) technique showed hydrodynamic size distribution of optimized micelles of 50 nm, which was in close agreement with the mean particle size obtained from TEM of about 51 nm. Drug release study showed the maximum percentage of TQ release at 61% after 72 h, while the entrapment efficiency of TQ obtained was 46% using PF127. The cytotoxic effect of PF127-encapsulated TQ was considerably higher compared to PF68-encapsulated TQ against MCF7 cells, as they exhibited IC50value of 8 μM and 18 μM, respectively.

    CONCLUSION: This study suggests higher molecular weight Pluronic polymer micelles (F127) with hydrophilic-hydrophobic segments which could be used as a suitable candidate for sustainable delivery of TQ. However, comprehensive studies should be carried out to establish the suitability of Pluronic F127 as a carrier for other drugs with similar challenges as TQ.

    SUMMARY: There is a rising interest in integrating nanotechnology with medicine, creating a nanomedicine aiming for high efficiency and efficacy of disease diagnosis and treatment. In drug delivery, the term nanomedicine describes the nanometer-sized range (1-1000 nm) of a multi-component drug for disease treatments. As such, liposome-based nanoparticulate delivery vehicles have been approved by the Food and Drug Administration (FDA) for clinical applications. The main purpose of introducing nanoscale drug delivery is to improve the pharmacological and pharmacokinetic profiles of therapeutic molecules. Drug or therapeutic molecules can be either released through the cleavage of a covalent linkage between drug molecules and polymers (conjugation) or through the diffusion from a drug and polymer blended matrix (physical encapsulation). Polymers play an important role in the design of nanocarriers for therapeutic deliveries. In Asia, Nigella sativa seed oil has been used traditionally for its various medicinal benefits. One of its most potent compound which is thymoquinone has been intensively investigated for its anti-cancer effects in colorectal carcinoma, breast adenocarcinoma, osteosarcoma, ovarian carcinoma, myeloblastic leukemia, and pancreatic carcinoma. In addition, it is reported to show anti-inflammatory potential, antidiabetic, antihistaminic effects, as well as the ability to alleviate respiratory diseases, rheumatoid arthritis, multiple sclerosis, and Parkinson's disease. This study aims to formulate and characterize different pluronic-based thymoquinone nanocarrier and investigate its effect against breast cancer cells Abbreviations Used: ATR-IR: Attenuated Total Reflectance-Infrared Spectroscopy, CH3CN: Acetonitrile, DLS: Dynamic Light Scattering, MTS: [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, NPs: Nanoparticles, PF127/TQ: Pluronic F127 encapsulated TQ, PF68/TQ: Pluronic F68 encapsulated TQ, PLGA: Poly-(D,L-lactide-co-glycolide), PVA: Poly-vinylalcohol, TQ: Thymoquinone, UV/VIS: Ultravioletvisible spectrophotometry.
  5. Gao P, Md Shaarani S, Mohd Noor NQI
    PMID: 38059602 DOI: 10.1080/10408398.2023.2289077
    The development of reliable and sensitive detection methods is essential for addressing the escalating concerns surrounding fish and fish products, driven by increasing market demands. This comprehensive review presents recent advances in detection approaches, specifically focusing on microplastic, biological, and chemical hazards associated with these products. The overview encompasses 21 distinct detection methods, categorized based on the type of hazard they target. For microplastic hazards, six methods are visual, spectroscopic, and thermal analyses. Biological hazard identification relies on six approaches employing nucleic-acid sequence, immunological, and biosensor technologies. The investigation of chemical hazards encompasses ten methods, including chromatography, spectroscopy, mass spectrometry, immunological, biosensor, and electrochemical techniques. The review provides in-depth insights into the basic principles, general characteristics, and the recognized advantages and disadvantages of each method. Moreover, it elaborates on recent advancements within these methodologies. The concluding section of the review discusses current challenges and outlines future perspectives for these detection methods. Overall, this comprehensive summary not only serves as a guide for researchers involved in fish safety and quality control but also emphasizes the significance of staying abreast of evolving detection technologies to ensure the continued safety of fish and fish products in response to emerging food safety hazards.
  6. Bhuiyan MSA, Sarker S, Amin Z, Rodrigues KF, Bakar AMSA, Saallah S, et al.
    Vet Med Sci, 2023 Dec 27.
    PMID: 38151844 DOI: 10.1002/vms3.1153
    BACKGROUND: Infectious bronchitis virus (IBV) is classified as a highly contagious viral agent that causes acute respiratory, reproductive and renal system pathology in affected poultry farms. Molecular and serological investigations are crucial for the accurate diagnosis and management of IBV.

    OBJECTIVES: The purpose of this study was to determine the seroprevalence of IBV and to characterise the circulating IBV in poultry farms in Sabah Province, Malaysia.

    METHODS: To determine IBV antibodies, a total of 138 blood samples and 50 organ samples were collected from 10 commercial broiler flocks in 3 different farms by using the enzyme-linked immunosorbent assay (ELISA) (IDEXX Kit) and reverse transcription-polymerase chain reaction (RT-PCR) followed by sequencing.

    RESULTS: A total of 94.2% (130/138) of the samples were seropositive for IBV in the vaccinated flock, and 38% (52/138) of the birds was the IBV titre for infection. The selected seropositive samples for IBV were confirmed by RT-PCR, with 22% (11/50) being IBV positive amplified and sequenced by targeted highly conserved partial nucleocapsid (N) genes. Subsequently, phylogenetic analysis constructed using amplified sequences again exposed the presence of Connecticut, Massachusetts, and Chinese QX variants circulating in poultry farms in Sabah, Malaysia.

    CONCLUSIONS: The unexpectedly increasing mean titres in serology indicated that post infection of IBV and highly prevalent IBV in selected farms in this study. The sequencing and phylogenetic analysis revealed the presence of multiple IBV variants circulating in Malaysian chicken farms in Sabah, which further monitoring of genetic variation are needed to better understand the genetic diversity.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links