Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Islam MS, Islam MT, Antu UB, Saikat MSM, Ismail Z, Shahid S, et al.
    Mar Pollut Bull, 2023 Dec;197:115720.
    PMID: 37939519 DOI: 10.1016/j.marpolbul.2023.115720
    Safe levels of heavy metals in the surface water and sediment of the eastern Bay of Bengal coast have not been universally established. Current study characterized heavy metals such as arsenic (As), chromium (Cr), cadmium (Cd) and lead (Pb) in surface water and sediments of the most important fishing resource at the eastern Bay of Bengal coast, Bangladesh. Both water and sediment samples were analyzed using inductively coupled plasma mass spectrometer. Considering both of the seasons, the mean concentrations of Cr, As, Cd, and Pb in water samples were 33.25, 8.14, 0.48, and 21.14 μg/L, respectively and in sediment were 30.47, 4.48, 0.20, and 19.98 mg/kg, respectively. Heavy metals concentration in water samples surpassed the acceptable limits of usable water quality, indicating that water from this water resource is not safe for drinking, cooking, bathing, and any other uses. Enrichment factors also directed minor enrichment of heavy metals in sediment of the coast. Other indexes for ecological risk assessment such as pollution load index (PLI), contamination factor (CF), geoaccumulation index (Igeo), modified contamination degree (mCd), and potential ecological risk index (PERI) also indicated that sediment of the coastal watershed was low contamination. In-depth inventorying of heavy metals in both water and sediment of the study area are required to determine ecosystem health for holistic risk assessment and management.
  2. Islam MS, Phoungthong K, Ismail Z, Othman IK, Shahid S, Ishak DSM, et al.
    PMID: 36644961 DOI: 10.1080/10934529.2022.2148811
    The spreading of sewage sludge from wastewater treatment plants and various industries arouses the growing interest due to the contamination by trace elements. Sludges were collected from one sewage treatment plant and two industries in Dhaka City, Bangladesh to assess physicochemical parameters and total and fraction content of trace elements like Cr, Ni, Cu, As, Cd, Pb, Fe, Mn and Zn in sludges. We evaluated the bioavailability of theses metals by determining their speciation by sequential extraction, each metal being distributed among five fractions: exchangeable fraction, bound to carbonate fraction, Fe-Mn oxide bound fraction, organic matter bound fraction and residual fractions. We found that all the analyzed sludges had satisfactory properties from an agronomic quality point of view. The average concentration (mg/kg) of trace metals in sludge samples were in the following decreasing order Fe (12807) > Cr (200) > Mn (158) > Zn (132) > Cu (68.2) > Ni (42.5) > Pb (36.4) > As (35.1) > Cd (3.7). The results of the sequential extraction showed that Cr, Ni, Cu, Fe and Mn were largely associated with the residual fraction where As, Cd and Pb was dominantly associated with the exchangeable and carbonate bound fractions and Zn showed a considerable proportion in carbonate bound fraction. These results showed that regulations must take into account the bioavailability with regard to the characteristics of the agricultural soils on which sludge will be spread.
  3. Tao H, Jawad AH, Shather AH, Al-Khafaji Z, Rashid TA, Ali M, et al.
    Environ Int, 2023 May;175:107931.
    PMID: 37119651 DOI: 10.1016/j.envint.2023.107931
    This study uses machine learning (ML) models for a high-resolution prediction (0.1°×0.1°) of air fine particular matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was considered the study area to implement the method. Different lags and the changing patterns of four European Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy algorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer's V values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak pollution months from freely available data, which can be replicated in other regions for generating high-resolution PM2.5 forecasting maps.
  4. Rahimi ST, Safari Z, Shahid S, Hayet Khan MM, Ali Z, Ziarh GF, et al.
    Heliyon, 2024 Apr 15;10(7):e28433.
    PMID: 38571592 DOI: 10.1016/j.heliyon.2024.e28433
    Global warming induces spatially heterogeneous changes in precipitation patterns, highlighting the need to assess these changes at regional scales. This assessment is particularly critical for Afghanistan, where agriculture serves as the primary livelihood for the population. New global climate model (GCM) simulations have recently been released for the recently established shared socioeconomic pathways (SSPs). This requires evaluating projected precipitation changes under these new scenarios and subsequent policy updates. This research employed six GCMs from the CMIP6 to project spatial and temporal precipitation changes across Afghanistan under all SSPs, including SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The employed GCMs were bias-corrected using the Global Precipitation Climatological Center's (GPCC) monthly gridded precipitation data with a 1.0° spatial resolution. Subsequently, the climate change factor was calculated to assess precipitation changes for both the near future (2020-2059) and the distant future (2060-2099). The bias-corrected projections' multi-model ensemble (MME) revealed increased precipitation across most of Afghanistan for SSPs with higher emissions scenarios. The bias-corrected simulations showed a substantial increase in summer precipitation of around 50%, projected under SSP1-1.9 in the southwestern region, while a decline of over 50% is projected in the northwestern region until 2100. The annual precipitation in the northwest region was projected to increase up to 15% for SSP1-2.6. SSP2-4.5 showed a projected annual precipitation increase of around 20% in the southwestern and certain eastern regions in the far future. Furthermore, a substantial rise of approximately 50% in summer precipitation under SSP3-7.0 is expected in the central and western regions in the far future. However, it is crucial to note that the projected changes exhibit considerable uncertainty among different GCMs.
  5. Islam ARMT, Islam HMT, Shahid S, Khatun MK, Ali MM, Rahman MS, et al.
    J Environ Manage, 2021 Jul 01;289:112505.
    PMID: 33819656 DOI: 10.1016/j.jenvman.2021.112505
    Climate extremes have a significant impact on vegetation. However, little is known about vegetation response to climatic extremes in Bangladesh. The association of Normalized Difference Vegetation Index (NDVI) with nine extreme precipitation and temperature indices was evaluated to identify the nexus between vegetation and climatic extremes and their associations in Bangladesh for the period 1986-2017. Moreover, detrended fluctuation analysis (DFA) and Morlet wavelet analysis (MWA) were employed to evaluate the possible future trends and decipher the existing periodic cycles, respectively in the time series of NDVI and climate extremes. Besides, atmospheric variables of ECMWF ERA5 were used to examine the casual circulation mechanism responsible for climatic extremes of Bangladesh. The results revealed that the monthly NDVI is positively associated with extreme rainfall with spatiotemporal heterogeneity. Warm temperature indices showed a significant negative association with NDVI on the seasonal scale, while precipitation and cold temperature extremes showed a positive association with yearly NDVI. The DEA revealed a continuous increase in temperature extreme in the future, while no change in precipitation extremes. NDVI also revealed a significant association with extreme temperature indices with a time lag of one month and with precipitation extreme without time lag. Spatial analysis indicated insensitivity of marshy vegetation type to climate extremes in winter. The study revealed that elevated summer geopotential height, no visible anticyclonic center, reduced high cloud cover, and low solar radiation with higher humidity contributed to climatic extremes in Bangladesh. The nexus between NDVI and climatic extremes established in this study indicated that increasing warm temperature extremes due to global warming might have severe implications on Bangladesh's ecology and the environment in the future.
  6. Islam MS, Phoungthong K, Islam ARMT, Ali MM, Ismail Z, Shahid S, et al.
    Mar Pollut Bull, 2022 Dec;185(Pt B):114362.
    PMID: 36410195 DOI: 10.1016/j.marpolbul.2022.114362
    Marine debris is often detected everywhere in the oceans after it enters the marine ecosystems from various sources. Marine litter pollution is a major threat to the marine ecosystem in Bangladesh. A preliminary study was conducted to identify the sources of marine litter (plastics, foamed plastic, clothes, glass, ceramic, metals, paper, and cardboard) along the Bay of Bengal coast. From the observations, the range of abundance of the collected marine litter was 0.14-0.58 items/m2. From the ten sampling sites, the highest amount of marine litter was observed for aluminium cans (3500), followed by plastic bottles (3200). The spatial distribution pattern indicated that all the study areas had beach litter of all types of materials. The present investigation showed that plastics were the dominating pollutants in the marine ecosystem in Bangladesh. The clean-coast index (CCI) value indicated that the Cox's Bazar coast was clean to dirty class. The abundance, distribution, and pollution of marine litter along the coastal belts pose a potential threat to the entire ecosystem. This study will help come up with ways to manage and get rid of marine litter along the coast in an effective way.
  7. Kamruzzaman M, Wahid S, Shahid S, Alam E, Mainuddin M, Islam HMT, et al.
    Heliyon, 2023 May;9(5):e16274.
    PMID: 37234666 DOI: 10.1016/j.heliyon.2023.e16274
    Understanding spatiotemporal variability in precipitation and temperature and their future projections is critical for assessing environmental hazards and planning long-term mitigation and adaptation. In this study, 18 Global Climate Models (GCMs) from the most recent Coupled Model Intercomparison Project phase 6 (CMIP6) were employed to project the mean annual, seasonal, and monthly precipitation, maximum air temperature (Tmax), and minimum air temperature (Tmin) in Bangladesh. The GCM projections were bias-corrected using the Simple Quantile Mapping (SQM) technique. Using the Multi-Model Ensemble (MME) mean of the bias-corrected dataset, the expected changes for the four Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) were evaluated for the near (2015-2044), mid (2045-2074), and far (2075-2100) futures in comparison to the historical period (1985-2014). In the far future, the anticipated average annual precipitation increased by 9.48%, 13.63%, 21.07%, and 30.90%, while the average Tmax (Tmin) rose by 1.09 (1.17), 1.60 (1.91), 2.12 (2.80), and 2.99 (3.69) °C for SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5, respectively. According to predictions for the SSP5-8.5 scenario in the distant future, there is expected to be a substantial rise in precipitation (41.98%) during the post-monsoon season. In contrast, winter precipitation was predicted to decrease most (11.12%) in the mid-future for SSP3-7.0, while to increase most (15.62%) in the far-future for SSP1-2.6. Tmax (Tmin) was predicted to rise most in the winter and least in the monsoon for all periods and scenarios. Tmin increased more rapidly than Tmax in all seasons for all SSPs. The projected changes could lead to more frequent and severe flooding, landslides, and negative impacts on human health, agriculture, and ecosystems. The study highlights the need for localized and context-specific adaptation strategies as different regions of Bangladesh will be affected differently by these changes.
  8. Nisar H, Attique SA, Javaid A, Ain QU, Butt F, Zaid M, et al.
    J Biomol Struct Dyn, 2023;41(22):13302-13313.
    PMID: 36715128 DOI: 10.1080/07391102.2023.2173299
    Interleukin 17 F is a member of IL-17 cytokine family with a 50% structural homology to IL-17A and plays a significant role either alone or in combination with IL-17A towards inflammation in Rheumatoid arthritis (RA). A growing number of drugs targeting IL-17 pathway are being tested against population specific disease markers. The major objective of this research was to investigate the anti-inflammatory effect of Anakinra (an IL-1 R1 inhibitor) and Ustekinumab (an IL-12 and IL-23 inhibitor) by targeting IL17F. The three dimensional structures of IL17F was taken from PDB while structures of drugs were taken from PubChem database. Docking was performed using MOE and Schrodinger ligand docking software and binding energies, including s-score using London-dG fitness function and glide score using glide internal energy function, between drug and targets were compared. Furthermore, Protein-Drug complex were subjected to 150 ns Molecular Dynamics (MD) Simulations using Schrodinger's Desmond Module. Docking and MD simulation results suggest anakinra as a more potent IL17F inhibitor and forming a more structurally stable complex.Communicated by Ramaswamy H. Sarma.
  9. Muhammad MKI, Hamed MM, Harun S, Sa'adi Z, Sammen SS, Al-Ansari N, et al.
    Sci Rep, 2024 Feb 21;14(1):4255.
    PMID: 38383678 DOI: 10.1038/s41598-024-53960-x
    One of the direct and unavoidable consequences of global warming-induced rising temperatures is the more recurrent and severe heatwaves. In recent years, even countries like Malaysia seldom had some mild to severe heatwaves. As the Earth's average temperature continues to rise, heatwaves in Malaysia will undoubtedly worsen in the future. It is crucial to characterize and monitor heat events across time to effectively prepare for and implement preventative actions to lessen heatwave's social and economic effects. This study proposes heatwave-related indices that take into account both daily maximum (Tmax) and daily lowest (Tmin) temperatures to evaluate shifts in heatwave features in Peninsular Malaysia (PM). Daily ERA5 temperature dataset with a geographical resolution of 0.25° for the period 1950-2022 was used to analyze the changes in the frequency and severity of heat waves across PM, while the LandScan gridded population data from 2000 to 2020 was used to calculate the affected population to the heatwaves. This study also utilized Sen's slope for trend analysis of heatwave characteristics, which separates multi-decadal oscillatory fluctuations from secular trends. The findings demonstrated that the geographical pattern of heatwaves in PM could be reconstructed if daily Tmax is more than the 95th percentile for 3 or more days. The data indicated that the southwest was more prone to severe heatwaves. The PM experienced more heatwaves after 2000 than before. Overall, the heatwave-affected area in PM has increased by 8.98 km2/decade and its duration by 1.54 days/decade. The highest population affected was located in the central south region of PM. These findings provide valuable insights into the heatwaves pattern and impact.
  10. Islam R, Nazifa TH, Yuniarto A, Shanawaz Uddin ASM, Salmiati S, Shahid S
    Waste Manag, 2019 Jul 15;95:10-21.
    PMID: 31351595 DOI: 10.1016/j.wasman.2019.05.049
    Associated with the continuing increase of construction activities such as infrastructure projects, commercial buildings and housing programs, Bangladesh has been experiencing a rapid increase of construction and demolition (C&D) waste. Till now, the generation rate of C&D waste has not been well understood or not explicitly documented in Bangladesh. This study aims to provide an approach to estimate C&D waste generation using waste generation rates (WGR) through regression analysis. Furthermore, analyses the economic benefit of recycling C&D waste. The results revealed that WGR 63.74 kg/m2 and 1615 kg/m2 for construction and demolition activities respectively. Approximately, in financial year (FY) 2016, 1.28 million tons (0.149 construction and 1.139 demolition) waste were generated in Dhaka city, of which the three largest proportions were concrete (60%), brick/block (21%) and mortar (9%). After collection they were dumped in either landfills or unauthorized places. Therefore, it can be summarized as: waste is a resource in wrong place. The results of this study indicate that rapid urbanization of Dhaka city would likely experience the peak in the generation of C&D waste. This paper thus designates that C&D waste recycling is an entrepreneurial activity worth venturing into and an opportunity for extracting economic and environmental benefits from waste. The research findings also show that recycling of concrete and brick waste can add economic value of around 44.96 million USD. In addition, recycling of C&D waste leads to important reductions in CO2 emissions, energy use, natural resources and illegal landfills. Therefore, the findings of WGR and economic values provide valuable quantitative information for the future C&D waste management exercises of various stakeholders such as government, industry and academy.
  11. Shiru MS, Shahid S, Dewan A, Chung ES, Alias N, Ahmed K, et al.
    Sci Rep, 2020 06 22;10(1):10107.
    PMID: 32572138 DOI: 10.1038/s41598-020-67146-8
    Like many other African countries, incidence of drought is increasing in Nigeria. In this work, spatiotemporal changes in droughts under different representative concentration pathway (RCP) scenarios were assessed; considering their greatest impacts on life and livelihoods in Nigeria, especially when droughts coincide with the growing seasons. Three entropy-based methods, namely symmetrical uncertainty, gain ratio, and entropy gain were used in a multi-criteria decision-making framework to select the best performing General Circulation Models (GCMs) for the projection of rainfall and temperature. Performance of four widely used bias correction methods was compared to identify a suitable method for correcting bias in GCM projections for the period 2010-2099. A machine learning technique was then used to generate a multi-model ensemble (MME) of the bias-corrected GCM projection for different RCP scenarios. The standardized precipitation evapotranspiration index (SPEI) was subsequently computed to estimate droughts from the MME mean of GCM projected rainfall and temperature to predict possible spatiotemporal changes in meteorological droughts. Finally, trends in the SPEI, temperature and rainfall, and return period of droughts for different growing seasons were estimated using a 50-year moving window, with a 10-year interval, to understand driving factors accountable for future changes in droughts. The analysis revealed that MRI-CGCM3, HadGEM2-ES, CSIRO-Mk3-6-0, and CESM1-CAM5 are the most appropriate GCMs for projecting rainfall and temperature, and the linear scaling (SCL) is the best method for correcting bias. The MME mean of bias-corrected GCM projections revealed an increase in rainfall in the south-south, southwest, and parts of the northwest whilst a decrease in the southeast, northeast, and parts of central Nigeria. In contrast, rise in temperature for entire country during most of the cropping seasons was projected. The results further indicated that increase in temperature would decrease the SPEI across Nigeria, which will make droughts more frequent in most of the country under all the RCPs. However, increase in drought frequency would be less for higher RCPs due to increase in rainfall.
  12. Bhagat SK, Pyrgaki K, Salih SQ, Tiyasha T, Beyaztas U, Shahid S, et al.
    Chemosphere, 2021 Aug;276:130162.
    PMID: 34088083 DOI: 10.1016/j.chemosphere.2021.130162
    Copper (Cu) ion in wastewater is considered as one of the crucial hazardous elements to be quantified. This research is established to predict copper ions adsorption (Ad) by Attapulgite clay from aqueous solutions using computer-aided models. Three artificial intelligent (AI) models are developed for this purpose including Grid optimization-based random forest (Grid-RF), artificial neural network (ANN) and support vector machine (SVM). Principal component analysis (PCA) is used to select model inputs from different variables including the initial concentration of Cu (IC), the dosage of Attapulgite clay (Dose), contact time (CT), pH, and addition of NaNO3 (SN). The ANN model is found to predict Ad with minimum root mean square error (RMSE = 0.9283) and maximum coefficient of determination (R2 = 0.9974) when all the variables (i.e., IC, Dose, CT, pH, SN) were considered as input. The prediction accuracy of Grid-RF model is found similar to ANN model when a few numbers of predictors are used. According to prediction accuracy, the models can be arranged as ANN-M5> Grid-RF-M5> Grid-RF-M4> ANN-M4> SVM-M4> SVM-M5. Overall, the applied statistical analysis of the results indicates that ANN and Grid-RF models can be employed as a computer-aided model for monitoring and simulating the adsorption from aqueous solutions by Attapulgite clay.
  13. Rahman MB, Salam R, Islam ARMT, Tasnuva A, Haque U, Shahid S, et al.
    Theor Appl Climatol, 2021;146(1-2):125-138.
    PMID: 34334853 DOI: 10.1007/s00704-021-03705-x
    Climate change-derived extreme heat phenomena are one of the major concerns across the globe, including Bangladesh. The appraisal of historical spatiotemporal changes and possible future changes in heat index (HI) is essential for developing heat stress mitigation strategies. However, the climate-health nexus studies in Bangladesh are very limited. This study was intended to appraise the historical and projected changes in HI in Bangladesh. The HI was computed from daily dry bulb temperature and relative humidity. The modified Mann-Kendal (MMK) test and linear regression were used to detect trends in HI for the observed period (1985-2015). The future change in HI was projected for the mid-century (2041-2070) for three Representative Concentration Pathway (RCP) scenarios, RCP 2.6, 4.5, and 8.5 using the Canadian Earth System Model Second Generation (CanESM2). The results revealed a monotonic rise in the HI and extreme caution conditions, especially in the humid summer season for most parts of Bangladesh for the observed period (1985-2015). Future projections revealed a continuous rise in HI in the forthcoming period (2041-2070). A higher and remarkable increase in the HI was projected in the northern, northeastern, and south-central regions. Among the three scenarios, the RCP 8.5 showed a higher projection of HI both in hot and humid summer compared to the other scenarios. Therefore, Bangladesh should take region-specific adaptation strategies to mitigate the impacts of HI.

    Supplementary Information: The online version contains supplementary material available at 10.1007/s00704-021-03705-x.

  14. Salehie O, Ismail TB, Shahid S, Sammen SS, Malik A, Wang X
    PMID: 35075345 DOI: 10.1007/s00477-022-02172-8
    Assessment of the thermal bioclimatic environmental changes is important to understand ongoing climate change implications on agriculture, ecology, and human health. This is particularly important for the climatologically diverse transboundary Amy Darya River basin, a major source of water and livelihood for millions in Central Asia. However, the absence of longer period observed temperature data is a major obstacle for such analysis. This study employed a novel approach by integrating compromise programming and multicriteria group decision-making methods to evaluate the efficiency of four global gridded temperature datasets based on observation data at 44 stations. The performance of the proposed method was evaluated by comparing the results obtained using symmetrical uncertainty, a machine learning similarity assessment method. The most reliable gridded data was used to assess the spatial distribution of global warming-induced unidirectional trends in thermal bioclimatic indicators (TBI) using a modified Mann-Kendall test. Ranking of the products revealed Climate Prediction Center (CPC) temperature as most efficient in reconstruction observed temperature, followed by TerraClimate and Climate Research Unit. The ranking of the product was consistent with that obtained using SU. Assessment of TBI trends using CPC data revealed an increase in the Tmin in the coldest month over the whole basin at a rate of 0.03-0.08 °C per decade, except in the east. Besides, an increase in diurnal temperature range and isothermally increased in the east up to 0.2 °C and 0.6% per decade, respectively. The results revealed negative implications of thermal bioclimatic change on water, ecology, and public health in the eastern mountainous region and positive impacts on vegetation in the west and northwest.

    Supplementary Information: The online version contains supplementary material available at 10.1007/s00477-022-02172-8.

  15. Salaudeen A, Shahid S, Ismail A, Adeogun BK, Ajibike MA, Bello AD, et al.
    Sci Total Environ, 2023 Feb 01;858(Pt 2):159874.
    PMID: 36334669 DOI: 10.1016/j.scitotenv.2022.159874
    Recently, there is an upsurge in flood emergencies in Nigeria, in which their frequencies and impacts are expected to exacerbate in the future due to land-use/land cover (LULC) and climate change stressors. The separate and combined forces of these stressors on the Gongola river basin is feebly understood and the probable future impacts are not clear. Accordingly, this study uses a process-based watershed modelling approach - the Hydrological Simulation Program FORTRAN (HSPF) (i) to understand the basin's current and future hydrological fluxes and (ii) to quantify the effectiveness of five management options as adaptation measures for the impacts of the stressors. The ensemble means of the three models derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed for generating future climate scenarios, considering three distinct radiative forcing peculiar to the study area. Also, the historical and future LULC (developed from the hybrid of Cellular Automata and Markov Chain model) are used to produce the LULC scenarios for the basin. The effective calibration, uncertainty and sensitivity analyses are used for optimising the parameters of the model and the validated result implies a plausible model with efficiency of up to 75 %. Consequently, the results of individual impacts of the stressors yield amplification of the peak flows, with more profound impacts from climate stressor than the LULC. Therefore, the climate impact may trigger a marked peak discharge that is 48 % higher as compared to the historical peak flows which are equivalent to 10,000-year flood event. Whilst the combine impacts may further amplify this value by 27 % depending on the scenario. The proposed management interventions such as planned reforestation and reservoir at Dindima should attenuate the disastrous peak discharges by almost 36 %. Furthermore, the land management option should promote the carbon-sequestering project of the Paris agreement ratified by Nigeria. While the reservoir would serve secondary functions of energy production; employment opportunities, aside other social aspects. These measures are therefore expected to mitigate feasibly the negative impacts anticipated from the stressors and the approach can be employed in other river basins in Africa confronted with similar challenges.
  16. Tao H, Bobaker AM, Ramal MM, Yaseen ZM, Hossain MS, Shahid S
    Environ Sci Pollut Res Int, 2019 Jan;26(1):923-937.
    PMID: 30421367 DOI: 10.1007/s11356-018-3663-x
    Surface and ground water resources are highly sensitive aquatic systems to contaminants due to their accessibility to multiple-point and non-point sources of pollutions. Determination of water quality variables using mathematical models instead of laboratory experiments can have venerable significance in term of the environmental prospective. In this research, application of a new developed hybrid response surface method (HRSM) which is a modified model of the existing response surface model (RSM) is proposed for the first time to predict biochemical oxygen demand (BOD) and dissolved oxygen (DO) in Euphrates River, Iraq. The model was constructed using various physical and chemical variables including water temperature (T), turbidity, power of hydrogen (pH), electrical conductivity (EC), alkalinity, calcium (Ca), chemical oxygen demand (COD), sulfate (SO4), total dissolved solids (TDS), and total suspended solids (TSS) as input attributes. The monthly water quality sampling data for the period 2004-2013 was considered for structuring the input-output pattern required for the development of the models. An advance analysis was conducted to comprehend the correlation between the predictors and predictand. The prediction performances of HRSM were compared with that of support vector regression (SVR) model which is one of the most predominate applied machine learning approaches of the state-of-the-art for water quality prediction. The results indicated a very optimistic modeling accuracy of the proposed HRSM model to predict BOD and DO. Furthermore, the results showed a robust alternative mathematical model for determining water quality particularly in a data scarce region like Iraq.
  17. Fu M, Le C, Fan T, Prakapovich R, Manko D, Dmytrenko O, et al.
    Environ Sci Pollut Res Int, 2021 Dec;28(45):64818-64829.
    PMID: 34318419 DOI: 10.1007/s11356-021-15574-y
    The atmospheric particulate matter (PM) with a diameter of 2.5 μm or less (PM2.5) is one of the key indicators of air pollutants. Accurate prediction of PM2.5 concentration is very important for air pollution monitoring and public health management. However, the presence of noise in PM2.5 data series is a major challenge of its accurate prediction. A novel hybrid PM2.5 concentration prediction model is proposed in this study by combining complete ensemble empirical mode decomposition (CEEMD) method, Pearson's correlation analysis, and a deep long short-term memory (LSTM) method. CEEMD was employed to decompose historical PM2.5 concentration data to different frequencies in order to enhance the timing characteristics of data. Pearson's correlation was used to screen the different frequency intrinsic-mode functions of decomposed data. Finally, the filtered enhancement data were inputted to a deep LSTM network with multiple hidden layers for training and prediction. The results evidenced the potential of the CEEMD-LSTM hybrid model with a prediction accuracy of approximately 80% and model convergence after 700 training epochs. The secondary screening of Pearson's correlation test improved the model (CEEMD-Pearson) accuracy up to 87% but model convergence after 800 epochs. The hybrid model combining CEEMD-Pearson with the deep LSTM neural network showed a prediction accuracy of nearly 90% and model convergence after 650 interactions. The results provide a clear indication of higher prediction accuracy of PM2.5 with less computation time through hybridization of CEEMD-Pearson with deep LSTM models and its potential to be employed for air pollution monitoring.
  18. Hamed MM, Nashwan MS, Shahid S, Ismail TB, Dewan A, Asaduzzaman M
    Environ Sci Pollut Res Int, 2022 Dec;29(60):91212-91231.
    PMID: 35881284 DOI: 10.1007/s11356-022-22036-6
    Mapping potential changes in bioclimatic characteristics are critical for planning mitigation goals and climate change adaptation. Assessment of such changes is particularly important for Southeast Asia (SEA) - home to global largest ecological diversity. Twenty-three global climate models (GCMs) of Coupled Model Intercomparison Project Phase 6 (CMIP6) were used in this study to evaluate changes in 11 thermal bioclimatic indicators over SEA for two shared socioeconomic pathways (SSPs), 2-4.5 and 5-8.5. Spatial changes in the ensemble mean, 5th, and 95th percentile of each indicator for near (2020-2059) and far (2060-2099) periods were examined in order to understand temporal changes and associated uncertainty. The results indicated large spatial heterogeneity and temporal variability in projected changes of bioclimatic indicators. A higher change was projected for mainland SEA in the far future and less in maritime region during the near future. At the same time, uncertainty in the projected bioclimatic indices was higher for mainland than maritime SEA. Analysis of mean multi-model ensemble revealed a change in mean temperature ranged from - 0.71 to 3.23 °C in near and from 0.00 to 4.07 °C in far futures. The diurnal temperature range was projected to reduce over most of SEA (ranging from - 1.1 to - 2.0 °C), while isothermality is likely to decrease from - 1.1 to - 4.6%. A decrease in isothermality along with narrowing of seasonality indicated a possible shift in climate, particularly in the north of mainland SEA. Maximum temperature in the warmest month/quarter was projected to increase a little more than the coldest month/quarter and the mean temperature in the driest month to increase more than the wettest month. This would cause an increase in the annual temperature range in the future.
  19. Hashim BM, Al-Naseri SK, Hamadi AM, Mahmood TA, Halder B, Shahid S, et al.
    Int J Disaster Risk Reduct, 2023 Aug;94:103799.
    PMID: 37360250 DOI: 10.1016/j.ijdrr.2023.103799
    The COVID-19 pandemic was a serious global health emergency in 2020 and 2021. This study analyzed the seasonal association of weekly averages of meteorological parameters, such as wind speed, solar radiation, temperature, relative humidity, and air pollutant PM2.5, with confirmed COVID-19 cases and deaths in Baghdad, Iraq, a major megacity of the Middle East, for the period June 2020 to August 2021. Spearman and Kendall correlation coefficients were used to investigate the association. The results showed that wind speed, air temperature, and solar radiation have positive and strong correlations with the confirmed cases and deaths in the cold season (autumn and winter 2020-2021). The total COVID-19 cases negatively correlated with relative humidity but were not significant in all seasons. Besides, PM2.5 strongly correlated with COVID-19 confirmed cases for the summer of 2020. The death distribution by age group showed the highest deaths for those aged 60-69. The highest number of deaths was 41% in the summer of 2020. The study provided useful information about the COVID-19 health emergency and meteorological parameters, which can be used for future health disaster planning, adopting prevention strategies and providing healthcare procedures to protect against future infraction transmission.
  20. Mahesar RA, Shahid S, Asif S, Khoso AK, Kar SK, Shabbir T
    CNS Spectr, 2023 Oct 20.
    PMID: 37861078 DOI: 10.1017/S1092852923006351
    Numerous studies have been conducted globally to assess the compliance level of newspapers with the World Health Organization's media guidelines for responsible suicide reporting. To identify and review such studies conducted in Muslim-majority countries between 2014 and 2022, we searched PubMed and Google Scholar databases. We identified 12 eligible studies from Pakistan (n = 4), Bangladesh (n = 2), Malaysia (n = 1), Indonesia (n = 1), Iraq (n = 1), Iran (n = 1), Nigeria (n = 1), and Egypt (n = 1). These studies indicated an overall lack of adherence to the guidelines. However, the level of nonadherence was particularly high in Pakistan. Effective suicide prevention programs may help in promoting responsible reporting of suicide.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links