Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Ong FB, Wan Ngah WZ, Top AG, Khalid BA, Shamaan NA
    Int. J. Biochem., 1994 Mar;26(3):397-402.
    PMID: 7910569
    1. The effects of alpha-tocopherol and gamma-tocotrienol on glutathione S-transferase (GST) and gamma-glutamyl transpeptidase (gamma-GT) activities in cultured hepatocytes prepared from rats treated with diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) were investigated. 2. Both the alpha-tocopherol and gamma-tocotrienol treated hepatocytes showed significantly higher (P < 0.05) GST activities than untreated hepatocytes prepared from the carcinogen treated rats in the first 3 days of culture. Treatment with alpha-tocopherol and gamma-tocotrienol generally resulted in a tendency to increase the GST activities above that in the untreated hepatocytes. 3. Treatment with high doses (125-250 microM) of alpha-tocopherol and low doses (12.5-25 microM) of gamma-tocotrienol generally resulted in a significant reduction in gamma-GT activities at 1-3 days. gamma-GT activities are reduced as the dose of alpha-tocopherol and gamma-tocotrienol are increased.
  2. Shamaan NA, Kadir KA, Rahmat A, Ngah WZ
    Nutrition, 1998 12 3;14(11-12):846-52.
    PMID: 9834927
    The effects of vitamin C and aloe vera gel extract supplementation on induced hepatocarcinogenesis in male Sprague-Dawley rats (120-150 g) by diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) was investigated. The severity of the carcinogenesis process was determined by measuring gamma-glutamyl transpeptidase (GGT) and the placental form of glutathione S-transferase (GSTP) histochemically in situ and in plasma and liver fractions. In addition, plasma alkaline phosphatase (ALP) and liver microsomal uridine diphosphate glucuronyl transferase (UDPGT) activity were also determined. Administration of DEN/AAF caused an increase in the surface area and number of enzyme-positive foci (both GGT and GSTP) compared with control. Supplementation of vitamin C or aloe vera gel extract to the cancer-induced rats suppressed this increase significantly (P < 0.05; P < 0.001). Increases in liver UDPGT, GGT, and GSTP activities were also observed with cancer induction that were again suppressed with either vitamin C or aloe vera gel supplementation. Plasma GGT in the DEN/AAF rats were determined monthly for the duration of the experiment and found to be reduced as early as 1 mo with aloe vera gel supplementation and 2 mo with vitamin C supplementation. In conclusion, vitamin C and aloe vera gel extract supplementation were found to be able to reduce the severity of chemical hepatocarcinogenesis.
  3. Shukor MY, Baharom NA, Masdor NA, Abdullah MP, Shamaan NA, Jamal JA, et al.
    J Environ Biol, 2009 Jan;30(1):17-22.
    PMID: 20112858
    A new inhibitive heavy metals determination method using trypsin has been developed. The enzyme was assayed using the casein-Coomassie-dye-binding method. In the absence of inhibitors, casein was hydrolysed to completion and the Coomassie-dye was unable to stain the protein and the solution became brown. In the presence of metals, the hydrolysis of casein was inhibited and the solution remained blue. The bioassay was able to detect zinc and mercury with IC50 (concentration causing 50% inhibition) values of 5.78 and 16.38 mg l(-1) respectively. The limits of detection (LOD), for zinc and mercury were 0.06 mg l(-1) (0.05-0.07, 95% confidence interval) and 1.06 mg l(-1) (1.017-1.102, 95% confidence interval), respectively. The limits of quantitation (LOQ) for zinc and mercury were 0.61 mg l(-1) (0.51-0.74 at a 95% confidence interval) and 1.35 mg l(-1) (1.29-1.40 at a 95% confidence interval), respectively. The IC50 value for zinc was much higher than the IC50 values for papain and Rainbow trout, but was within the range of Daphnia magna and Microtox. The IC50 value for zinc was only lower than those for immobilized urease. Other toxic heavy metals, such as lead, silver arsenic, copper and cadmium, did not inhibit the enzyme at 20 mg l(-1). Using this assay we managed to detect elevated zinc concentrations in several environmental samples. Pesticides, such as carbaryl, flucythrinate, metolachlor glyphosate, diuron, diazinon, endosulfan sulphate, atrazine, coumaphos, imidacloprid, dicamba and paraquat, showed no effect on the activity of trypsin relative to control (One-way ANOVA, F(12,26)= 0.3527, p> 0.05). Of the 17 xenobiotics tested, only (sodium dodecyl sulphate) SDS gave positive interference with 150% activity higher than that of the control at 0.25% (v/v).
  4. Sabullah MK, Sulaiman MR, Abd Shukor MY, Syed MA, Shamaan NA, Khalid A, et al.
    ScientificWorldJournal, 2014;2014:571094.
    PMID: 25401148 DOI: 10.1155/2014/571094
    Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and -25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
  5. Shukor MY, Rahman MF, Shamaan NA, Syed MA
    J Basic Microbiol, 2009 Sep;49 Suppl 1:S43-54.
    PMID: 19455513 DOI: 10.1002/jobm.200800312
    Extensive use of metals in various industrial applications has caused substantial environmental pollution. Molybdenum-reducing bacteria isolated from soils can be used to remove molybdenum from contaminated environments. In this work we have isolated a local bacterium with the capability to reduce soluble molybdate to the insoluble molybdenum blue. We studied several factors that would optimize molybdate reduction. Electron donor sources such as glucose, sucrose, lactose, maltose and fructose (in decreasing efficiency) supported molybdate reduction after 24 h of incubation with optimum glucose concentration for molybdate reduction at 1.5% (w/v). The optimum pH, phosphate and molybdate concentrations, and temperature for molybdate reduction were pH 6.5, 5.0, 25 to 50 mM and 37 degrees C, respectively. The Mo-blue produced by cellular reduction exhibited a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Metal ions such as chromium, cadmium, copper, silver and mercury caused approximately 73, 71, 81, 77 and 78% inhibition of the molybdenum-reducing activity, respectively. All of the respiratory inhibitors tested namely rotenone, azide, cyanide and antimycin A did not show any inhibition to the molybdenum-reducing activity suggesting components of the electron transport system are not responsible for the reducing activity. The isolate was tentatively identified as Enterobacter sp. strain Dr.Y13 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny.
  6. Rahman MF, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):65-72.
    PMID: 20112865
    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
  7. Shamaan NA, Yunus I, Mahbut H, Wan Ngah WZ
    Comp. Biochem. Physiol., B, 1991;100(2):259-63.
    PMID: 1799968
    1. Glutathione transferases from the liver, lung and kidney tissues of the buffalo (Bubalus bubalis) and the Kedah-Kelantan cattle (Bos indicus) were partially purified by ammonium sulphate precipitation and Sephadex G-75 gel filtration. 2. Liver tissue contains the highest enzyme activity when compared to the lung and kidney tissues. 3. The activity in cattle is higher than that in the buffalo. 4. Isoelectric focusing separates the activities into the acidic, near neutral and basic fractions. 5. The focused patterns are different for each of the tissues and in each of the species investigated.
  8. Shukor MY, Halmi MI, Rahman MF, Shamaan NA, Syed MA
    Biomed Res Int, 2014;2014:853084.
    PMID: 24724104 DOI: 10.1155/2014/853084
    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.
  9. Ahmad SA, Shukor MY, Shamaan NA, Mac Cormack WP, Syed MA
    Biomed Res Int, 2013;2013:871941.
    PMID: 24381945 DOI: 10.1155/2013/871941
    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo⁶⁺ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spectrum with a peak maximum at 865 nm and a shoulder at 710 nm. Respiratory inhibitors such as antimycin A, sodium azide, potassium cyanide, and rotenone failed to inhibit the reducing activity. The Mo-reducing enzyme was partially purified using ion exchange and gel filtration chromatography. The partially purified enzyme showed optimal pH and temperature for activity at 6.0 and 20°C, respectively. Metal ions such as cadmium, chromium, copper, silver, lead, and mercury caused more than 95% inhibition of the molybdenum-reducing activity at 0.1 mM. The isolate was tentatively identified as Pseudomonas sp. strain DRY1 based on partial 16s rDNA molecular phylogenetic assessment and the Biolog microbial identification system. The characteristics of this strain would make it very useful in bioremediation works in the polar and temperate countries.
  10. Shukor MY, Ahmad SA, Nadzir MM, Abdullah MP, Shamaan NA, Syed MA
    J Appl Microbiol, 2010 Jun;108(6):2050-8.
    PMID: 19968732 DOI: 10.1111/j.1365-2672.2009.04604.x
    To isolate and characterize a potent molybdenum-reducing bacterium.
  11. Yakasai HM, Rahman MF, Manogaran M, Yasid NA, Syed MA, Shamaan NA, et al.
    Int J Environ Res Public Health, 2021 May 27;18(11).
    PMID: 34071757 DOI: 10.3390/ijerph18115731
    Molybdenum (Mo) microbial bioreduction is a phenomenon that is beginning to be recognized globally as a tool for the remediation of molybdenum toxicity. Molybdenum toxicity continues to be demonstrated in many animal models of spermatogenesis and oogenesis, particularly those of ruminants. The phenomenon has been reported for more than 100 years without a clear understanding of the reduction mechanism, indicating a clear gap in the scientific knowledge. This knowledge is not just fundamentally important-it is specifically important in applications for bioremediation measures and the sustainable recovery of metal from industrial or mine effluent. To date, about 52 molybdenum-reducing bacteria have been isolated globally. An increasing number of reports have also been published regarding the assimilation of other xenobiotics. This phenomenon is likely to be observed in current and future events in which the remediation of xenobiotics requires microorganisms capable of degrading or transforming multi-xenobiotics. This review aimed to comprehensively catalogue all of the characterizations of molybdenum-reducing microorganisms to date and identify future opportunities and improvements.
  12. Rahmat A, Ngah WZ, Shamaan NA, Gapor A, Abdul Kadir K
    Nutrition, 1993 May-Jun;9(3):229-32.
    PMID: 8102564
    The effects of long-term administration of tocotrienol on hepatocarcinogenesis in rats induced by diethylnitrosamine (DEN) and 2-acetylaminofluorene (AAF) were investigated by determining the activities of gamma-glutamyl transpeptidase (GGT), alkaline phosphatase (ALP), glutathione S-transferases (GSTs), and glutathione (GSH) levels in blood and liver. Twenty-eight male 7- to 8-wk-old Rattus norwegicus rats, weighing 120-160 g, were used in this study. The rats were divided into four treatment groups: a control group on a basal diet, a group fed a basal diet supplemented with tocotrienol (30 mg/kg food), a group treated with DEN/AAF, and a group treated with DEN/AAF and fed a diet supplemented with tocotrienol (30 mg/kg food). Blood was collected monthly, and GGT, ALP, and GSH levels were determined. The rats were killed after 9 mo, and the livers were examined morphologically. Grayish white nodules (2/liver) were found in all the DEN/AAF-treated rats (n = 10), but only one of the rats treated with DEN/AAF and supplemented with tocotrienol (n = 6) had liver nodules. A significant increase in the level of blood and liver GSH, ALP, and GGT activities was observed in the DEN/AAF-treated rats. Liver GSTs were similarly increased with DEN/AAF treatment. Tocotrienol supplementation attenuated the impact of the carcinogens in the rats.
  13. Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, et al.
    J Environ Manage, 2016 Dec 01;183:182-95.
    PMID: 27591845 DOI: 10.1016/j.jenvman.2016.08.059
    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.
  14. Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al.
    J Environ Biol, 2009 Jan;30(1):57-64.
    PMID: 20112864
    Several local acrylamide-degrading bacteria have been isolated. One of the isolate that exhibited the highest growth on acrylamide as a nitrogen source was then further characterized. The isolate was tentatively identified as Bacillus cereus strain DRY135 based on carbon utilization profiles using Biolog GP plates and partial 16S rDNA molecular phylogeny. The isolate grew optimally in between the temperatures of 25 and 30 degrees C and within the pH range of 6.8 to 7.0. Glucose, fructose, lactose, maltose, mannitol, citric acid and sucrose supported growth with glucose being the best carbon source. Different concentrations of acrylamide ranging from 100 to 4000 mg l(-1) incorporated into the growth media shows that the highest growth was obtained at acrylamide concentrations of between 500 to 1500 mg l(-1). At 1000 mg l(-1) of acrylamide, degradation was 90% completed after ten days of incubation with concomitant cell growth. The metabolite acrylic acid was detected in the media during degradation. Other amides such as methacrylamide, nicotinamide, acetamide, propionamide and urea supported growth with the highest growth supported by acetamide, propionamide and urea. Strain DRY135, however was not able to assimilate 2-chloroacetamide. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
  15. Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA
    J Environ Biol, 2009 Jan;30(1):107-12.
    PMID: 20112871
    The presence of acrylamide in the environment poses a threat due to its well known neurotoxic, carcinogenic and teratogenic properties. Human activities in various geographical areas are the main anthropogenic source of acrylamide pollution. In this work, an acrylamide-degrading bacterium was isolated from Antarctic soil. The physiological characteristics and optimum growth conditions of the acrylamide-degrading bacteria were investigated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ7 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. The results showed that the best carbon sources for growth was glucose and sucrose with no significant difference in terms of cellular growth between the two carbon sources (p>0.05). This was followed by fructose and maltose with fructose giving significantly higher cellular growth compared to maltose (p<0.05). Lactose and citric acid did not support growth. The optimum acrylamide concentration as a nitrogen source for cellular growth was at 500 mgl(-1). At this concentration, bacterial growth showed a 2-day lag phase before degradation took place concomitant with an increase in cellular growth. The isolate exhibited optimum growth in between pH 7.5 and 8.5. The effect of incubation temperature on the growth of this isolate showed an optimum growth at 15 degrees C. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
  16. Shukor MY, Husin WS, Rahman MF, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):129-34.
    PMID: 20112874
    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has begun to receive greater attention as the amount of SDS usage increases to a point where treatment plants would not be able to cope with the increasing amount of SDS in wastewater. The purpose of this work was to isolate local SDS-degrading bacteria. Screening was carried out by the conventional enrichment-culture technique. Six SDS-degrading bacteria were isolated. Of these isolates, isolate S14 showed the highest degradation of SDS with 90% degradation after three days of incubation. Isolate S14 was tentatively identified as Klebsiella oxytoca strain DRY14 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. SDS degradation by the bacterium was optimum at 37 degrees 0. Ammonium sulphate; at 2.0 g l(-1), was found to be the best nitrogen source for the growth of strain DRY14. Maximum growth on SDS was observed at pH 7.25. The strain exhibited optimum growth at SDS concentration of 2.0 g l(-1) and was completely inhibited at 10 g l(-1) SDS. At the tolerable initial concentration of 2.0 g l(-1), almost 80% of 2.0 g l(-1) SDS was degraded after 4 days of incubation concomitant with increase in cellular growth. The K(m(app) and V(max(app)) values calculated for the alkylsulfatase from this bacterium were 0.1 mM SDS and 1.07 micromol min(-1) mg(-1) protein, respectively.
  17. Shukor MY, Hassan NA, Jusoh AZ, Perumal N, Shamaan NA, MacCormack WP, et al.
    J Environ Biol, 2009 Jan;30(1):1-6.
    PMID: 20112855
    A diesel-degrading bacterium from Antarctica has been isolated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ3 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Growth on diesel was supported optimally by ammonium sulphate, nitrate and nitrite. The bacterium grew optimally in between 10 and 15 degrees C, pH 7.0 and 3.5% (v/v) diesel. The biodegradation of diesel oil by the strain increased in efficiency from the second to the sixth day of incubation from 1.4 to 18.8% before levelling off on the eighth day n-alkane oxidizing and aldehyde reductase activities were detected in the crude enzyme preparation suggesting the existence of terminal n-alkane oxidizing activity in this bacterium.
  18. Shamaan NA, Hamidah R, Jeffries J, Hashim AJ, Wan Ngah WZ
    PMID: 8097444
    1. Toxicity evaluations of DDT, lindane, abate and carbaryl were carried out in the larvae of two wild Aedes aegypti strains from Kuala Lumpur and Klang. The Kuala Lumpur strain was more susceptible to the insecticides than the Klang strain. 2. The lethal toxicity time was also determined. The insecticides were found to take a longer time to exert their effect in the Klang strain as compared to the Kuala Lumpur strain. 3. Carboxylesterase activity was determined to be higher in the Kuala Lumpur strain, but glutathione transferase activities were higher in the Klang strain.
  19. Yusof YA, Saad SM, Makpol S, Shamaan NA, Ngah WZ
    Clinics (Sao Paulo), 2010;65(12):1371-7.
    PMID: 21340229
    OBJECTIVES: The aim of this study was to determine the antiproliferative and apoptotic effects of hot water extracts of Chlorella vulgaris on hepatoma cell line HepG2.

    INTRODUCTION: The search for food and spices that can induce apoptosis in cancer cells has been a major study interest in the last decade. Chlorella vulgaris, a unicellular green algae, has been reported to have antioxidant and anti-cancer properties. However, its chemopreventive effects in inhibiting the growth of cancer cells have not been studied in great detail.

    METHODS: HepG2 liver cancer cells and WRL68 normal liver cells were treated with various concentrations (0-4 mg/ml) of hot water extract of C. vulgaris after 24 hours incubation. Apoptosis rate was evaluated by TUNEL assay while DNA damage was assessed by Comet assay. Apoptosis proteins were evaluated by Western blot analysis.

    RESULTS: Chlorella vulgaris decreased the number of viable HepG2 cells in a dose dependent manner (p < 0.05), with an IC50 of 1.6 mg/ml. DNA damage as measured by Comet assay was increased in HepG2 cells at all concentrations of Chlorella vulgaris tested. Evaluation of apoptosis by TUNEL assay showed that Chlorella vulgaris induced a higher apoptotic rate (70%) in HepG2 cells compared to normal liver cells, WRL68 (15%). Western blot analysis showed increased expression of pro-apoptotic proteins P53, Bax and caspase-3 in the HepG2 cells compared to normal liver cells WRL68, and decreased expression of the anti-apoptotic protein Bcl-2.

    CONCLUSIONS: Chlorella vulgaris may have anti-cancer effects by inducing apoptosis signaling cascades via an increased expression of P53, Bax and caspase-3 proteins and through a reduction of Bcl-2 protein, which subsequently lead to increased DNA damage and apoptosis.

  20. Shukor MY, Habib SH, Rahman MF, Jirangon H, Abdullah MP, Shamaan NA, et al.
    Appl Biochem Biotechnol, 2008 Apr;149(1):33-43.
    PMID: 18350385 DOI: 10.1007/s12010-008-8137-z
    A molybdate-reducing bacterium has been locally isolated. The bacterium reduces molybdate or Mo(6+) to molybdenum blue (molybdate oxidation states of between 5+ and 6+). Different carbon sources such as acetate, formate, glycerol, citric acid, lactose, fructose, glucose, mannitol, tartarate, maltose, sucrose, and starch were used at an initial concentration of 0.2% (w/v) in low phosphate media to study their effect on the molybdate reduction efficiency of bacterium. All of the carbon sources supported cellular growth, but only sucrose, maltose, glucose, and glycerol (in decreasing order) supported molybdate reduction after 24 h of incubation. Optimum concentration of sucrose for molybdate reduction is 1.0% (w/v) after 24 h of static incubation. Ammonium sulfate, ammonium chloride, valine, OH-proline, glutamic acid, and alanine (in the order of decreasing efficiency) supported molybdate reduction with ammonium sulfate giving the highest amount of molybdenum blue after 24 h of incubation at 0.3% (w/v). The optimum molybdate concentration that supports molybdate reduction is between 15 and 25 mM. Molybdate reduction is optimum at 35 degrees C. Phosphate at concentrations higher than 5 mM strongly inhibits molybdate reduction. The molybdenum blue produced from cellular reduction exhibits a unique absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. The isolate was tentatively identified as Serratia marcescens Strain Dr.Y6 based on carbon utilization profiles using Biolog GN plates and partial 16s rDNA molecular phylogeny.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links