Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. El-Hassan O, Sharif A, Al Redha M, Blair I
    PMID: 29295053
    In the United Arab Emirates (UAE), health services have developed greatly in the past 40 years. To ensure they continue to meet the needs of the population, innovation and change are required including investment in a strong e-Health infrastructure with a single transferrable electronic patient record. In this paper, using the Emirate of Dubai as a case study, we report on the Middle East Electronic Medical Record Adoption Model (EMRAM). Between 2011-2016, the number of participating hospitals has increased from 23 to 33. Currently, while 20/33 of hospitals are at Stage 2 or less, 10/33 have reached Stage 5. Also Dubai's median EMRAM score in 2016 (2.5) was higher than the scores reported from Australia (2.2), New Zealand (2.3), Malaysia (0.06), the Philippines (0.06) and Thailand (0.5). EMRAM has allowed the tracking of the progress being made by healthcare facilities in Dubai towards upgrading their information technology infrastructure and the introduction of electronic medical records.
  2. Ma H, Crowther TW, Mo L, Maynard DS, Renner SS, van den Hoogen J, et al.
    Nat Plants, 2023 Nov;9(11):1795-1809.
    PMID: 37872262 DOI: 10.1038/s41477-023-01543-5
    Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
  3. Seibold S, Rammer W, Hothorn T, Seidl R, Ulyshen MD, Lorz J, et al.
    Nature, 2021 Sep;597(7874):77-81.
    PMID: 34471275 DOI: 10.1038/s41586-021-03740-8
    The amount of carbon stored in deadwood is equivalent to about 8 per cent of the global forest carbon stocks1. The decomposition of deadwood is largely governed by climate2-5 with decomposer groups-such as microorganisms and insects-contributing to variations in the decomposition rates2,6,7. At the global scale, the contribution of insects to the decomposition of deadwood and carbon release remains poorly understood7. Here we present a field experiment of wood decomposition across 55 forest sites and 6 continents. We find that the deadwood decomposition rates increase with temperature, and the strongest temperature effect is found at high precipitation levels. Precipitation affects the decomposition rates negatively at low temperatures and positively at high temperatures. As a net effect-including the direct consumption by insects and indirect effects through interactions with microorganisms-insects accelerate the decomposition in tropical forests (3.9% median mass loss per year). In temperate and boreal forests, we find weak positive and negative effects with a median mass loss of 0.9 per cent and -0.1 per cent per year, respectively. Furthermore, we apply the experimentally derived decomposition function to a global map of deadwood carbon synthesized from empirical and remote-sensing data, obtaining an estimate of 10.9 ± 3.2 petagram of carbon per year released from deadwood globally, with 93 per cent originating from tropical forests. Globally, the net effect of insects may account for 29 per cent of the carbon flux from deadwood, which suggests a functional importance of insects in the decomposition of deadwood and the carbon cycle.
  4. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Sep;621(7980):773-781.
    PMID: 37612513 DOI: 10.1038/s41586-023-06440-7
    Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
  5. Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, et al.
    Nature, 2023 Oct;622(7982):E2.
    PMID: 37752352 DOI: 10.1038/s41586-023-06654-9
  6. Mo L, Zohner CM, Reich PB, Liang J, de Miguel S, Nabuurs GJ, et al.
    Nature, 2023 Dec;624(7990):92-101.
    PMID: 37957399 DOI: 10.1038/s41586-023-06723-z
    Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.
  7. Umer M, Jesse FFA, Mohammed Saleh WM, Chung ELT, Haron AW, Saharee AA, et al.
    Microb Pathog, 2020 Dec;149:104539.
    PMID: 33007431 DOI: 10.1016/j.micpath.2020.104539
    Caseous lymphadenitis (CLA) caused by Corynebacterium pseudotuberculosis is characterized by the development of abscesses, mainly in superficial and internal lymph nodes, visceral and reproductive organs in small ruminants. This study aims to examine the histopathological changes in reproductive organs of goats immunized with killed vaccine of C. pseudotuberculosis. In this study, twenty four (24) clinically healthy bucks and does were divided into four groups A, B, C and D. Animals in groups A and B were immunized with 0.5 and 1% formalin killed vaccine, respectively; followed by a booster dose. After the booster dose of immunization, groups A, B and C were challenged with C. pseudotuberculosis at 106 cfu/ml. Goats in group D were immunize and unchallenged and left as control group. All C. pseudotuberculosis infected animals were euthanized humanely 12 weeks post-challenged. Tissue samples such as testes, epididymis, spermatic cord, penis, pituitary gland, mammary gland, vulva, vagina, cervix, uterus, fallopian tube and ovaries were collected for histopathology study. Microscopic examination of all tissues (testes, seminiferous tubules, spermatic cord, penile tissues and the pituitary gland) in the male reproductive organs of the bucks that were inoculated with 2 ml of 0.5% and 1.0% of C. pseudotuberculosis killed vaccine showed normal (animals inoculated with 1.0%) to mild (animals inoculated with 0.5%) histopathological changes when compared with those from group C which showed varying degrees of histopathological changes (p 
  8. Irfan M, Razzaq A, Suksatan W, Sharif A, Madurai Elavarasan R, Yang C, et al.
    J Therm Biol, 2022 Feb;104:103101.
    PMID: 35180949 DOI: 10.1016/j.jtherbio.2021.103101
    The emergence of new coronavirus (SARS-CoV-2) has become a significant public health issue worldwide. Some researchers have identified a positive link between temperature and COVID-19 cases. However, no detailed research has highlighted the impact of temperature on COVID-19 spread in India. This study aims to fill this research gap by investigating the impact of temperature on COVID-19 spread in the five most affected Indian states. Quantile-on-Quantile regression (QQR) approach is employed to examine in what manner the quantiles of temperature influence the quantiles of COVID-19 cases. Empirical results confirm an asymmetric and heterogenous impact of temperature on COVID-19 spread across lower and higher quantiles of both variables. The results indicate a significant positive impact of temperature on COVID-19 spread in the three Indian states (Maharashtra, Andhra Pradesh, and Karnataka), predominantly in both low and high quantiles. Whereas, the other two states (Tamil Nadu and Uttar Pradesh) exhibit a mixed trend, as the lower quantiles in both states have a negative effect. However, this negative effect becomes weak at middle and higher quantiles. These research findings offer valuable policy recommendations.
  9. Godil DI, Sharif A, Ali MI, Ozturk I, Usman R
    J Environ Manage, 2021 May 01;285:112208.
    PMID: 33618139 DOI: 10.1016/j.jenvman.2021.112208
    The aim of this research is to explore the association between financial development, research and development (R&D) expenditures, globalization, institutional quality, and energy consumption in India by using the quarterly data of 1995-2018. Quantile Autoregressive Distributed Lag (QARDL) approach is employed to examine the relationship. An application of the QARDL approach suggests that the R&D, financial development, globalization, and institutional quality significantly influence energy utilization in India. R&D and institutional quality have a negative effect on energy utilization which shows that due to the increase in the quality of institutions and R&D in the country, energy utilization is likely to decrease. However, globalization and financial performance have a positive influence on energy which depicts that due to the increase in financial performance and globalization in India the energy consumption is likely to increase. According to the outcomes of this research, India should make a policy to ease the penalties of energy utilization by monitoring resource transfer by means of globalization and by implementing energy conversation procedures through the advancement of the financial sector.
  10. Sinha A, Mishra S, Sharif A, Yarovaya L
    J Environ Manage, 2021 Aug 15;292:112751.
    PMID: 33991831 DOI: 10.1016/j.jenvman.2021.112751
    Striving to achieve the Sustainable Development Goals (SDGs), countries are increasingly embracing a sustainable financing mechanism via green bond financing. Green bonds have attracted the attention of the industrial sector and policymakers, however, the impact of green bond financing on environmental and social sustainability has not been confirmed. There is no empirical evidence on how this financial product can contribute to achieving the goals set out in Agenda 2030. In this study, we empirically analyze the impact of green bond financing on environmental and social sustainability by considering the S&P 500 Global Green Bond Index and S&P 500 Environmental and Social Responsibility Index, from October 1, 2010 to 31st July 2020 using a combination of Quantile-on-Quantile Regression and Wavelet Multiscale Decomposition approaches. Our results reveal that green financing mechanisms might have gradual negative transformational impacts on environmental and social responsibility. Furthermore, we attempt to design a policy framework to address the relevant SDG objectives.
  11. Sharif A, Aloui C, Yarovaya L
    Int Rev Financ Anal, 2020 Jul;70:101496.
    PMID: 38620230 DOI: 10.1016/j.irfa.2020.101496
    In this paper, we analyze the connectedness between the recent spread of COVID-19, oil price volatility shock, the stock market, geopolitical risk and economic policy uncertainty in the US within a time-frequency framework. The coherence wavelet method and the wavelet-based Granger causality tests applied to US recent daily data unveil the unprecedented impact of COVID-19 and oil price shocks on the geopolitical risk levels, economic policy uncertainty and stock market volatility over the low frequency bands. The effect of the COVID-19 on the geopolitical risk substantially higher than on the US economic uncertainty. The COVID-19 risk is perceived differently over the short and the long-run and may be firstly viewed as an economic crisis. Our study offers several urgent prominent implications and endorsements for policymakers and asset managers.
  12. Irfan M, Ahmad M, Fareed Z, Iqbal N, Sharif A, Wu H
    PMID: 33448868 DOI: 10.1080/09603123.2021.1874888
    The aim of this study is to identify and highlight the positive and negative indirect environmental impacts of COVID-19, with a particular focus on the most affected economies (USA, China, Spain, and Italy). In this respect, the empirical and theoretical dimensions of the contents of those impacts are analyzed. Research findings reveal a significant relationship between contingency actions and positive indirect impacts such as air quality improvements, clean beaches, and the decline in environmental noise. Besides, negative indirect impacts also exist, such as the rise in waste level and curtailment in recycling, further threatening the physical spaces (land and water), besides air. It is expected that global businesses will revive in the near future (though slowly), but the reduction in greenhouse gas emissions during this short time span is not a sustainable way of environmental mitigation. Thus, long-term mitigation policies should be strengthened to cope with the undesirable deterioration of the environment. Research findings provide an up-to-date glimpse of the pandemic from the perspectives of current and future indirect environmental impacts and the post-pandemic situation. Finally, it is suggested to invent and prepare action plans to induce a sustainable economic and environmental future in the post-pandemic world scenario.
  13. Ozturk I, Sharif A, Godil DI, Yousuf A, Tahir I
    Eval Rev, 2023 Jun;47(3):532-562.
    PMID: 36632679 DOI: 10.1177/0193841X221149809
    Tourism is one of the important factors that can affect the environmental and economic situation of any economy. This study investigates the relationship between tourist arrivals and CO2 emission in the top 20 tourist destinations using data from quarterly observations from 1995 to 2018. A unique technique via quantile-on-quantile regression and Granger causality in quantiles was used. In particular, how the quantiles of tourist arrivals impact quantiles of CO2 emission was analyzed. The empirical results suggest a combination of both positive and negative effects of tourist arrivals and CO2 emission in most tourist destinations. Predominantly, at both high and low tails, in the USA, Spain, Hong Kong, and Austria, tourist arrival has a positive effect on CO2 emission, whereas in the case of Canada, France, Germany, Mexico, and Malaysia, the association was negative. On the other hand, China, Greece, Russia, Japan, Italy, South Korea, Thailand, and Turkey have both positive and negative effects of tourism on CO2 emissions at low and high tails. Tourism can be an important factor while formulating policy for environmental and climate aspects.
  14. Sharif A, Afshan S, Qureshi MA
    Environ Sci Pollut Res Int, 2019 Apr;26(11):11191-11211.
    PMID: 30796670 DOI: 10.1007/s11356-019-04351-7
    Globalization persists the tendency to alter numerous aspects of today's world including religion, transport, language, living styles, and international relations; however, its potential to influence quality of environment is the prime concern for trade and environmental policies guidelines (Audi and Ali 2018). In response to the growing interest for identifying the dynamic relationship between globalization and environmental performance, the present study seeks to investigate the critical link between globalization and ecological footprints in top 15 globalized countries between 1970 and 2016. Applying the novel methods of quantile-on-quantile regression (QQ) and Granger causality in quantiles, the findings examine the manners in which quantiles of globalization affect the quantiles of ecological footprints and vice versa. The empirical results suggest that globalization has a long-term positive effect on ecological footprint and vice versa in case of Belgium, the Netherlands, Sweden, Switzerland, Denmark, Norway, Canada, and Portugal. On the other hand, the estimated results indicate a negative effect between globalization and ecological footprint in the case of France, Germany, the UK, and Hungary. These results extend the recent findings on the globalization-environment nexus implying that the magnitude of relationship among both variables varies with countries demanding individual focus and cautions for postulating environmental and trade policies.
  15. Sharif A, Bhattacharya M, Afshan S, Shahbaz M
    Environ Sci Pollut Res Int, 2021 Nov;28(41):57582-57601.
    PMID: 34089449 DOI: 10.1007/s11356-021-13829-2
    A key objective of renewable energy development in the USA is to reduce CO2 emissions by decreasing reliance on fossil fuels in the coming decades. Using quantile-on-quantile regressions, this research examines the relationship between disaggregated sources of renewable energy (biomass, biofuel, geothermal, hydroelectric, solar, wind, wood, and waste) and CO2 emissions in the USA during the period from 1995 to 2017. Our findings support the deployment of various types of renewables in combating CO2 emissions for each quantile. In particular, a negative effect of renewable energy consumption on CO2 emissions is observed for the lower quantiles in almost all types of renewables. The effect of all the renewable energy sources taken together is significant for the lower and upper quantiles of the provisional distribution of CO2 emissions. The effect of renewable energy becomes stronger and more significant in the middle quantiles, where a pronounced causal effect of return and volatility is detected for the lower and upper middle quantiles. At the same time, heterogeneity in the findings across various types of renewable energy sources reveals differences in the relative importance of each type within the energy sector taken as a whole. Future US initiatives in renewable energy deployment at both the federal and the state levels should take into consideration the relative importance of each type, so as to maximize the efficacy of renewable energy policies in combating CO2 emissions.
  16. Khan MK, Abbas F, Godil DI, Sharif A, Ahmed Z, Anser MK
    Environ Sci Pollut Res Int, 2021 Oct;28(39):55579-55591.
    PMID: 34138439 DOI: 10.1007/s11356-021-14686-9
    Without enhancing the quality of the environment, the goals of sustainable development remain unachievable. In order to minimize the damage to the planet, sustainable practices need to be considered. This study is conducted to identify some of the drivers behind the increasing sustainability issues and tried to investigate the impact of natural resources, financial development, and economic growth on the ecological footprint in Malaysia from the year 1980-2019 by utilizing the dynamic simulated autoregressive distribution lag approach. It was identified that financial development, economic growth, and natural resources are the determinants behind the upsurge of the ecological footprint as all three show a positive and significant effect on ecological footprint. However, in the long run, the presence of the Environmental Kuznets Curve hypothesis was also validated in Malaysia. Therefore, it is recommended to increase awareness among the public regarding the adoption of sustainable practices in everyday life and to use green technologies that offer maximum efficiency and minimum damage to the environment in commercial and domestic activities. Finally, based on the research results, a comprehensive policy framework was proposed which could allow the Malaysian economy to attain the objectives of Sustainable Development Goals (SDGs) 7, 8, and 13.
  17. Anser MK, Usman M, Godil DI, Shabbir MS, Sharif A, Tabash MI, et al.
    Environ Sci Pollut Res Int, 2021 Oct;28(37):51105-51118.
    PMID: 33974204 DOI: 10.1007/s11356-021-14243-4
    This study analyzes the relationship between globalization, energy consumption, and economic growth among selected South Asian countries to promote the green economy and environment. This study also finds causal association between energy growth and nexus of CO2 emissions and employed the premises of the EKC framework. The study used annual time series analysis, starting from 1985 to 2019. The data set has been collected from the World Development Indicator (WDI). The result of a fully modified ordinary least square (FMOLS) method describes a significantly worse quality environment in the South Asian region. The individual country as Bangladesh shows a positively significant impact on the CO2 emissions and destroys the level of environment regarding non-renewable energy and globalization index. However, negative and positive growth levels (GDP) and square of GDP confirm the EKC hypothesis in this region. This study has identified the causality between GDP growth and carbon emission and found bidirectional causality between economic growth and energy use.
  18. Godil DI, Ahmad P, Ashraf MS, Sarwat S, Sharif A, Shabib-Ul-Hasan S, et al.
    Environ Sci Pollut Res Int, 2021 May;28(17):21486-21498.
    PMID: 33415625 DOI: 10.1007/s11356-020-11839-0
    This study is a scholarly effort to broaden the existing literature on the impact of transportation services, urbanization, and financial development on ecological footprints in Pakistan. Data used in this study covers the period of 39 years from 1980 to 2018. This study adopted the QARDL model to tackle the non-linear association of variables and test their long-run stability across the different quantiles. The findings of this study indicated a significant negative association of transportation services and financial development with ecological footprints in Pakistan at almost all quantiles whereas, the urban population was found to be positively associated with the ecological footprint in Pakistan. Results also justify the existence of the EKC hypothesis in the scenario of Pakistan. Policymakers are advised to frame strategies for investors to invest more in eco-friendly projects to curtail the ecological footprints in Pakistan. Minimizing the dependency of the transportation sector on fossil fuel, and increased use of energy-efficient appliances in the urban population would be beneficial to control the negative influence on ecological footprints in Pakistan.
  19. Godil DI, Sharif A, Agha H, Jermsittiparsert K
    Environ Sci Pollut Res Int, 2020 Jul;27(19):24190-24200.
    PMID: 32304061 DOI: 10.1007/s11356-020-08619-1
    This novel research is an argumentative subject which was needed to be addressed and to fill this gap, the author examined the effect of financial development, information and communication technology, and institutional quality on CO2 emission in Pakistan by using quantile autoregressive distributed lag (QARDL) model. The data were obtained for the period from 1995Q1 to 2018Q4. In the long run, GDP and institutional quality have a positive impact on CO2 emission when this emission is already high, which shows that if the GDP and institutional quality increases, the CO2 emission also increases. Moreover, financial development and ICT has a negative impact on CO2 emission irrespective of emission level that whether it is high or low in the country, which shows that if financial enhancement and ICT increases, carbon emission decreases. The study also supported the EKC hypothesis in Pakistan.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links