Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Habib S, Ahmad SA, Wan Johari WL, Abd Shukor MY, Alias SA, Smykla J, et al.
    Int J Mol Sci, 2020 Aug 26;21(17).
    PMID: 32858859 DOI: 10.3390/ijms21176138
    Rhodococci are renowned for their great metabolic repertoire partly because of their numerous putative pathways for large number of specialized metabolites such as biosurfactant. Screening and genome-based assessment for the capacity to produce surface-active molecules was conducted on Rhodococcus sp. ADL36, a diesel-degrading Antarctic bacterium. The strain showed a positive bacterial adhesion to hydrocarbon (BATH) assay, drop collapse test, oil displacement activity, microplate assay, maximal emulsification index at 45% and ability to reduce water surface tension to < 30 mN/m. The evaluation of the cell-free supernatant demonstrated its high stability across the temperature, pH and salinity gradient although no correlation was found between the surface and emulsification activity. Based on the positive relationship between the assessment of macromolecules content and infrared analysis, the extracted biosurfactant synthesized was classified as a lipopeptide. Prediction of the secondary metabolites in the non-ribosomal peptide synthetase (NRPS) clusters suggested the likelihood of the surface-active lipopeptide production in the strain's genomic data. This is the third report of surface-active lipopeptide producers from this phylotype and the first from the polar region. The lipopeptide synthesized by ADL36 has the prospect to be an Antarctic remediation tool while furnishing a distinctive natural product for biotechnological application and research.
  2. Rahman ME, Bin Halmi MIE, Bin Abd Samad MY, Uddin MK, Mahmud K, Abd Shukor MY, et al.
    PMID: 33187288 DOI: 10.3390/ijerph17228339
    Constructed wetlands (CWs) are affordable and reliable green technologies for the treatment of various types of wastewater. Compared to conventional treatment systems, CWs offer an environmentally friendly approach, are low cost, have fewer operational and maintenance requirements, and have a high potential for being applied in developing countries, particularly in small rural communities. However, the sustainable management and successful application of these systems remain a challenge. Therefore, after briefly providing basic information on wetlands and summarizing the classification and use of current CWs, this study aims to provide and inspire sustainable solutions for the performance and application of CWs by giving a comprehensive review of CWs' application and the recent development of their sustainable design, operation, and optimization for wastewater treatment. To accomplish this objective, thee design and management parameters of CWs, including macrophyte species, media types, water level, hydraulic retention time (HRT), and hydraulic loading rate (HLR), are discussed. Besides these, future research on improving the stability and sustainability of CWs are highlighted. This article provides a tool for researchers and decision-makers for using CWs to treat wastewater in a particular area. This paper presents an aid for informed analysis, decision-making, and communication. The review indicates that major advances in the design, operation, and optimization of CWs have greatly increased contaminant removal efficiencies, and the sustainable application of this treatment system has also been improved.
  3. Yusuf I, Ahmad SA, Phang LY, Syed MA, Shamaan NA, Abdul Khalil K, et al.
    J Environ Manage, 2016 Dec 01;183:182-95.
    PMID: 27591845 DOI: 10.1016/j.jenvman.2016.08.059
    Biodegradation of agricultural wastes, generated annually from poultry farms and slaughterhouses, can solve the pollution problem and at the same time yield valuable degradation products. But these wastes also constitute environmental nuisance, especially in Malaysia where their illegal disposal on heavy metal contaminated soils poses a serious biodegradation issue as feather tends to accumulate heavy metals from the surrounding environment. Further, continuous use of feather wastes as cheap biosorbent material for the removal of heavy metals from effluents has contributed to the rising amount of polluted feathers, which has necessitated the search for heavy metal-tolerant feather degrading strains. Isolation, characterization and application of a novel heavy metal-tolerant feather-degrading bacterium, identified by 16S RNA sequencing as Alcaligenes sp. AQ05-001 in degradation of heavy metal polluted recalcitrant agricultural wastes, have been reported. Physico-cultural conditions influencing its activities were studied using one-factor-at-a-time and a statistical optimisation approach. Complete degradation of 5 g/L feather was achieved with pH 8, 2% inoculum at 27 °C and incubation period of 36 h. The medium optimisation after the response surface methodology (RSM) resulted in a 10-fold increase in keratinase production (88.4 U/mL) over the initial 8.85 U/mL when supplemented with 0.5% (w/v) sucrose, 0.15% (w/v) ammonium bicarbonate, 0.3% (w/v) skim milk, and 0.01% (w/v) urea. Under optimum conditions, the bacterium was able to degrade heavy metal polluted feathers completely and produced valuable keratinase and protein-rich hydrolysates. About 83% of the feathers polluted with a mixture of highly toxic metals were degraded with high keratinase activities. The heavy metal tolerance ability of this bacterium can be harnessed not only in keratinase production but also in the bioremediation of heavy metal-polluted feather wastes.
  4. Gan Z, Roslan MAM, Abd Shukor MY, Halim M, Yasid NA, Abdullah J, et al.
    Biosensors (Basel), 2022 Oct 25;12(11).
    PMID: 36354431 DOI: 10.3390/bios12110922
    Aptamers are a group of synthetic single-stranded nucleic acids. They are generated from a random library of single-stranded DNA or RNA by a technology named systematic evolution of ligands by exponential enrichment (SELEX). SELEX is a repetitive process to select and identify suitable aptamers that show high affinity and specificity towards target cells. Great strides have been achieved in the design, construction, and use of aptamers up to this point. However, only a small number of aptamer-based applications have achieved widespread commercial and clinical acceptance. Additionally, finding more effective ways to acquire aptamers with high affinity remains a challenge. Therefore, it is crucial to thoroughly examine the existing dearth and advancement in aptamer-related technologies. This review focuses on aptamers that are generated by SELEX to detect pathogenic microorganisms and mammalian cells, as well as in cell-internalizing SELEX for diagnostic and therapeutic purposes. The development of novel aptamer-based biosensors using optical and electrical methods for microbial detection is reported. The applications and limitations of aptamers are also discussed.
  5. Othman AR, Bakar NA, Halmi MI, Johari WL, Ahmad SA, Jirangon H, et al.
    Biomed Res Int, 2013;2013:371058.
    PMID: 24369531 DOI: 10.1155/2013/371058
    Molybdenum is very toxic to agricultural animals. Mo-reducing bacterium can be used to immobilize soluble molybdenum to insoluble forms, reducing its toxicity in the process. In this work the isolation of a novel molybdate-reducing Gram positive bacterium tentatively identified as Bacillus sp. strain A.rzi from a metal-contaminated soil is reported. The cellular reduction of molybdate to molybdenum blue occurred optimally at 4 mM phosphate, using 1% (w/v) glucose, 50 mM molybdate, between 28 and 30 °C and at pH 7.3. The spectrum of the Mo-blue product showed a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of bacterial electron transport system (ETS) such as rotenone, sodium azide, antimycin A, and potassium cyanide could not inhibit the molybdenum-reducing activity. At 0.1 mM, mercury, copper, cadmium, arsenic, lead, chromium, cobalt, and zinc showed strong inhibition on molybdate reduction by crude enzyme. The best model that fitted the experimental data well was Luong followed by Haldane and Monod. The calculated value for Luong's constants p max, K(s), S(m), and n was 5.88 μmole Mo-blue hr(-1), 70.36 mM, 108.22 mM, and 0.74, respectively. The characteristics of this bacterium make it an ideal tool for bioremediation of molybdenum pollution.
  6. Baskaran G, Salvamani S, Ahmad SA, Shaharuddin NA, Pattiram PD, Shukor MY
    Drug Des Devel Ther, 2015;9:509-17.
    PMID: 25609924 DOI: 10.2147/DDDT.S75056
    The enzyme 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) reductase is the key enzyme of the mevalonate pathway that produces cholesterol. Inhibition of HMG-CoA reductase reduces cholesterol biosynthesis in the liver. Synthetic drugs, statins, are commonly used for the treatment of hypercholesterolemia. Due to the side effects of statins, natural HMG-CoA reductase inhibitors of plant origin are needed. In this study, 25 medicinal plant methanol extracts were screened for anti-HMG-CoA reductase activity. Basella alba leaf extract showed the highest inhibitory effect at about 74%. Thus, B. alba was examined in order to investigate its phytochemical components. Gas chromatography with tandem mass spectrometry and reversed phase high-performance liquid chromatography analysis revealed the presence of phenol 2,6-bis(1,1-dimethylethyl), 1-heptatriacotanol, oleic acid, eicosyl ester, naringin, apigenin, luteolin, ascorbic acid, and α-tocopherol, which have been reported to possess antihypercholesterolemic effects. Further investigation of in vivo models should be performed in order to confirm its potential as an alternative treatment for hypercholesterolemia and related cardiovascular diseases.
  7. Sabullah MK, Sulaiman MR, Abd Shukor MY, Syed MA, Shamaan NA, Khalid A, et al.
    ScientificWorldJournal, 2014;2014:571094.
    PMID: 25401148 DOI: 10.1155/2014/571094
    Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and -25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
  8. Salvamani S, Gunasekaran B, Shaharuddin NA, Ahmad SA, Shukor MY
    Biomed Res Int, 2014;2014:480258.
    PMID: 24971331 DOI: 10.1155/2014/480258
    Atherosclerosis is the process of hardening and narrowing the arteries. Atherosclerosis is generally associated with cardiovascular diseases such as strokes, heart attacks, and peripheral vascular diseases. Since the usage of the synthetic drug, statins, leads to various side effects, the plants flavonoids with antiartherosclerotic activity gained much attention and were proven to reduce the risk of atherosclerosis in vitro and in vivo based on different animal models. The flavonoids compounds also exhibit lipid lowering effects and anti-inflammatory and antiatherogenic properties. The future development of flavonoids-based drugs is believed to provide significant effects on atherosclerosis and its related diseases. This paper discusses the antiatherosclerotic effects of selected plant flavonoids such as quercetin, kaempferol, myricetin, rutin, naringenin, catechin, fisetin, and gossypetin.
  9. Halmi MI, Jirangon H, Johari WL, Rachman AR, Shukor MY, Syed MA
    ScientificWorldJournal, 2014;2014:834202.
    PMID: 24977231 DOI: 10.1155/2014/834202
    Luminescence-based assays for toxicants such as Microtox, ToxAlert, and Biotox have been used extensively worldwide. However, the use of these assays in near real time conditions is limited due to nonoptimal assay temperature for the tropical climate. An isolate that exhibits a high luminescence activity in a broad range of temperatures was successfully isolated from the mackerel, Rastrelliger kanagurta. This isolate was tentatively identified as Photobacterium sp. strain MIE, based on partial 16S rDNA molecular phylogeny. Optimum conditions that support high bioluminescence activity occurred between 24 and 30°C, with pH 5.5 to 7.5, 10 to 20 g/L of sodium chloride, 30 to 50 g/L of tryptone, and 4 g/L of glycerol as the carbon source. Assessment of near real time capability of this bacterial system, Xenoassay light to monitor heavy metals from a contaminated river running through the Juru River Basin shows near real time capability with assaying time of less than 30 minutes per samples. Samples returned to the lab were tested with a standard Microtox assay using Vibrio fishceri. Similar results were obtained to Xenoassay light that show temporal variation of copper concentration. Thus, this strain is suitable for near real time river monitoring of toxicants especially in the tropics.
  10. Shukor MY, Halmi MI, Rahman MF, Shamaan NA, Syed MA
    Biomed Res Int, 2014;2014:853084.
    PMID: 24724104 DOI: 10.1155/2014/853084
    The first purification of the Mo-reducing enzyme from Serratia sp. strain DRY5 that is responsible for molybdenum reduction to molybdenum blue in the bacterium is reported. The monomeric enzyme has an apparent molecular weight of 105 kDalton. The isoelectric point of this enzyme was 7.55. The enzyme has an optimum pH of 6.0 and maximum activity between 25 and 35°C. The Mo-reducing enzyme was extremely sensitive to temperatures above 50°C (between 54 and 70°C). A plot of initial rates against substrate concentrations at 15 mM 12-MP registered a V max for NADH at 12.0 nmole Mo blue/min/mg protein. The apparent K m for NADH was 0.79 mM. At 5 mM NADH, the apparent V max and apparent K m values for 12-MP of 12.05 nmole/min/mg protein and 3.87 mM, respectively, were obtained. The catalytic efficiency (k cat/K m ) of the Mo-reducing enzyme was 5.47 M(-1) s(-1). The purification of this enzyme could probably help to solve the phenomenon of molybdenum reduction to molybdenum blue first reported in 1896 and would be useful for the understanding of the underlying mechanism in molybdenum bioremediation involving bioreduction.
  11. Dahalan SF, Yunus I, Johari WL, Shukor MY, Halmi MI, Shamaan NA, et al.
    J Environ Biol, 2014 Mar;35(2):399-406.
    PMID: 24665769
    A diesel-degrading bacterium was isolated from a diesel-contaminated site in Selangor, Malaysia. The isolate was tentatively identified as Acinetobacter sp. strain DRY12 based on partial 16S rDNA molecular phylogeny and Biolog GN microplate panels and Microlog database. Optimum growth occurred from 3 to 5% diesel and the strain was able to tolerate as high as 8% diesel. The optimal pH that supported growth of the bacterium was between pH 7.5 to 8.0. The isolate exhibited optimal growth in between 30 and 35 degrees C. The best nitrogen source was potassium nitrate (between 0.6 and 0.9% (w/v)) followed by ammonium chloride, sodium nitrite and ammonium sulphate in descending order. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 10 days of incubation. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibiting growth with a correlation coefficient value of 0.97. The maximum growth rate- micromax was 0.039 hr(-1) while the saturation constant or half velocity constant Ks and inhibition constant Ki, were 0.387% and 4.46%, respectively. MATH assays showed that 75% of the bacterium was found in the hexadecane phase indicating that the bacterium was hydrophobic. The characteristics of this bacterium make it useful for bioremediation works in the Tropics.
  12. Halmi MI, Hussin WS, Aqlima A, Syed MA, Ruberto L, MacCormack WP, et al.
    J Environ Biol, 2013 Nov;34(6):1077-82.
    PMID: 24555340
    A bacterium capable of biodegrading surfactant sodium dodecyl sulphate (SDS) was isolated from Antarctic soil. The isolate was tentatively identified as Pseudomonas sp. strain DRY15 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. Growth characteristic studies showed that the bacterium grew optimally at 10 degrees C, 7.25 pH, 1 g l(-1) SDS as a sole carbon source and 2 g l(-1) ammonium sulphate as nitrogen source. Growth was completely inhibited at 5 g l(-1) SDS. At a tolerable initial concentration of 2 g l(-1), approximately 90% of SDS was degraded after an incubation period of eight days. The best growth kinetic model to fit experimental data was the Haldane model of substrate inhibition with a correlation coefficient value of 0.97. The maximum growth rate was 0.372 hr(-1) while the saturation constant or half velocity constant (Ks) and inhibition constant (Ki), were 0.094% and 11.212 % SDS, respectively. Other detergent tested as carbon sources at 1 g l(-1) was Tergitol NP9, Tergitol 15S9, Witconol 2301 (methyl oleate), sodium dodecylbenzene sulfonate (SDBS), benzethonium chloride, and benzalkonium chloride showed Tergitol NP9, Tergitol 15S9, Witconol 2301 and the anionic SDBS supported growth with the highest growth exhibited by SDBS.
  13. Shukor MY, Tham LG, Halmi MI, Khalid I, Begum G, Syed MA
    J Environ Biol, 2013 Sep;34(5):967-70.
    PMID: 24558814
    Near-real-ime assay is anassay method that the whole process from sampling until results could be obtained in approximately Iess than one hour. The ElIman assay for acetyl cholinesterase (AChE) has near real-time potential due to its simplicity and fast assay time. The commercial acetylcholinesterase from Electrophorus electricus is well known for its uses in insecticides detection. A lesser known fact is AChE is also sensitive to heavy metals. A near real-time inhibitive assay for heavy metals using AChE from this source showed promising results. Several heavy metals such as copper, silver and mercury could be etected with IC50 values of1.212, 0.1185 and 0.097 mg I-1, respectively. The Limits of Detection (LOD) for copper, silver and mercury were 0.01, 0.015 and 0.01 mg I-1, respectively. TheLimits of quantitation (LOQ) or copper, silver and mercury were 0.196, 0.112 and 0.025 mg I-1, respectively. The LOQvalues for copper, silver and mercury were well below the maximum permissible limit for these metal ions as outlined by Malaysian Department of Environment. A polluted location demonstrated near real-time applicability of the assay with variation oftemporal levels of heavy metals detected. The results show that AChE from Electrophorus electricus has the potential to be used as a near real-time biomonitoring tool for heavy
  14. Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MY, Syed MA
    World J Microbiol Biotechnol, 2012 Jan;28(1):347-52.
    PMID: 22806810 DOI: 10.1007/s11274-011-0826-z
    A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm(2)) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l(-1), both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l(-1) phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l(-1). However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.
  15. Siow RS, Teo SS, Ho WY, Shukor MY, Phang SM, Ho CL
    J Phycol, 2012 Feb;48(1):155-62.
    PMID: 27009660 DOI: 10.1111/j.1529-8817.2011.01105.x
    Galactose-1-phosphate uridylyltransferase (GALT) catalyzes the reversible conversion of glucose-1-phosphate and UDP-galactose to galactose-1-phosphate and UDP-glucose. This enzyme is also responsible for one of the biochemical steps that produce the precursors of agar and agarose. In this study, we report the molecular cloning and sequence analyses of a cDNA encoding GALT, from Gracilaria changii (B. M. Xia et I. A. Abbott) I. A. Abbott, J. Zhang et B. M. Xia, which constitutes a genus of seaweeds that supply more than 60% of the world's agar and agarose. We have subcloned this cDNA into a bacterial expression cloning vector and characterized the enzyme activities of its recombinant proteins in vitro. The GcGALT gene was shown to be up-regulated by salinity stresses. The abundance of transcripts encoding GcGALT was the highest in G. changii, followed by Gracilaria edulis and Gracilaria salicornia in a descending order, corresponding to their respective agar contents. Our findings indicated that GALT could be one of the components that determines the agar yield in Gracilaria species.
  16. Shukor MY, Ahmad SA, Nadzir MM, Abdullah MP, Shamaan NA, Syed MA
    J Appl Microbiol, 2010 Jun;108(6):2050-8.
    PMID: 19968732 DOI: 10.1111/j.1365-2672.2009.04604.x
    To isolate and characterize a potent molybdenum-reducing bacterium.
  17. Shukor MY, Dahalan FA, Jusoh AZ, Muse R, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):145-50.
    PMID: 20112877
    A diesel-degrading bacterium has been isolated from a diesel-polluted site. The isolate was tentatively identified as Staphylococcus aureus strain DRY11 based on partial 16S rDNA molecular phylogeny and Biolog GP microplate panels and Microlog database. Isolate 11 showed an almost linear increase in cellular growth with respect to diesel concentrations with optimum growth occurring at 4% (v/v) diesel concentration. Optimization studies using different nitrogen sources showed that the best nitrogen source was potassium nitrite. Sodium nitrite was optimum at 1.2 g l(-1) and higher concentrations were strongly inhibitory to cellular growth. The optimal pH that supported growth of the bacterium was between 7.5 to 8.0 and the isolate exhibited optimal broad temperature supporting growth on diesel from 27 to 37 degrees C. An almost complete removal of diesel components was seen from the reduction in hydrocarbon peaks observed using Solid Phase Microextraction Gas Chromatography analysis after 5 days of incubation. The characteristics of this bacterium suggest that it is suitable for bioremediation of diesel spills and pollutions in the tropics.
  18. Shukor MY, Husin WS, Rahman MF, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):129-34.
    PMID: 20112874
    Sodium dodecyl sulfate (SDS) is one of the main components in the detergent and cosmetic industries. Its bioremediation by suitable microorganism has begun to receive greater attention as the amount of SDS usage increases to a point where treatment plants would not be able to cope with the increasing amount of SDS in wastewater. The purpose of this work was to isolate local SDS-degrading bacteria. Screening was carried out by the conventional enrichment-culture technique. Six SDS-degrading bacteria were isolated. Of these isolates, isolate S14 showed the highest degradation of SDS with 90% degradation after three days of incubation. Isolate S14 was tentatively identified as Klebsiella oxytoca strain DRY14 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. SDS degradation by the bacterium was optimum at 37 degrees 0. Ammonium sulphate; at 2.0 g l(-1), was found to be the best nitrogen source for the growth of strain DRY14. Maximum growth on SDS was observed at pH 7.25. The strain exhibited optimum growth at SDS concentration of 2.0 g l(-1) and was completely inhibited at 10 g l(-1) SDS. At the tolerable initial concentration of 2.0 g l(-1), almost 80% of 2.0 g l(-1) SDS was degraded after 4 days of incubation concomitant with increase in cellular growth. The K(m(app) and V(max(app)) values calculated for the alkylsulfatase from this bacterium were 0.1 mM SDS and 1.07 micromol min(-1) mg(-1) protein, respectively.
  19. Shukor MY, Gusmanizar N, Ramli J, Shamaan NA, MacCormack WP, Syed MA
    J Environ Biol, 2009 Jan;30(1):107-12.
    PMID: 20112871
    The presence of acrylamide in the environment poses a threat due to its well known neurotoxic, carcinogenic and teratogenic properties. Human activities in various geographical areas are the main anthropogenic source of acrylamide pollution. In this work, an acrylamide-degrading bacterium was isolated from Antarctic soil. The physiological characteristics and optimum growth conditions of the acrylamide-degrading bacteria were investigated. The isolate was tentatively identified as Pseudomonas sp. strain DRYJ7 based on carbon utilization profiles using Biolog GN plates and partial 16S rDNA molecular phylogeny. The results showed that the best carbon sources for growth was glucose and sucrose with no significant difference in terms of cellular growth between the two carbon sources (p>0.05). This was followed by fructose and maltose with fructose giving significantly higher cellular growth compared to maltose (p<0.05). Lactose and citric acid did not support growth. The optimum acrylamide concentration as a nitrogen source for cellular growth was at 500 mgl(-1). At this concentration, bacterial growth showed a 2-day lag phase before degradation took place concomitant with an increase in cellular growth. The isolate exhibited optimum growth in between pH 7.5 and 8.5. The effect of incubation temperature on the growth of this isolate showed an optimum growth at 15 degrees C. The characteristics of this isolate suggest that it would be useful in the bioremediation of acrylamide.
  20. Rahman MF, Shukor MY, Suhaili Z, Mustafa S, Shamaan NA, Syed MA
    J Environ Biol, 2009 Jan;30(1):65-72.
    PMID: 20112865
    The need to isolate efficient heavy metal reducers for cost effective bioremediation strategy have resulted in the isolation of a potent molybdenum-reducing bacterium. The isolate was tentatively identified as Serratia sp. strain DRY5 based on the Biolog GN carbon utilization profiles and partial 16S rDNA molecular phylogeny. Strain DRY5 produced 2.3 times the amount of Mo-blue than S. marcescens strain Dr.Y6, 23 times more than E. coli K12 and 7 times more than E. cloacae strain 48. Strain DRY5 required 37 degrees C and pH 7.0 for optimum molybdenum reduction. Carbon sources such as sucrose, maltose, glucose and glycerol, supported cellular growth and molybdate reduction after 24 hr of static incubation. The most optimum carbon source that supported reduction was sucrose at 1.0% (w/v). Ammonium sulphate, ammonium chloride, glutamic acid, cysteine, and valine supported growth and molybdate reduction with ammonium sulphate as the optimum nitrogen source at 0. 2% (w/v). Molybdate reduction was optimally supported by 30 mM molybdate. The optimum concentration of phosphate for molybdate reduction was 5 mM when molybdate concentration was fixed at 30 mM and molybdate reduction was totally inhibited at 100 mM phosphate. Mo-blue produced by this strain shows a unique characteristic absorption profile with a maximum peak at 865 nm and a shoulder at 700 nm, Dialysis tubing experiment showed that 95.42% of Mo-blue was found in the dialysis tubing suggesting that the molybdate reduction seen in this bacterium was catalyzed by enzyme(s). The characteristics of isolate DRY5 suggest that it would be useful in the bioremediation ofmolybdenum-containing waste.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links