Displaying publications 1 - 20 of 137 in total

Abstract:
Sort:
  1. Singh SK, Yahya N, Misiran K, Masdar A, Nor NM, Yee LC
    Rev Bras Anestesiol, 2016 May-Jun;66(3):259-64.
    PMID: 26993410 DOI: 10.1016/j.bjan.2014.09.009
    Combined spinal-epidural (CSE) has become an increasingly popular alternative to traditional labour epidural due to its rapid onset and reliable analgesia provided. This was a prospective, convenient sampling study to determine the effects of CSE analgesia on labour outcome.
  2. Manandhar B, Paudel KR, Clarence DD, De Rubis G, Madheswaran T, Panneerselvam J, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2024 Jan;397(1):343-356.
    PMID: 37439806 DOI: 10.1007/s00210-023-02603-5
    Lung cancer is the second most prevalent type of cancer and is responsible for the highest number of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) makes up the majority of lung cancer cases. Zerumbone (ZER) is natural compound commonly found in the roots of Zingiber zerumbet which has recently demonstrated anti-cancer activity in both in vitro and in vivo studies. Despite their medical benefits, ZER has low aqueous solubility, poor GI absorption and oral bioavailability that hinders its effectiveness. Liquid crystalline nanoparticles (LCNs) are novel drug delivery carrier that have tuneable characteristics to enhance and ease the delivery of bioactive compounds. This study aimed to formulate ZER-loaded LCNs and investigate their effectiveness against NSCLC in vitro using A549 lung cancer cells. ZER-LCNs, prepared in the study, inhibited the proliferation and migration of A549 cells. These inhibitory effects were superior to the effects of ZER alone at a concentration 10 times lower than that of free ZER, demonstrating a potent anti-cancer activity of ZER-LCNs. The underlying mechanisms of the anti-cancer effects by ZER-LCNs were associated with the transcriptional regulation of tumor suppressor genes P53 and PTEN, and metastasis-associated gene KRT18. The protein array data showed downregulation of several proliferation associated proteins such as AXL, HER1, PGRN, and BIRC5 and metastasis-associated proteins such as DKK1, CAPG, CTSS, CTSB, CTSD, and PLAU. This study provides evidence of potential for increasing the potency and effectiveness of ZER with LCN formulation and developing ZER-LCNs as a treatment strategy for mitigation and treatment of NSCLC.
  3. Paudel KR, Clarence DD, Panth N, Manandhar B, De Rubis G, Devkota HP, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2024 Apr;397(4):2465-2483.
    PMID: 37851060 DOI: 10.1007/s00210-023-02760-7
    The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1β and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.
  4. Ashique S, Gupta K, Gupta G, Mishra N, Singh SK, Wadhwa S, et al.
    Int J Rheum Dis, 2023 Jan;26(1):13-30.
    PMID: 36308699 DOI: 10.1111/1756-185X.14477
    COVID-19 remains a life-threatening infectious disease worldwide. Several bio-active agents have been tested and evaluated in an effort to contain this disease. Unfortunately, none of the therapies have been successful, owing to their safety concerns and the presence of various adverse effects. Various countries have developed vaccines as a preventive measure; however, they have not been widely accepted as effective strategies. The virus has proven to be exceedingly contagious and lethal, so finding an effective treatment strategy has been a top priority in medical research. The significance of vitamin D in influencing many components of the innate and adaptive immune systems is examined in this study. This review aims to summarize the research on the use of vitamin D for COVID-19 treatment and prevention. Vitamin D supplementation has now become an efficient option to boost the immune response for all ages in preventing the spread of infection. Vitamin D is an immunomodulator that treats infected lung tissue by improving innate and adaptive immune responses and downregulating the inflammatory cascades. The preventive action exerted by vitamin D supplementation (at a specific dose) has been accepted by several observational research investigations and clinical trials on the avoidance of viral and acute respiratory dysfunctions. To assess the existing consensus about vitamin D supplementation as a strategy to treat and prevent the development and progression of COVID-19 disease, this review intends to synthesize the evidence around vitamin D in relation to COVID-19 infection.
  5. Bhat AA, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, et al.
    PMID: 37917370 DOI: 10.1007/s00210-023-02809-7
    Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression and cellular processes in various physiological and pathological conditions. In recent years, there has been a growing interest in investigating the role of circRNAs in inflammatory lung diseases, owing to their potential to modulate inflammation-associated pathways and contribute to disease pathogenesis. Inflammatory lung diseases, like asthma, chronic obstructive pulmonary disease (COPD), and COVID-19, pose significant global health challenges. The dysregulation of inflammatory responses demonstrates a pivotal function in advancing these diseases. CircRNAs have been identified as important players in regulating inflammation by functioning as miRNA sponges, engaging with RNA-binding proteins, and participating in intricate ceRNA networks. These interactions enable circRNAs to regulate the manifestation of key inflammatory genes and signaling pathways. Furthermore, emerging evidence suggests that specific circRNAs are differentially expressed in response to inflammatory stimuli and exhibit distinct patterns in various lung diseases. Their involvement in immune cell activation, cytokine production, and tissue remodeling processes underscores their possible capabilities as therapeutic targets and diagnostic biomarkers. Harnessing the knowledge of circRNA-mediated regulation in inflammatory lung diseases could lead to the development of innovative strategies for disease management and intervention. This review summarizes the current understanding of the role of circRNAs in inflammatory lung diseases, focusing on their regulatory mechanisms and functional implications.
  6. Thapa R, Afzal O, Gupta G, Bhat AA, Almalki WH, Alzarea SI, et al.
    Pathol Res Pract, 2023 Sep;249:154736.
    PMID: 37579591 DOI: 10.1016/j.prp.2023.154736
    Breast cancer is a complex and diverse condition that disrupts multiple signaling pathways essential for cell proliferation, survival, and differentiation. Recently, the significant involvement of long-chain non-coding RNAs (lncRNAs) in controlling key signaling pathways associated with breast cancer development has been discovered. This review aims to explore the interaction between lncRNAs and various pathways, including the AKT/PI3K/mTOR, Wnt/β-catenin, Notch, DNA damage response, TGF-β, Hedgehog, and NF-κB signaling pathways, to gain a comprehensive understanding of their roles in breast cancer. The AKT/PI3K/mTOR pathway regulates cell growth, survival, and metabolic function. Recent data suggests that specific lncRNAs can influence the functioning of this pathway, acting as either oncogenes or tumor suppressors. Dysregulation of this pathway is commonly observed in breast cancer cases. Moreover, breast cancer development has been associated with other pathways such as Wnt/β-catenin, Notch, TGF-β, Hedgehog, and NF-κB. Emerging studies have identified lncRNAs that modulate breast cancer's growth, progression, and metastasis by interacting with these pathways. To advance the development of innovative diagnostic tools and targeted treatment options, it is crucial to comprehend the intricate relationship between lncRNAs and vital signaling pathways in breast cancer. By fully harnessing the therapeutic potential of lncRNAs, there is a possibility of developing more effective and personalized therapy choices for breast cancer patients. Further investigation is necessary to comprehensively understand the role of lncRNAs within breast cancer signaling pathways and fully exploit their therapeutic potential.
  7. Tan CL, Chan Y, Candasamy M, Chellian J, Madheswaran T, Sakthivel LP, et al.
    Eur J Pharmacol, 2022 Feb 11;919:174821.
    PMID: 35151643 DOI: 10.1016/j.ejphar.2022.174821
    Chronic respiratory diseases have collectively become a major public health concern and have now taken form as one of the leading causes of mortality worldwide. Most chronic respiratory diseases primarily occur due to prolonged airway inflammation. In addition, critical environmental factors such as cigarette smoke, industrial pollutants, farm dust, and pollens may also exacerbate such diseases. Moreover, alterations in the genetic sequence of an individual, abnormalities in the chromosomes or immunosuppression resulting from bacterial, fungal, and viral infections may also play a key role in the pathogenesis of respiratory diseases. Over the years, multiple in vitro models have been employed as the basis of existing as well as emerging advancements in chronic respiratory disease research. These include cell lines, gene expression techniques, single cell RNA sequencing, cytometry, culture techniques, as well as serum/sputum biomarkers that can be used to elucidate the molecular mechanisms underlying these diseases, and to identify novel diagnostic and management options for these diseases. This review summarizes the current understanding of the pathogenesis of various chronic respiratory diseases derived through in vitro experimental models, where the knowledge obtained from these studies can greatly benefit researchers in the discovery and development of novel screening techniques and advanced therapeutic strategies that could be translated into clinical use in the future.
  8. Kakoty V, Sarathlal KC, Kaur P, Wadhwa P, Vishwas S, Khan FR, et al.
    Neurol Sci, 2024 Apr;45(4):1409-1418.
    PMID: 38082050 DOI: 10.1007/s10072-023-07253-2
    Parkinson's disease is the second most common neurodegenerative condition with its prevalence projected to 8.9 million individuals globally in the year 2019. Parkinson's disease affects both motor and certain non-motor functions of an individual. Numerous research has focused on the neuroprotective effect of the glial cell line-derived neurotrophic factor (GDNF) in Parkinson's disease. Discovered in 1993, GDNF is a neurotrophic factor identified from the glial cells which was found to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. Given this property, recent studies have focused on the exogenous administration of GDNF for relieving Parkinson's disease-related symptoms both at a pre-clinical and a clinical level. This review will focus on enumerating the molecular connection between Parkinson's disease and GDNF and shed light on all the available drug delivery approaches to facilitate the selective delivery of GDNF into the brain paving the way as a potential therapeutic candidate for Parkinson's disease in the future.
  9. Allam VSRR, Chellappan DK, Jha NK, Shastri MD, Gupta G, Shukla SD, et al.
    PMID: 33977840 DOI: 10.1080/10408398.2021.1915744
    Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.
  10. Taguchi K, Cho SY, Ng AC, Usawachintachit M, Tan YK, Deng YL, et al.
    Int J Urol, 2019 07;26(7):688-709.
    PMID: 31016804 DOI: 10.1111/iju.13957
    The Urological Association of Asia, consisting of 25 member associations and one affiliated member since its foundation in 1990, has planned to develop Asian guidelines for all urological fields. The field of stone diseases is the third of its guideline projects. Because of the different climates, and social, economic and ethnic environments, the clinical practice for urinary stone diseases widely varies among the Asian countries. The committee members of the Urological Association of Asia on the clinical guidelines for urinary stone disease carried out a surveillance study to better understand the diversity of the treatment strategy among different regions and subsequent systematic literature review through PubMed and MEDLINE database between 1966 and 2017. Levels of evidence and grades of recommendation for each management were decided according to the relevant strategy. Each clinical question and answer were thoroughly reviewed and discussed by all committee members and their colleagues, with suggestions from expert representatives of the American Urological Association and European Association of Urology. However, we focused on the pragmatic care of patients and our own evidence throughout Asia, which included recent surgical trends, such as miniaturized percutaneous nephrolithotomy and endoscopic combined intrarenal surgery. This guideline covers all fields of stone diseases, from etiology to recurrence prevention. Here, we present a short summary of the first version of the guideline - consisting 43 clinical questions - and overview its key practical issues.
  11. Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, et al.
    Mitochondrion, 2022 Nov;67:15-37.
    PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003
    Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
  12. Chellappan DK, Yee LW, Xuan KY, Kunalan K, Rou LC, Jean LS, et al.
    Drug Dev Res, 2020 06;81(4):419-436.
    PMID: 32048757 DOI: 10.1002/ddr.21648
    Neutrophils are essential effector cells of immune system for clearing the extracellular pathogens during inflammation and immune reactions. Neutrophils play a major role in chronic respiratory diseases. In respiratory diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, lung cancer and others, there occurs extreme infiltration and activation of neutrophils followed by a cascade of events like oxidative stress and dysregulated cellular proteins that eventually result in apoptosis and tissue damage. Dysregulation of neutrophil effector functions including delayed neutropil apoptosis, increased neutrophil extracellular traps in the pathogenesis of asthma, and chronic obstructive pulmonary disease enable neutrophils as a potential therapeutic target. Accounting to their role in pathogenesis, neutrophils present as an excellent therapeutic target for the treatment of chronic respiratory diseases. This review highlights the current status and the emerging trends in novel drug delivery systems such as nanoparticles, liposomes, microspheres, and other newer nanosystems that can target neutrophils and their molecular pathways, in the airways against infections, inflammation, and cancer. These drug delivery systems are promising in providing sustained drug delivery, reduced therapeutic dose, improved patient compliance, and reduced drug toxicity. In addition, the review also discusses emerging strategies and the future perspectives in neutrophil-based therapy.
  13. Bhatt S, Devadoss T, Jha NK, Baidya M, Gupta G, Chellappan DK, et al.
    Metab Brain Dis, 2023 Jan;38(1):45-59.
    PMID: 36239867 DOI: 10.1007/s11011-022-01095-1
    Major depressive disorder (MDD) or Depression is one of the serious neuropsychiatric disorders affecting over 280 million people worldwide. It is 4th important cause of disability, poor quality of life, and economic burden. Women are more affected with the depression as compared to men and severe depression can lead to suicide. Most of the antidepressants predominantly work through the modulation on the availability of monoaminergic neurotransmitter (NTs) levels in the synapse. Current antidepressants have limited efficacy and tolerability. Moreover, treatment resistant depression (TRD) is one of the main causes for failure of standard marketed antidepressants. Recently, inflammation has also emerged as a crucial factor in pathological progression of depression. Proinflammatory cytokine levels are increased in depressive patients. Antidepressant treatment may attenuate depression via modulation of pathways of inflammation, transformation in structure of brain, and synaptic plasticity. Hence, targeting inflammation may be emerged as an effective approach for the treatment of depression. The present review article will focus on the preclinical and clinical studies that targets inflammation. In addition, it also concentrates on the therapeutic approaches' that targets depression via influence on the inflammatory signaling pathways. Graphical abstract demonstrate the role of various factors in the progression and neuroinflammation, oxidative stress. It also exhibits the association of neuroinflammation, oxidative stress with depression.
  14. Lee LY, Hew GSY, Mehta M, Shukla SD, Satija S, Khurana N, et al.
    Life Sci, 2021 Feb 15;267:118973.
    PMID: 33400932 DOI: 10.1016/j.lfs.2020.118973
    Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells. Recruitment of eosinophils essentially leads to a characteristic immune response followed by airway hyperresponsiveness and remodeling, which are hallmarks of chronic respiratory diseases. By analysing the dynamic interactions of eosinophils with their extracellular environment, which also involve signaling molecules and tissues, various therapies have been invented and developed to target respiratory diseases. Having entered clinical testing, several eosinophil targeting therapeutic agents have shown much promise and have further bridged the gap between theory and practice. Moreover, researchers now have a clearer understanding of the roles and mechanisms of eosinophils. These factors have successfully assisted molecular biologists to block specific pathways in the growth, migration and activation of eosinophils. The primary purpose of this review is to provide an overview of the eosinophil biology with a special emphasis on potential pharmacotherapeutic targets. The review also summarizes promising eosinophil-targeting agents, along with their mechanisms and rationale for use, including those in developmental pipeline, in clinical trials, or approved for other respiratory disorders.
  15. Prasher P, Sharma M, Singh SK, Gulati M, Chellappan DK, Rajput R, et al.
    Front Chem, 2023;11:1164477.
    PMID: 37090250 DOI: 10.3389/fchem.2023.1164477
    Spermidine is a naturally occurring polyamine compound found in semen. It is also found in several plant sources and boasts a remarkable biological profile, particularly with regards to its anticancer properties. Spermidine specifically interferes with the tumour cell cycle, resulting in the inhibition of tumor cell proliferation and suppression of tumor growth. Moreover, it also triggers autophagy by regulating key oncologic pathways. The increased intake of polyamines, such as spermidine, can suppress oncogenesis and slow the growth of tumors due to its role in anticancer immunosurveillance and regulation of polyamine metabolism. Spermidine/spermine N-1-acetyltransferase (SSAT) plays a critical role in polyamine homeostasis and serves as a diagnostic marker in human cancers. Chemically modified derivatives of spermidine hold great potential for prognostic, diagnostic, and therapeutic applications against various malignancies. This review discusses in detail the recent findings that support the anticancer mechanisms of spermidine and its molecular physiology.
  16. Ramli Hamid MT, Rahmat K, Hamid SA, Kirat Singh SK, Hooi TG
    Curr Med Imaging Rev, 2019;15(9):866-872.
    PMID: 32008533 DOI: 10.2174/1573405614666180627101520
    BACKGROUND: Breast cancer is the commonest cancer affecting Malaysian women, accounting for an estimated 30% of all new cancer diagnosed annually. Improvements in breast cancer management have increased the breast cancer survival rate in Malaysia. Clinical and radiological surveillance of the treated breast is vital, as early detection of recurrence improves patient's survival rate.

    DISCUSSION: As surgery and radiotherapy alter the appearance of the breasts, distinguishing between recurrence and benign post-surgical changes can be challenging radiologically due to overlapping features. Despite this, differentiation between these two entities is usually possible by recognizing characteristic features of post-treatment sequelae and the evolution of the appearance of the conservatively treated breast by comparing interval findings on serial studies.

    CONCLUSION: This pictorial review aims to describe the typical and unusual features of post-treated breasts in the multimodality imaging workup of an established breast care centre in a teaching hospital in Malaysia.

  17. Harminder Singh SK, Husain S, Wan Hamizan AK, Zahedi FD, Othman SN, Zainol Rashid Z
    PMID: 37473733 DOI: 10.1159/000531222
    INTRODUCTION: The aims of the study were to perform an olfactory assessment on patients active and post-COVID-19 using the culturally adapted Malaysian version Sniffin' Sticks identification smell test (mSS-SIT), to evaluate the patient olfactory outcome using a Malay short version of the Questionnaire of Olfactory Disorders-Negative Statements (msQOD-NS), as well as to evaluate seropositive titre (IgG) response using automated serology method.

    METHODS: Score for mSS-SIT was performed during the hospitalization, when patients had tested positive for SARS-CoV-2 (during COVID-19), and repeated after they had tested negative (after COVID-19). Also, each patient completed msQOD-NS and serology SARS-CoV-2 antibodies blood test was evaluated.

    RESULTS: During COVID-19, 2 of our patients were anosmia (6.5%), 22 (70.9%) were hyposmia, and 7 (22.6%) were normosmia. We repeated mSS-SIT on these same patients after COVID-19, and none of these subjects were hyposmia or anosmia, as they achieved a score >12. All our patients had scored 21 using msQOD-NS, meaning no impact on quality of life as they had regained their normal olfactory function. In this study also, we obtained no correlation between smell test and seropositivity titre COVID-19, and antibody levels gradually decreased over time till 6 months and remained stable up to 12 months.

    CONCLUSION: From this study, we know full recovery of the sense of smell can be expected post-COVID-19 infection and COVID-19 antibody persists in the body up to 12 months of infection.

  18. Ashique S, De Rubis G, Sirohi E, Mishra N, Rihan M, Garg A, et al.
    Chem Biol Interact, 2022 Dec 01;368:110231.
    PMID: 36288778 DOI: 10.1016/j.cbi.2022.110231
    The human microbiota is fundamental to correct immune system development and balance. Dysbiosis, or microbial content alteration in the gut and respiratory tract, is associated with immune system dysfunction and lung disease development. The microbiota's influence on human health and disease is exerted through the abundance of metabolites produced by resident microorganisms, where short-chain fatty acids (SCFAs) represent the fundamental class. SCFAs are mainly produced by the gut microbiota through anaerobic fermentation of dietary fibers, and are known to influence the homeostasis, susceptibility to and outcome of many lung diseases. This article explores the microbial species found in healthy human gastrointestinal and respiratory tracts. We investigate factors contributing to dysbiosis in lung illness, and the gut-lung axis and its association with lung diseases, with a particular focus on the functions and mechanistic roles of SCFAs in these processes. The key focus of this review is a discussion of the main metabolites of the intestinal microbiota that contribute to host-pathogen interactions: SCFAs, which are formed by anaerobic fermentation. These metabolites include propionate, acetate, and butyrate, and are crucial for the preservation of immune homeostasis. Evidence suggests that SCFAs prevent infections by directly affecting host immune signaling. This review covers the various and intricate ways through which SCFAs affect the immune system's response to infections, with a focus on pulmonary diseases including chronic obstructive pulmonary diseases, asthma, lung cystic fibrosis, and tuberculosis. The findings reviewed suggest that the immunological state of the lung may be indirectly influenced by elements produced by the gut microbiota. SCFAs represent valuable potential therapeutic candidates in this context.
  19. Singh SK, Enzhong L, Reidpath DD, Allotey P
    Public Health, 2017 Mar;144:78-85.
    PMID: 28274388 DOI: 10.1016/j.puhe.2016.11.022
    OBJECTIVE: To explore the initiating factors of waterpipe tobacco smoking (WTS) among youth.

    STUDY DESIGN: The analytic framework for this scoping review was performed using the methodology outlined by Arksey and O'Malley, which includes identification of the research question, study selection, charting the data, collating, summarizing and reporting the results that were primarily guided by the research question; 'what is known about the initiation of shisha smoking among youth?'

    METHODS: Electronic databases such as Cochrane, MEDLINE and PsycINFO were used to search for relevant articles. Articles included were all in English and published within the year of 2006 to 2015. Inclusion criteria; i) age range of 10 to 29 years; ii) examined the reasons why youth started or tried WTS; iii) in full text. Therefore, 26 articles were included in this scoping review.

    RESULTS: This review has identified and classified the initiating factors of WTS among youth in four subtopics: individual factors, interpersonal influences, cigarettes and alcohol use, and media influences. Individual factors and interpersonal influences played an important role in initiation factors of WTS among youth.

    CONCLUSION: This study concludes that public health professionals within the Southeast Asia region need to promote innovative preventive measures through peer-to-peer led interventions that are also easily assessable on social media platforms. The public health messages need to address the misconceptions of risk associated to WTS use.
  20. Nhu VH, Shirzadi A, Shahabi H, Singh SK, Al-Ansari N, Clague JJ, et al.
    PMID: 32316191 DOI: 10.3390/ijerph17082749
    Shallow landslides damage buildings and other infrastructure, disrupt agriculture practices, and can cause social upheaval and loss of life. As a result, many scientists study the phenomenon, and some of them have focused on producing landslide susceptibility maps that can be used by land-use managers to reduce injury and damage. This paper contributes to this effort by comparing the power and effectiveness of five machine learning, benchmark algorithms-Logistic Model Tree, Logistic Regression, Naïve Bayes Tree, Artificial Neural Network, and Support Vector Machine-in creating a reliable shallow landslide susceptibility map for Bijar City in Kurdistan province, Iran. Twenty conditioning factors were applied to 111 shallow landslides and tested using the One-R attribute evaluation (ORAE) technique for modeling and validation processes. The performance of the models was assessed by statistical-based indexes including sensitivity, specificity, accuracy, mean absolute error (MAE), root mean square error (RMSE), and area under the receiver operatic characteristic curve (AUC). Results indicate that all the five machine learning models performed well for shallow landslide susceptibility assessment, but the Logistic Model Tree model (AUC = 0.932) had the highest goodness-of-fit and prediction accuracy, followed by the Logistic Regression (AUC = 0.932), Naïve Bayes Tree (AUC = 0.864), ANN (AUC = 0.860), and Support Vector Machine (AUC = 0.834) models. Therefore, we recommend the use of the Logistic Model Tree model in shallow landslide mapping programs in semi-arid regions to help decision makers, planners, land-use managers, and government agencies mitigate the hazard and risk.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links