Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Vinnie-Siow WY, Tan TK, Low VL, Teoh YB, Prakash BK, Sivanandam S, et al.
    Acta Parasitol, 2021 Nov 19.
    PMID: 34797497 DOI: 10.1007/s11686-021-00490-5
    PURPOSE: Canine filariosis in domestic dogs caused by several species of filarids is an emerging vector-borne disease and the spread of this disease remains a global veterinary and public health concern. However, information regarding these filarids and their epidemiological patterns remains scarce in Malaysia. The present study aimed to determine the infection rate and associated risk factors of filarial parasites in dogs in Malaysia.

    METHODS: A total of 399 dog blood samples were collected from veterinary hospitals and animal shelters in Malaysia to determine the infection rate and associated risk factors via a combination of microscopic, serologic and molecular diagnostic techniques.

    RESULTS: Two species of canine filariae identified in this study were Dirofilaria immitis (6.5%) and Brugia pahangi (1.3%), and their infections were associated with cross breed, medium size and short hair (p 

  2. Al-Abd NM, Nor ZM, Kassim M, Mansor M, Al-Adhroey AH, Ngui R, et al.
    Asian Pac J Trop Med, 2015 Sep;8(9):705-9.
    PMID: 26433654 DOI: 10.1016/j.apjtm.2015.07.034
    OBJECTIVE: To determine the prevalence of the filarial parasites,ie.,Brugia malayi, Brugia, Brugia pahangi(B. pahangi), Dirofilaria immitisandDirofilaria repens (D. repens) in domestic and stray cats.

    METHODS: A total of 170 blood sample were collected from domestic and stray cats and examined for filarial worm parasites in two localities, Pulau Carey and Bukit Gasing, Selangor State, Malaysia.

    RESULTS: The overall prevalence of infection was 23.5% (40/170; 95% CI = 17.4-30.6). Of this, 35% (14/40; 95% CI = 22.1-50.5) and 50% (20/40; 95% CI = 35.2-64.8) were positive for single B. pahangi nd D. repens, respectively. The remaining of 15% (6/40; 95% CI = 7.1-29.1) were positive for mixed B. pahangi and D. repens. In addition, 75% of the infected cats were domestic, and 25% were strays. No Brugia malayi and Dirofilaria immitis was detected. Eighty-four cats were captured at Pulau Carey, of which 35.7% (30/84) were infected. Among the cats determined to be infected, 93% (28/30; 95% CI = 78.7-98.2) were domestic, and only 6.7% (2/30; 95% CI = 19.0-21.3) were strays. Conversely, the number of infected cats was three times lower in Bukit Gasing than in Pulau Carey, and most of the cats were stray.

    CONCLUSIONS: B. pahangi and D. repens could be the major parasites underlying filariasis in the study area. Adequate prophylactic plans should be administrated in the cat population in study area.

  3. Afzan MY, Sivanandam S, Kumar GS
    Diagn Microbiol Infect Dis, 2010 Oct;68(2):159-62.
    PMID: 20846588 DOI: 10.1016/j.diagmicrobio.2010.06.005
    Trichomonas vaginalis, a flagellate protozoan parasite commonly found in the human genitourinary tract, is transmitted primarily by sexual intercourse. Diagnosis is usually by in vitro culture method and staining with Giemsa stain. There are laboratories that use Gram stain as well. We compared the use of modified Field's (MF), Giemsa, and Gram stains on 2 axenic and xenic isolates of T. vaginalis, respectively. Three smears from every sediment of spun cultures of all 4 isolates were stained, respectively, with each of the stains. We showed that MF staining, apart from being a rapid stain (20 s), confers sharper staining contrast, which differentiates the nucleus and the cytoplasm of the organism when compared to Giemsa and Gram staining especially on parasites from spiked urine samples. The alternative staining procedure offers in a diagnostic setting a rapid stain that can easily visualize the parasite with sharp contrasting characteristics between organelles especially the nucleus and cytoplasm. Vacuoles are more clearly visible in parasites stained with MF than when stained with Giemsa.
  4. Al-Abd NM, Nor ZM, Al-Adhroey AH, Suhaimi A, Sivanandam S
    PMID: 24298292 DOI: 10.1155/2013/986573
    Lymphatic filariasis is a parasitic infection that causes a devastating public health and socioeconomic burden with an estimated infection of over 120 million individuals worldwide. The infection is caused by three closely related nematode parasites, namely, Wuchereria bancrofti, Brugia malayi, and B. timori, which are transmitted to human through mosquitoes of Anopheles, Culex, and Aedes genera. The species have many ecological variants and are diversified in terms of their genetic fingerprint. The rapid spread of the disease and the genetic diversification cause the lymphatic filarial parasites to respond differently to diagnostic and therapeutic interventions. This in turn prompts the current challenge encountered in its management. Furthermore, most of the chemical medications used are characterized by adverse side effects. These complications urgently warrant intense prospecting on bio-chemicals that have potent efficacy against either the filarial worms or thier vector. In lieu of this, we presented a review on recent literature that reported the efficacy of filaricidal biochemicals and those employed as vector control agents. In addition, methods used for biochemical extraction, screening procedures, and structure of the bioactive compounds were also presented.
  5. Afzan MY, Sivanandam S, Suresh K
    J Appl Microbiol, 2012 Jan;112(1):132-7.
    PMID: 22040369 DOI: 10.1111/j.1365-2672.2011.05185.x
    We previously reported that Modified Field Stain (MF) can be used as a rapid stain for diagnosis. In the present study we extend the observation to include the stain as an alternative method to assess viability of the cells.
  6. Goh BL, Ong LM, Sivanandam S, Lim TO, Morad Z, Biogeneric EPO Study Group
    Nephrology (Carlton), 2007 Oct;12(5):431-6.
    PMID: 17803464
    Treatment of renal anaemia with epoetin is well established. However, epoetin is expensive. Biogeneric epoetin with proven efficacy would reduce cost and improve access to therapy. We conducted this first ever comparative study of a biogeneric and the original product.
  7. Junaid QO, Khaw LT, Mahmud R, Ong KC, Lau YL, Borade PU, et al.
    Parasite, 2017;24:38.
    PMID: 29034874 DOI: 10.1051/parasite/2017040
    BACKGROUND: As the quest to eradicate malaria continues, there remains a need to gain further understanding of the disease, particularly with regard to pathogenesis. This is facilitated, apart from in vitro and clinical studies, mainly via in vivo mouse model studies. However, there are few studies that have used gerbils (Meriones unguiculatus) as animal models. Thus, this study is aimed at characterizing the effects of Plasmodium berghei ANKA (PbA) infection in gerbils, as well as the underlying pathogenesis.

    METHODS: Gerbils, 5-7 weeks old were infected by PbA via intraperitoneal injection of 1 × 106 (0.2 mL) infected red blood cells. Parasitemia, weight gain/loss, hemoglobin concentration, red blood cell count and body temperature changes in both control and infected groups were monitored over a duration of 13 days. RNA was extracted from the brain, spleen and whole blood to assess the immune response to PbA infection. Organs including the brain, spleen, heart, liver, kidneys and lungs were removed aseptically for histopathology.

    RESULTS: Gerbils were susceptible to PbA infection, showing significant decreases in the hemoglobin concentration, RBC counts, body weights and body temperature, over the course of the infection. There were no neurological signs observed. Both pro-inflammatory (IFNγ and TNF) and anti-inflammatory (IL-10) cytokines were significantly elevated. Splenomegaly and hepatomegaly were also observed. PbA parasitized RBCs were observed in the organs, using routine light microscopy and in situ hybridization.

    CONCLUSION: Gerbils may serve as a good model for severe malaria to further understand its pathogenesis.

  8. Muslim A, Fong MY, Mahmud R, Lau YL, Sivanandam S
    Parasit Vectors, 2013;6:219.
    PMID: 23898840 DOI: 10.1186/1756-3305-6-219
    In 2011, we reported occurrence of natural human infections with Brugia pahangi, a filarial worm of dogs and cats, in a surburb of Kuala Lumpur, the capital city of Malaysia. Our preliminary entomological survey at that time suggested the mosquito species Armigeres subalbatus as the vector of the zoonotic infections. In this present report, we provide biological evidence to confirm our preliminary finding.
  9. Uni S, Mat Udin AS, Agatsuma T, Saijuntha W, Junker K, Ramli R, et al.
    Parasit Vectors, 2017 Apr 20;10(1):194.
    PMID: 28427478 DOI: 10.1186/s13071-017-2105-9
    BACKGROUND: The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

    METHODS: We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing.

    RESULTS: Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews.

    CONCLUSIONS: The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani.

  10. Pirehma M, Suresh K, Sivanandam S, Anuar AK, Ramakrishnan K, Kumar GS
    Parasitol Res, 1999 Oct;85(10):791-3.
    PMID: 10494803
    Acanthamoeba sp. is a free-living amoeba known to cause chronic central nervous system infection or eye infection in humans. Many cases remain undetected for want of a good detection system. We report for the first time a rapid staining method to facilitate the identification of Acanthamoeba sp. using the modified Field's staining technique. A. castellanii, which was used in the present experiment, is maintained in our laboratory in mycological peptone medium (Gibco). The cultures were pooled together and smears were made on glass slides for staining purposes. Different types of stains such as Field's stain, modified Field's stain, Wright's stain, Giemsa stain, Ziehl-Neelsen stain, and trichrome stain were used to determine the best stain for the identification of this amoeba. The concentration of various stains and the duration of staining were varied to provide the best color and contrast for each stain. Acanthamoeba was also obtained from the brain of experimentally infected mice and was stained with various stains as mentioned above to determine the best stain for use in identifying the presence of this parasite in experimentally infected animals. The modified Field's stain gives a very good color contrast as compared with other stains. Furthermore, it takes only 20 s to be carried out using the least number of reagents, making it suitable for both laboratory and field use.
  11. Junaid OQ, Vythilingam I, Khaw LT, Sivanandam S, Mahmud R
    Parasitol Res, 2020 Apr;119(4):1301-1315.
    PMID: 32179986 DOI: 10.1007/s00436-020-06632-4
    Malaria and lymphatic filariasis (LF) are two leading and common mosquito-borne parasitic diseases worldwide. These two diseases are co-endemic in many tropical and sub-tropical regions and are known to share vectors. The interactions between malaria and filarial parasites are poorly understood. Thus, this study aimed at establishing the interactions that occur between Brugia pahangi and Plasmodium berghei ANKA (PbA) co-infection in gerbils. Briefly, the gerbils were matched according to age, sex, and weight and grouped into filarial-only infection, PbA-only infection, co-infection, and control group. The parasitemia, survival and clinical assessment of the gerbils were monitored for a period of 30 days post Plasmodium infection. The immune responses of gerbils to both mono and co-infection were monitored. Findings show that co-infected gerbils have higher survival rate than PbA-infected gerbils. Food and water consumption were significantly reduced in both PbA-infected and co-infected gerbils, although loss of body weight, hypothermia, and anemia were less severe in co-infected gerbils. Plasmodium-infected gerbils also suffered hypoglycemia, which was not observed in co-infected gerbils. Furthermore, gerbil cytokine responses to co-infection were significantly higher than PbA-only-infected gerbils, which is being suggested as a factor for their increased longevity. Co-infected gerbils had significantly elicited interleukin-4, interferon-gamma, and tumor necrotic factor at early stage of infection than PbA-infected gerbils. Findings from this study suggest that B. pahangi infection protect against severe anemia and hypoglycemia, which are manifestations of PbA infection.
  12. Chandramathi S, Suresh K, Sivanandam S, Kuppusamy UR
    PLoS One, 2014;9(5):e94567.
    PMID: 24788756 DOI: 10.1371/journal.pone.0094567
    Stress alters the oxidant-antioxidant state and immune cell responses which disrupts its function to combat infection. Blastocystis hominis, a common intestinal protozoan has been reported to be opportunistic in immunocompromised patients namely cancer. B. hominis infectivity in other altered immune system conditions especially stress is unknown. We aimed to demonstrate the stress effects towards the susceptibility and pathogenicity of B. hominis infection.
  13. Loke SC, Chin SP, Sivanandam S, Goh PP, Ng RK, Saw KY, et al.
    Stem Cell Rev Rep, 2010 Dec;6(4):507-11.
    PMID: 20669056 DOI: 10.1007/s12015-010-9176-8
    Very few registries worldwide focus on clinical outcomes of stem cell therapy (SCT) as the large number of applications and rapid development of the field complicates registry design considerably. The National Stem Cell Therapy Patient Registry of Malaysia aims to accommodate this by using a main protocol which covers the overall design and administration of the registry, and condition-specific sub-protocols which deal with outcome measures. The registry will start with a few sub-protocols covering existing modes of SCT in Malaysia, with new sub-protocols released periodically as the need arises.
  14. Ramachandran CP, Dondero TJ, Mullin SW, Sivanandam S, Stevens S
    Med J Malaya, 1971 Jun;25(4):273-7.
    PMID: 4261299
  15. Sivanandam S, Sandosham AA
    Med J Malaya, 1968 Mar;22(3):238.
    PMID: 4234713
  16. Sandosham AA, Sivanandam S, Fong YL, Omar I
    Med J Malaya, 1966 Jun;20(4):340.
    PMID: 4224353
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links