Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. Israf DA, Lajis NH, Somchit MN, Sulaiman MR
    Life Sci, 2004 Jun 11;75(4):397-406.
    PMID: 15147827
    An experiment was conducted with the objective to enhance mucosal immunity against ovalbumin (OVA) by co-administration of OVA with an aqueous extract from the fruit of Solanum torvum (STE). Five groups of female ICR mice aged approximately 8 weeks at the commencement of the experiment were caged in groups of eight and received various treatments. The treatments included OVA alone, OVA with cholera toxin (CT), and OVA with various doses of STE. Mice were primed intraperitoneally with 500 microg of OVA alone or co-administered with 0.1 microg CT, or with 1 microg STE. All mice were boosted orally via gastric intubation 14 days after priming with 10 mg OVA alone, or co-administered with 10 microg CT or with 10 mg, 1 mg or 0.1 mg STE. One week later all mice were killed and organs obtained for analysis of the immune response. Intestinal, faecal and pulmonary OVA-specific sIgA concentration was significantly increased (p<0.05) in mice that received booster combinations of OVA/CT and OVA with all extract doses (p<0.05). Specific serum IgG titres did not differ significantly between groups. It is concluded that STE can significantly enhance secretory immunity in the intestine to OVA with mucosal homing to the lungs. The adjuvant effect of STE is comparable to that of CT.
  2. Somchit N, Norshahida AR, Hasiah AH, Zuraini A, Sulaiman MR, Noordin MM
    Hum Exp Toxicol, 2004 Nov;23(11):519-25.
    PMID: 15625777
    Itraconazole and fluconazole are oral antifungal drugs, which have a wide spectrum antifungal activity and better efficacy than the older drugs. However, both drugs have been associated with hepatotoxicity in susceptible patients. The mechanism of antifungal drug-induced hepatotoxicity is largely unknown. Therefore, the aim of this present study was to investigate and compare the hepatotoxicity induced by these drugs in vivo. Rats were treated intraperitoneally with itraconazole or fluconazole either single (0, 10, 100 and 200 mg/kg) or subchronic (0, 10, 50 and 100 mg/kg per day for 14 days) doses. Plasma and liver samples were taken at the end of the study. A statistically significant and dose dependent increase of plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities were detected in the subchronic itraconazole-treated group. In addition, dose-dependent hepatocellular necrosis, degeneration of periacinar and mizonal hepatocytes, bile duct hyperplasia and biliary cirrhosis and giant cell granuloma were observed histologically in the same group. Interestingly, fluconazole treated rats had no significant increase in transaminases for both single and subchronic groups. In the subchronic fluconazole treated rats, only mild degenerative changes of centrilobular hepatocytes were observed. These results demonstrated that itraconazole was a more potent hepatotoxicant than fluconazole in vivo in rats.
  3. Sulaiman MR, Somchit MN, Israf DA, Ahmad Z, Moin S
    Fitoterapia, 2004 Dec;75(7-8):667-72.
    PMID: 15567242
    The antinociceptive effect of the ethanolic extract of Melastoma malabathricum (MME) was investigated using acetic acid-induced abdominal writhing test and hot-plate test in mice. It was demonstrated that the extract (30-300 mg/kg, i.p.) strongly and dose-dependently inhibited the acetic acid-induced writhing with an ED(50) of 100 (78-160) mg/kg i.p. It also significantly increased the response latency period to thermal stimuli. Furthermore, the nonselective opioid receptor antagonist, naloxone blocked the antinociceptive effect of the extract in both tests, suggesting that M. malabathricum may act both at peripheral and central levels.
  4. Zakaria ZA, Safarul M, Valsala R, Sulaiman MR, Fatimah CA, Somchit MN, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2005 Jul;372(1):55-62.
    PMID: 16133487
    A series of preliminary studies was carried out to evaluate the antinociceptive (pain relief) activity of the aqueous extract of Corchorus olitorius L. leaves (COAE) and to determine the influence of temperature and opioid receptors on COAE activity using the abdominal constriction and hot plate tests in mice. COAE, at concentrations of 10, 25, 50, 75, and 100%, showed both peripheral and central antinociception that are non-concentration- and concentration-dependent respectively. The peripheral activity was clearly observed at a concentration of 25% and diminished at a concentration of 100%, while the central activity was observed at all the concentrations of COAE used. Furthermore, the insignificant results obtained indicated that this peripheral activity (at concentrations of 25 and 50%) was comparable to that of morphine (0.8 mg/kg). Pre-heating COAE at a temperature of 80 degrees C and 100 degrees C, or 60 degrees C and 80 degrees C was found to enhance its peripheral and central antinociception respectively. Pre-treatment with naloxone (10 mg/kg), a general opioid receptor antagonist, for 5 min, followed by COAE, was found to completely block its peripheral, but not central, antinociceptive activity. Based on this observation, we conclude that the antinociceptive activity exhibited by C. olitorius is enhanced by the increase in temperature and may be mediated peripherally, but not centrally, at least in part, via an opioid receptor.
  5. Zakaria ZA, Sulaiman MR, Mat Jais AM, Somchit MN
    Can J Physiol Pharmacol, 2005 Jul;83(7):635-42.
    PMID: 16091789
    The effects of an aqueous supernatant of haruan (ASH) (Channa striatus) fillet extract on various antinociception receptor system activities were examined using a mouse abdominal-constriction model. Mice that were pretreated with distilled water, s.c., followed 10 min later by administration of 25%, 50%, and 100% concentration ASH, s.c., produced a significant concentration-dependent antinociceptive activity (p < 0.001). Pretreatment with naloxone (0.3, 1.0, and 3.0 mg/kg body mass), 10 min before ASH administration, failed to block the extract antinociception. Pretreatment of the 100% concentration ASH with mecamylamine (5 mg/kg), pindolol (10 mg/kg), and haloperidol (1 mg/kg) also did not cause any significant change in its antinociception. However, pretreatment with atropine (5 mg/kg), bicuculline (10 mg/kg), phenoxybenzamine (10 mg/kg), and methysergide (5 mg/kg) were found to reverse ASH antinociception. Based on the above findings, the ASH is suggested to contain different types of bioactive compounds that act synergistically on muscarinic, GABAA, alpha-adrenergic, and serotonergic receptor systems to produce the observed antinociception.
  6. Zakaria ZA, Sulaiman MR, Somchit MN, Jais AM, Ali DI
    J Pharm Pharm Sci, 2005;8(2):199-206.
    PMID: 16124931
    To determine the involvement of nitric oxide/cyclic guanosine monophosphate (NO/cGMP) pathway in aqueous supernatant of haruan (Channa striatus) fillet (ASH) antinociception using the acetic acid-induced abdominal constriction test.
  7. Ahmad S, Israf DA, Lajis NH, Shaari K, Mohamed H, Wahab AA, et al.
    Eur J Pharmacol, 2006 May 24;538(1-3):188-94.
    PMID: 16650843
    Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on the 4' or 6' locations of the A benzene ring.
  8. Syahida A, Israf DA, Permana D, Lajis NH, Khozirah S, Afiza AW, et al.
    Immunol Cell Biol, 2006 Jun;84(3):250-8.
    PMID: 16509831
    Many plant-derived natural compounds have been reported previously to inhibit the production of important pro-inflammatory mediators such as nitric oxide, prostaglandin E2, TNF-alpha and reactive oxygen species by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase pathway and nuclear translocation of critical transcription factors. This study evaluates the effects of atrovirinone [2-(1-methoxycarbonyl-4,6-dihydroxyphenoxy)-3-methoxy-5,6-di-(3-methyl-2-butenyl)-1,4-benzoquinone)], a benzoquinone that we have previously isolated from Garcinia atroviridis, on two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds, namely, RAW 264.7 macrophage cells and whole blood. Atrovirinone inhibited the production of both nitric oxide and prostaglandin E2 from LPS-induced and IFN-gamma-induced RAW 264.7 cells and whole blood, with inhibitory concentration (IC)50 values of 4.62 +/- 0.65 and 9.33 +/- 1.47 micromol/L, respectively. Analysis of thromboxane B2 (TXB2) secretion from whole blood stimulated by either the cyclooxygenase (COX)-1 or the COX-2 pathway showed that atrovirinone inhibits the generation of TXB2 by both pathways, with IC50 values of 7.41 +/- 0.92 and 2.10 +/- 0.48 micromol/L, respectively. Analysis of IC50 ratios showed that atrovirinone was more COX-2 selective in its inhibition of TXB2, with a ratio of 0.32. Atrovirinone also inhibited the generation of intracellular reactive oxygen species and the secretion of TNF-alpha from RAW 264.7 cells in a dose-responsive manner, with IC50 values of 5.99 +/- 0.62 and 11.56 +/- 0.04 micromol/L, respectively. Lipoxygenase activity was also moderately inhibited by atrovirinone. Our results suggest that atrovirinone acts on important pro-inflammatory mediators possibly by the inhibition of the nuclear factor-kappaB pathway and also by the inhibition of the COX/lipoxygenase enzyme activity.
  9. Zakaria ZA, Sulaiman MR, Jais AM, Somchit MN, Jayaraman KV, Balakhrisnan G, et al.
    Fundam Clin Pharmacol, 2006 Aug;20(4):365-72.
    PMID: 16867020
    The present study was carried out to investigate on the possible involvement of L-arginine/nitric oxide/cyclic guanosine monophosphate (L-arginine/NO/cGMP) pathway in the aqueous extract of Muntingia calabura (AEMC) leaves antinociception in mice assessed by abdominal constriction test. The AEMC, obtained by soaking the dried leaves in distilled water (DH(2)O) (1 : 2; w/v) for 24 h, was prepared in concentrations of 10%, 50% and 100% that were approximately equivalent to doses of 27, 135 and 270 mg/kg, and administered subcutaneously (s.c.) 5 min after pre-treatment (s.c.) of mice with DH(2)O, L-arginine (20 mg/kg), N(G)-monomethyl-L-arginine acetate (L-NMMA; 20 mg/kg), N(G)-nitro-L-arginine methyl esters (L-NAME; 20 mg/kg), methylene blue (MB) (20 mg/kg), respectively. The AEMC was found to exhibit a concentration-dependent antinociception after pre-challenge with DH(2)O. Interestingly, pre-treatment with L-arginine was found to block significantly (P < 0.05) the AEMC antinociception but only at the highest concentration (100%) of AEMC used. On the other hand, pre-treatment with L-NAME was found to significantly (P < 0.05) enhance the low concentration but inhibit the high concentration AEMC antinociception. MB was found to significantly (P < 0.05) enhance AEMC antinociception at all concentrations used. Except for the higher concentration of AEMC used, co-treatment with L-NAME was found to insignificantly and significantly (P < 0.05) reverse the L-arginine effect when given alone or with low concentration AEMC, respectively. In addition, co-treatment with MB significantly (P < 0.05) reversed the L-arginine effect when given alone or with 10% concentration AEMC but failed to affect the activity of the rest of concentrations used. As a conclusion, this study has demonstrated the involvement of L-arginine/NO/cGMP pathway in AEMC antinociception.
  10. Zakaria ZA, Abdul Ghani ZD, Raden Mohd Nor RN, Gopalan HK, Sulaiman MR, Abdullah FC
    Yakugaku Zasshi, 2006 Nov;126(11):1197-203.
    PMID: 17077622
    The present study was carried out to establish the antinociceptive and anti-inflammatory properties of Dicranopteris linearis leaves chloroform extract in experimental animals. The antinociceptive activity was measured using the abdominal constriction, formalin and hot plate tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by evaporation under vacuo (40 degrees C) to dryness, was dissolved in dimethyl sulfoxide to the doses of 20, 100 and 200 mg/kg and administered subcutaneously 30 min prior to subjection to the above mentioned assays. The extract, at all doses used, was found to exhibit significant (p<0.05) antinociceptive activity in a dose-dependent manner. However, the significant (p<0.05) anti-inflammatory activity observed occur in a dose-independent manner. As a conclusion, the chloroform extract of D. linearis possesses antinociceptive and anti-inflammatory activity and thus justify its traditional uses by the Malays to treat various ailments.
  11. Zakaria ZA, Gopalan HK, Zainal H, Mohd Pojan NH, Morsid NA, Aris A, et al.
    Yakugaku Zasshi, 2006 Nov;126(11):1171-8.
    PMID: 17077618
    AIM: The present study was carried out to evaluate the antinociceptive, anti-inflammatory and antipyretic effects of chloroform extract of Solanum nigrum leaves using various animal models.

    METHODS: The extract was prepared by soaking (1:20; w/v) the air-dried powdered leaves (20 g) in chloroform for 72 hrs followed by evaporation (40 degrees C) under reduced pressure to dryness (1.26 g) and then dissolved (1:50; w/v) in dimethylsulfoxide (DMSO). The supernatant, considered as the stock solution with dose of 200 mg/kg, was diluted using DMSO to 20 and 100 mg/kg, and all doses were administered (s.c.; 10 ml/kg) in mice/rats 30 min prior to tests.

    RESULTS: The extract exhibited significant (p<0.05) antinociceptive activity when assessed using the abdominal constriction, hot plate and formalin tests. The extract also produced significant (p<0.05) anti-inflammatory and antipyretic activities when assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests. Overall, the activities occurred in a dose-independent manner.

    CONCLUSION: The present study demonstrated that the lipid-soluble extract of S. nigrum leaves possessed antinociceptive, anti-inflammatory and anti-pyretic properties and confirmed the traditional claims.

  12. Zakaria ZA, Raden Mohd Nor RN, Hanan Kumar G, Abdul Ghani ZD, Sulaiman MR, Rathna Devi G, et al.
    Can J Physiol Pharmacol, 2006 Dec;84(12):1291-9.
    PMID: 17487238
    The present study was carried out to establish the antinociceptive, anti-inflammatory, and antipyretic properties of the aqueous extract of Melastoma malabathricum leaves in experimental animals. The antinociceptive activity was measured using abdominal constriction, hot-plate, and formalin tests, whereas the anti-inflammatory and antipyretic activities were measured using carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. The extract, which was obtained after soaking the air-dried leaves in distilled water for 72 h and then preparing in concentrations of 10%, 50%, and 100% (v/v), was administered subcutaneously 30 min prior to subjection to the above mentioned assays. At all concentrations tested, the extract was found to exhibit significant (P < 0.05) antinociceptive, anti-inflammatory, and antipyretic activities in a concentration-independent manner. Our findings that the aqueous extract of M. malabathricum possesses antinociceptive, anti-inflammatory, and antipyretic activities supports previous claims on its traditional uses to treat various ailments.
  13. Somchit N, Wong CW, Zuraini A, Ahmad Bustamam A, Hasiah AH, Khairi HM, et al.
    Drug Chem Toxicol, 2006;29(3):237-53.
    PMID: 16777703
    Itraconazole and fluconazole are potent wide spectrum antifungal drugs. Both of these drugs induce hepatotoxicity clinically. The mechanism underlying the hepatotoxicity is unknown. The purpose of this study was to investigate the role of phenobarbital (PB), an inducer of cytochrome P450 (CYP), and SKF 525A, an inhibitor of CYP, in the mechanism of hepatotoxicity induced by these two drugs in vivo. Rats were pretreated with PB (75 mg/kg for 4 days) prior to itraconazole or fluconazole dosing (20 and 200 mg/kg for 4 days). In the inhibition study, for 4 consecutive days, rats were pretreated with SKF 525A (50 mg/kg) or saline followed by itraconazole or fluconazole (20 and 200 mg/kg) Dose-dependent increases in plasma alanine aminotransferase (ALT), gamma-glutamyl transferase (gamma-GT), and alkaline phosphatase (ALP) activities and in liver weight were detected in rats receiving itraconazole treatment. Interestingly, pretreatment with PB prior to itraconazole reduced the ALT and gamma-GT activities and the liver weight of rats. No changes were observed in rats treated with fluconazole. Pretreatment with SKF 525A induced more severe hepatotoxicity for both itraconazole and fluconazole. CYP 3A activity was inhibited dose-dependently by itraconazole treatment. Itraconazole had no effects on the activity of CYP 1A and 2E. Fluconazole potently inhibited all three isoenzymes of CYP. PB plays a role in hepatoprotection to itraconazole-induced but not fluconazole-induced hepatotoxicity. SKF 525A enhanced the hepatotoxicity of both antifungal drugs in vivo. Therefore, it can be concluded that inhibition of CYP may play a key role in the mechanism of hepatotoxicity induced by itraconazole and fluconazole.
  14. Zakaria ZA, Sulaiman MR, Gopalan HK, Abdul Ghani ZD, Raden Mohd Nor RN, Mat Jais AM, et al.
    Yakugaku Zasshi, 2007 Feb;127(2):359-65.
    PMID: 17268156
    The antinociceptive and anti-inflammatory properties of Corchorus capsularis leaves chloroform extract were investigated in experimental animal models. The antinociceptive activity was measured using the writhing, hot plate and formalin tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema test. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by in vacuo evaporation to dryness, was weighed and prepared by serial dilution in DMSO in the doses of 20, 100 and 200 mg/kg. The extract was administered (s.c.) 30 min prior to subjection to the respective assays. The extract was found to exhibit significant (p < 0.05) antinociceptive and anti-inflammatory activities. As a conclusion, the present study confirmed the traditional claims of using C. capsularis to treat various ailments related to inflammation and pain.
  15. Zakaria ZA, Mat Jais AM, Goh YM, Sulaiman MR, Somchit MN
    Clin Exp Pharmacol Physiol, 2007 Mar;34(3):198-204.
    PMID: 17250639
    1. The present study was performed in order to determine the amino acid and fatty acid composition of an aqueous extract of the freshwater fish Channa striatus, obtained by soaking (1:2, w/v) fresh fillets overnight in a chloroform:methanol (2:1, v/v) solvent, to elucidate the mechanism responsible for its antinociceptive activity and to clarify the relationship between the presence of the amino and fatty acids and the expected activity. 2. The aqueous extract was found to contain all amino acids with the major amino acids glycine, alanine, lysine, aspartic acid and proline making up 35.77 +/- 0.58, 10.19 +/- 1.27, 9.44 +/- 0.56, 8.53 +/- 1.15 and 6.86 +/- 0.78% of the total protein, respectively. 3. In addition, the aqueous extract was found to have a high palmitic acid (C16:0) content, which contributed approximately 35.93 +/- 0.63% to total fatty acids. The other major fatty acids in the aqueous extract were oleic acid (C18:1), stearic acid (C18:0), linoleic acid (C18:2) and arachidonic acid (C20:4), contributing 22.96 +/- 0.40, 15.31 +/- 0.33, 11.45 +/- 0.31 and 7.44 +/- 0.83% of total fatty acids, respectively. 4. Furthermore, the aqueous extract was demonstrated to possess concentration-dependent antinociceptive activity, as expected, when assessed using the abdominal constriction test in mice. 5. It is concluded that the aqueous extract of C. striatus contains all the important amino acids, but only some of the important fatty acids, which are suggested to play a key role in the observed antinociceptive activity of the extract, as well as in the traditionally claimed wound healing properties of the extract.
  16. Zakaria ZA, Hassan MH, Nurul Aqmar MN, Abd Ghani M, Mohd Zaid SN, Sulaiman MR, et al.
    Methods Find Exp Clin Pharmacol, 2007 Oct;29(8):515-20.
    PMID: 18040526
    This study was carried out in mice to determine the nonopioid receptor signaling pathway(s) that might modulate the antinociceptive activity of the aqueous and chloroform extracts of Muntingia calabura (M. calabura) leaves, using the hot-plate test. The leaves of M. calabura were sequentially soaked [1:2 (w/v); 72 h] in distilled water (dH(2)O) and chloroform. The 50% concentration extracts were selected for this study based on the plant's previously established antinociceptive profiles. The mice (n = 7) were pretreated (s.c.) for 10 min with the selected nonopioid receptor antagonists, followed by the (s.c.) administration of the respective extract. The latency of discomfort was recorded at the interval time of 0.5, 1, 2, 3, 4 and 5 h after the extract administration. The 5 mg/kg atropine, 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol, 1 mg/kg haloperidol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the aqueous extract-induced antinociceptive activity. The 10 mg/kg phenoxybenzamine, 10 mg/kg yohimbine, 10 mg/kg pindolol and 10 mg/kg bicuculline caused significant (p < 0.05) reduction in the chloroform extract-induced antinociceptive activity. In conclusion, the central antinociceptive activity of M. calabura leaves appears to be involved in the modulation of various nonopioid receptor signaling pathways. Its aqueous extract antinociceptive activity is mediated via modulation of the muscarinic, alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic, dopaminergic and GABAergic receptors, while its chloroform extract activity is mediated via modulation of the alpha(1)-adrenergic, alpha(2)-adrenergic, beta-adrenergic and GABAergic receptors.
  17. Zakaria ZA, Wen LY, Abdul Rahman NI, Abdul Ayub AH, Sulaiman MR, Gopalan HK
    Med Princ Pract, 2007;16(6):443-9.
    PMID: 17917444
    The present study was carried out to determine the antinociceptive, anti-inflammatory and antipyretic activities of the aqueous extract of Bauhinia purpurea leaves using animal models.
  18. Zakaria ZA, Mustapha S, Sulaiman MR, Mat Jais AM, Somchit MN, Abdullah FC
    Med Princ Pract, 2007;16(2):130-6.
    PMID: 17303949
    The present study was carried out to investigate the antinociceptive activity of the aqueous extract of Muntingia calabura (MCAE) leaves and to determine the effect of temperature and the involvement of the opioid receptor on the said activity using the abdominal constriction test (ACT) and hot-plate test (HPT) in mice.
  19. Sulaiman MR, Zakaria ZA, Daud IA, Ng FN, Ng YC, Hidayat MT
    J Nat Med, 2008 Apr;62(2):221-7.
    PMID: 18404328 DOI: 10.1007/s11418-007-0210-3
    This study was performed to determine the antinociceptive and anti-inflammatory activities of aqueous extract of Kaempferia galanga leaves using various animal models. The extract, in the doses of 30, 100, and 300 mg/kg, was prepared by soaking (1:10; w/v) the air-dried powdered leaves (40 g) in distilled water (dH(2)O) for 72 h and administered subcutaneously in mice/rats 30 min prior to the tests. The extract exhibited significant (P < 0.05) antinociceptive activity when assessed using the abdominal constriction, hot-plate and formalin tests, with activity observed in all tests occurring in a dose-dependent manner. Furthermore, the antinociceptive activity of K. galanga extract was significantly (P < 0.05) reversed when prechallenged with 10 mg/kg naloxone. The extract also produced a significantly (P < 0.05) dose-dependent anti-inflammatory activity when assessed using the carrageenan-induced paw-edema test. In conclusion, this study demonstrated that K. galanga leaves possessed antinociceptive and anti-inflammatory activities and thus supports the Malay's traditional uses of the plant for treatments of mouth ulcer, headache, sore throat, etc.
  20. Zakaria ZA, Ghani ZD, Nor RN, Gopalan HK, Sulaiman MR, Jais AM, et al.
    J Nat Med, 2008 Apr;62(2):179-87.
    PMID: 18404320 DOI: 10.1007/s11418-007-0224-x
    This study was performed out to establish the antinociceptive, anti-inflammatory, and antipyretic properties of an aqueous extract of Dicranopteris linearis leaves in experimental animals. The antinociceptive activity was measured using the abdominal constriction, hot plate, and formalin tests. The anti-inflammatory and antipyretic activities were measured using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests, respectively. The extract, obtained after 72 h soaking of the air-dried leaves in distilled water and then prepared in the doses of 13.2, 66.0, 132.0, and 660.0 mg/kg, was administered subcutaneously 30 min before subjecting the animals to the assays mentioned above. Generally, the extract, at all doses used, was found to have significant (P < 0.05) concentration-independent antinociceptive, anti-inflammatory, and anti-pyretic activity. In conclusion, the aqueous extract of D. linearis has antinociceptive, anti-inflammatory, and antipyretic activity, supporting previous claims of its traditional use by the Malays to treat various ailments, particularly fever.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links