Displaying publications 1 - 20 of 90 in total

Abstract:
Sort:
  1. Zakaria ZA, Sulaiman MR, Gopalan HK, Abdul Ghani ZD, Raden Mohd Nor RN, Mat Jais AM, et al.
    Yakugaku Zasshi, 2007 Feb;127(2):359-65.
    PMID: 17268156
    The antinociceptive and anti-inflammatory properties of Corchorus capsularis leaves chloroform extract were investigated in experimental animal models. The antinociceptive activity was measured using the writhing, hot plate and formalin tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema test. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by in vacuo evaporation to dryness, was weighed and prepared by serial dilution in DMSO in the doses of 20, 100 and 200 mg/kg. The extract was administered (s.c.) 30 min prior to subjection to the respective assays. The extract was found to exhibit significant (p < 0.05) antinociceptive and anti-inflammatory activities. As a conclusion, the present study confirmed the traditional claims of using C. capsularis to treat various ailments related to inflammation and pain.
  2. Zakaria ZA, Abdul Ghani ZD, Raden Mohd Nor RN, Gopalan HK, Sulaiman MR, Abdullah FC
    Yakugaku Zasshi, 2006 Nov;126(11):1197-203.
    PMID: 17077622
    The present study was carried out to establish the antinociceptive and anti-inflammatory properties of Dicranopteris linearis leaves chloroform extract in experimental animals. The antinociceptive activity was measured using the abdominal constriction, formalin and hot plate tests, while the anti-inflammatory activity was measured using the carrageenan-induced paw edema. The extract, obtained after 72 h soaking of the air-dried leaves in chloroform followed by evaporation under vacuo (40 degrees C) to dryness, was dissolved in dimethyl sulfoxide to the doses of 20, 100 and 200 mg/kg and administered subcutaneously 30 min prior to subjection to the above mentioned assays. The extract, at all doses used, was found to exhibit significant (p<0.05) antinociceptive activity in a dose-dependent manner. However, the significant (p<0.05) anti-inflammatory activity observed occur in a dose-independent manner. As a conclusion, the chloroform extract of D. linearis possesses antinociceptive and anti-inflammatory activity and thus justify its traditional uses by the Malays to treat various ailments.
  3. Zakaria ZA, Gopalan HK, Zainal H, Mohd Pojan NH, Morsid NA, Aris A, et al.
    Yakugaku Zasshi, 2006 Nov;126(11):1171-8.
    PMID: 17077618
    AIM: The present study was carried out to evaluate the antinociceptive, anti-inflammatory and antipyretic effects of chloroform extract of Solanum nigrum leaves using various animal models.

    METHODS: The extract was prepared by soaking (1:20; w/v) the air-dried powdered leaves (20 g) in chloroform for 72 hrs followed by evaporation (40 degrees C) under reduced pressure to dryness (1.26 g) and then dissolved (1:50; w/v) in dimethylsulfoxide (DMSO). The supernatant, considered as the stock solution with dose of 200 mg/kg, was diluted using DMSO to 20 and 100 mg/kg, and all doses were administered (s.c.; 10 ml/kg) in mice/rats 30 min prior to tests.

    RESULTS: The extract exhibited significant (p<0.05) antinociceptive activity when assessed using the abdominal constriction, hot plate and formalin tests. The extract also produced significant (p<0.05) anti-inflammatory and antipyretic activities when assessed using the carrageenan-induced paw edema and brewer's yeast-induced pyrexia tests. Overall, the activities occurred in a dose-independent manner.

    CONCLUSION: The present study demonstrated that the lipid-soluble extract of S. nigrum leaves possessed antinociceptive, anti-inflammatory and anti-pyretic properties and confirmed the traditional claims.

  4. Ismail N, Jambari NN, Zareen S, Akhtar MN, Shaari K, Zamri-Saad M, et al.
    Toxicol Appl Pharmacol, 2012 Mar 1;259(2):257-62.
    PMID: 22266348 DOI: 10.1016/j.taap.2012.01.003
    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5-10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2mg/kg with no effect at the lowest dose of 0.2mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics.
  5. Sabullah MK, Sulaiman MR, Abd Shukor MY, Syed MA, Shamaan NA, Khalid A, et al.
    ScientificWorldJournal, 2014;2014:571094.
    PMID: 25401148 DOI: 10.1155/2014/571094
    Crude extract of ChE from the liver of Puntius javanicus was purified using procainamide-sepharyl 6B. S-Butyrylthiocholine iodide (BTC) was selected as the specific synthetic substrate for this assay with the highest maximal velocity and lowest biomolecular constant at 53.49 µmole/min/mg and 0.23 mM, respectively, with catalytic efficiency ratio of 0.23. The optimum parameter was obtained at pH 7.5 and optimal temperature in the range of 25 to 30°C. The effect of different storage condition was assessed where ChE activity was significantly decreased after 9 days of storage at room temperature. However, ChE activity showed no significant difference when stored at 4.0, 0, and -25°C for 15 days. Screening of heavy metals shows that chromium, copper, and mercury strongly inhibited P. javanicus ChE by lowering the activity below 50%, while several pairwise combination of metal ions exhibited synergistic inhibiting effects on the enzyme which is greater than single exposure especially chromium, copper, and mercury. The results showed that P. javanicus ChE has the potential to be used as a biosensor for the detection of metal ions.
  6. Zakaria ZA, Mohamed AM, Jamil NS, Rofiee MS, Hussain MK, Sulaiman MR, et al.
    Am J Chin Med, 2011;39(1):183-200.
    PMID: 21213408
    The in vitro antiproliferative and antioxidant activities of the aqueous, chloroform and methanol extracts of Muntingia calabura leaves were determined in the present study. Assessed using the 3,(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, the aqueous and methanol extracts of M. calabura inhibited the proliferation of MCF-7, HeLa, HT-29, HL-60 and K-562 cancer cells while the chloroform extract only inhibited the proliferation of MCF-7, HeLa, HL-60 and K-562 cancer cells. Interestingly, all extracts of M. calabura, which failed to inhibit the MDA-MB-231 cells proliferation, did not inhibit the proliferation of 3T3 (normal) cells, indicating its safety. All extracts (20, 100 and 500 μg/ml) were found to possess antioxidant activity when tested using the DPPH radical scavenging and superoxide scavenging assays with the methanol, followed by the aqueous and chloroform, extract exhibiting the highest antioxidant activity in both assays. The total phenolic content for the aqueous, methanol and chloroform extracts were 2970.4 ± 6.6, 1279.9 ± 6.1 and 2978.1 ± 4.3 mg/100 g gallic acid, respectively. In conclusion, the M. calabura leaves possess potential antiproliferative and antioxidant activities that could be attributed to its high content of phenolic compounds, and thus, needs to be further explored.
  7. Ong HM, Azmi AFA, Leong SW, Abas F, Perimal EK, Farouk AAO, et al.
    Sci Rep, 2021 12 16;11(1):24121.
    PMID: 34916536 DOI: 10.1038/s41598-021-02961-1
    A novel synthetic compound from the 2-benzoyl-6-benzylidenecyclohexanone analogue, namely 2-benzoyl-6-(3-bromo-4-hydroxybenzylidene)cyclohexen-1-ol (BBHC), showed pronounced nitric oxide inhibition in IFN-γ/LPS-induced RAW 264.7 cells. Based on this previous finding, our present study aimed to investigate the antinociceptive effects of BBHC via chemical and thermal stimuli in vivo. The investigation of the antinociceptive activity of BBHC (0.1, 0.3, 1.0 and 3.0 mg/kg, i.p.) was initiated with 3 preliminary screening tests, then BBHC was subjected to investigate its possible involvement with excitatory neurotransmitters and opioid receptors. The potential acute toxicity of BBHC administration was also studied. Administration of BBHC significantly inhibited acetic acid-induced abdominal constrictions, formalin-induced paw licking activity and developed notable increment in the latency time. BBHC's ability to suppress capsaicin- and glutamate-induced paw licking activities, as well as to antagonise the effect of naloxone, had indicated the possible involvement of its antinociception with TRPV1, glutamate and opioid receptors, respectively. The antinociceptive activities of BBHC was not related to any sedative action and no evidence of acute toxic effect was detected. The present study showed that BBHC possessed significant peripheral and central antinociceptive activities via chemical- and thermal-induced nociceptive murine models without any locomotor alteration and acute toxicity.
  8. Abu N, Akhtar MN, Yeap SK, Lim KL, Ho WY, Zulfadli AJ, et al.
    PLoS One, 2014;9(10):e105244.
    PMID: 25286005 DOI: 10.1371/journal.pone.0105244
    INTRODUCTION: The kava-kava plant (Piper methsyticum) is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis.

    METHODS: MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.

    RESULTS: We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.

    CONCLUSIONS: FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.

  9. Sulaiman MR, Tengku Mohamad TA, Shaik Mossadeq WM, Moin S, Yusof M, Mokhtar AF, et al.
    Planta Med, 2010 Feb;76(2):107-12.
    PMID: 19637111 DOI: 10.1055/s-0029-1185950
    In the present study, the rhizome essential oil from Zingiber zerumbet (Zingiberaceae) was evaluated for antinociceptive activity using chemical and thermal models of nociception, namely, the acetic acid-induced abdominal writhing test, the hot-plate test and the formalin-induced paw licking test. It was demonstrated that intraperitoneal administration of the essential oil of Z. zerumbet (EOZZ) at the doses of 30, 100 and 300 mg/kg produced significant dose-dependent inhibition of acetic acid-induced abdominal writhing, comparable to that of obtained with acetylsalicylic acid (100 mg/kg). At the same doses, the EOZZ produced significant dose-dependent increases in the latency time in the hot-plate test with respect to controls, and in the formalin-induced paw licking test, the EOZZ also significantly reduced the painful stimulus in both neurogenic and inflammatory phase of the test. In addition, the antinociceptive effect of the EOZZ in the formalin-induced paw licking test as well as hot-plate test was reversed by the nonselective opioid receptor antagonist, naloxone suggesting that the opioid system was involved in its analgesic mechanism of action. On the basis of these data, we concluded that the EOZZ possessed both central and peripheral antinociceptive activities which justifying its popular folkloric use to relieve some pain conditions.
  10. Israf DA, Tham CL, Syahida A, Lajis NH, Sulaiman MR, Mohamad AS, et al.
    Phytomedicine, 2010 Aug;17(10):732-9.
    PMID: 20378317 DOI: 10.1016/j.phymed.2010.02.006
    In a previous communication we showed that atrovirinone, a 1,4-benzoquinone isolated from the roots of Garcinia atroviridis, was able to inhibit several major proinflammatory mediators of inflammation. In this report we show that atrovirinone inhibits NO and PGE(2) synthesis through inhibition of iNOS and COX-2 expression. We also show that atrovirinone inhibits the secretion of IL-1beta and IL-6 in a dose dependent fashion whereas the secretion of IL-10, the anti-inflammatory cytokine, was enhanced. Subsequently we determined that the inhibition of proinflammatory cytokine synthesis and inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation of p38 and ERK1/2. We also showed that atrovirinone prevented phosphorylation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation as demonstrated by expression analysis. We conclude that atrovirinone is a potential anti-inflammatory drug lead that targets both the MAPK and NF-kappaB pathway.
  11. Ming-Tatt L, Khalivulla SI, Akhtar MN, Lajis N, Perimal EK, Akira A, et al.
    Pharmacol. Biochem. Behav., 2013 Dec;114-115:58-63.
    PMID: 24201054 DOI: 10.1016/j.pbb.2013.10.019
    The present study investigated the analgesic effect of a novel synthetic cyclohexanone derivative, 2,6-bis-4-(hydroxyl-3-methoxybenzilidine)-cyclohexanone or BHMC in a mouse model of chronic constriction injury-induced neuropathic pain. It was demonstrated that intraperitoneal administration of BHMC (0.03, 0.1, 0.3 and 1.0mg/kg) exhibited dose-dependent inhibition of chronic constriction injury-induced neuropathic pain in mice, when evaluated using Randall-Selitto mechanical analgesiometer. It was also demonstrated that pretreatment of naloxone (non-selective opioid receptor blocker), nor-binaltorphimine (nor-BNI, selective κ-opioid receptor blocker), but not β-funaltrexamine (β-FN, selective μ-opioid receptor blocker) and naltrindole hydrochloride (NTI, selective δ-opioid receptor blocker), reversed the anti-nociceptive effect of BHMC. In addition, the analgesic effect of BHMC was also reverted by pretreatment of 1H-[1,2,4]Oxadiazole[4,3-a]quinoxalin-1-one (ODQ, soluble guanosyl cyclase blocker) and glibenclamide (ATP-sensitive potassium channel blocker) but not Nω-nitro-l-arginine (l-NAME, a nitric oxide synthase blocker). Taken together, the present study demonstrated that the systemic administration of BHMC attenuated chronic constriction, injury-induced neuropathic pain. We also suggested that the possible mechanisms include κ-opioid receptor activation and nitric oxide-independent cyclic guanosine monophosphate activation of ATP-sensitive potassium channel opening.
  12. Sulaiman MR, Zakaria ZA, Mohamad AS, Ismail M, Hidayat MT, Israf DA, et al.
    Pharm Biol, 2010 Aug;48(8):861-8.
    PMID: 20673172 DOI: 10.3109/13880200903302820
    Alpinia conchigera Griff. (Zingiberaceae), locally known to the Malays as "lengkuas ranting", is native to Peninsular Malaysia. The Malays traditionally used it to treat infection and rashes, and as a health drink. This study evaluated the analgesic and anti-inflammatory activities of the ethanol extract of A. conchigera rhizomes in mice and rats, respectively. The analgesic activity was elucidated using the acetic acid-induced writhing test, hot plate test, and formalin test, while the anti-inflammatory activity was determined using carrageenan-induced paw edema. The extract (30, 100, and 300 mg/kg) given intraperitoneally (i.p.) exhibited antinociceptive and anti-inflammatory activities in all tests used. The range of percentage of analgesia obtained for all doses of extract in the writhing test was 50-92%, and in the early and late phases of the formalin test was 25-62% and 63-98%, respectively. In addition, naloxone (5 mg/kg) given subcutaneously (s.c.) was found to reverse the extract (300 mg/kg)-induced antinociceptive activity in the writhing, hot plate, and formalin tests. Based on the results obtained, it can be concluded that the ethanol extract of A. conchigera rhizomes possessed a peripheral and central antinociceptive activity that was mediated, in part, via the opioid receptor, as well as anti-inflammatory activity.
  13. Gopalsamy B, Sambasevam Y, Zulazmi NA, Chia JSM, Omar Farouk AA, Sulaiman MR, et al.
    Neurochem Res, 2019 Sep;44(9):2123-2138.
    PMID: 31376053 DOI: 10.1007/s11064-019-02850-0
    Number of ligations made in the chronic constriction injury (CCI) neuropathic pain model has raised serious concerns. We compared behavioural responses, nerve morphology and expression of pain marker, c-fos among CCI models developed with one, two, three and four ligations. The numbers of ligation(s) on sciatic nerve shows no significant difference in displaying mechanical and cold allodynia, and mechanical and thermal hyperalgesia throughout 84 days. All groups underwent similar levels of nerve degeneration post-surgery. Similar c-fos level in brain cingulate cortex, parafascicular nuclei and amygdala were observed in all CCI models compared to sham-operated group. Therefore, number of ligations does not impact intensity of pain symptoms, pathogenesis and neuronal activation. A single ligation is sufficient to develop neuropathic pain, in contrast to the established model of four ligations. This study dissects and characterises the CCI model, ascertaining a more uniform animal model to surrogate actual neuropathic pain condition.
  14. Zakaria ZA, Safarul M, Valsala R, Sulaiman MR, Fatimah CA, Somchit MN, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2005 Jul;372(1):55-62.
    PMID: 16133487
    A series of preliminary studies was carried out to evaluate the antinociceptive (pain relief) activity of the aqueous extract of Corchorus olitorius L. leaves (COAE) and to determine the influence of temperature and opioid receptors on COAE activity using the abdominal constriction and hot plate tests in mice. COAE, at concentrations of 10, 25, 50, 75, and 100%, showed both peripheral and central antinociception that are non-concentration- and concentration-dependent respectively. The peripheral activity was clearly observed at a concentration of 25% and diminished at a concentration of 100%, while the central activity was observed at all the concentrations of COAE used. Furthermore, the insignificant results obtained indicated that this peripheral activity (at concentrations of 25 and 50%) was comparable to that of morphine (0.8 mg/kg). Pre-heating COAE at a temperature of 80 degrees C and 100 degrees C, or 60 degrees C and 80 degrees C was found to enhance its peripheral and central antinociception respectively. Pre-treatment with naloxone (10 mg/kg), a general opioid receptor antagonist, for 5 min, followed by COAE, was found to completely block its peripheral, but not central, antinociceptive activity. Based on this observation, we conclude that the antinociceptive activity exhibited by C. olitorius is enhanced by the increase in temperature and may be mediated peripherally, but not centrally, at least in part, via an opioid receptor.
  15. Kamaldin MN, Akhtar MN, Mohamad AS, Lajis N, Perimal EK, Akira A, et al.
    Molecules, 2013 Apr 10;18(4):4209-20.
    PMID: 23612473 DOI: 10.3390/molecules18044209
    Previous studies have shown that systemic administration of 6'-hydroxy-2',4'-dimethoxychalcone (flavokawin B, FKB) exerts significant peripheral and central antinociceptive effects in laboratory animals. However, the mechanisms underlying these peripheral and central antinociceptive effects have yet to be elucidated. Therefore, the objective of the present study was to evaluate the participation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP)/potassium (K+) channels pathway in the peripheral antinociception induced by FKB. It was demonstrated that intraplantar (i.pl.) administration of FKB (150, 250, 375 and 500 µg/paw) resulted in dose-dependent peripheral antinociception against mechanical hyperalgesia in carrageenan-induced hyperalgesia test model in rats. The possibility of FKB having either a central or a systemic effect was excluded since administration of FKB into the right paw did not elicit antinociception in the contralateral paw. Furthermore, peripheral antinociception induced by FKB (500 µg/paw) was significantly reduced when L-arginine (25 µg/paw, i.pl.), Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 50 µg/paw, i.pl.), glibenclamide (300 µg/paw, i.pl.), tetraethylammonium (300 µg/paw, i.pl.) and charybdotoxin (3 µg/paw, i.pl.) were injected before treatment. Taken together, our present data suggest that FKB elicits peripheral antinociception when assessed in the mechanical hyperalgesia induced by carrageenan. In addition, it was also demonstrated that this effect was mediated through interaction of the NO/cGMP/K+ channels signaling pathway.
  16. Lee YZ, Ming-Tatt L, Lajis NH, Sulaiman MR, Israf DA, Tham CL
    Molecules, 2012 Dec 07;17(12):14555-64.
    PMID: 23222902 DOI: 10.3390/molecules171214555
    A sensitive and accurate high performance liquid chromatography with ultraviolet/visible light detection (HPLC-UV/VIS) method for the quantification of 2,6-bis-(4-hydroxy-3-methoxybenzylidene)-cyclohexanone (BHMC) in rat plasma was developed and validated. BHMC and the internal standard, harmaline, were extracted from plasma samples by a simple liquid-liquid extraction using 95% ethyl acetate and 5% methanol. Plasma concentration of BHMC and internal standard were analyzed by reversed phase chromatography using a C₁₈ column (150 × 4.6 mm I.D., particle size 5 µm) and elution with a gradient mobile phase of water and methanol at a flow rate of 1.0 mL/min. Detection of BHMC and internal standard was done at a wavelength of 380 nm. The limit of quantification was 0.02 µg/mL. The calibration curves was linear (R² > 0.999) over the concentration range of 0.02-2.5 µg/mL. Intra- and inter-day precision were less than 2% coefficient of variation. The validated method was then applied to a pharmacokinetic study in rats by intravenous administration of BHMC at a single dose of 10 mg/kg. Pharmacokinetic parameters such as half-life, maximum plasma concentration, volume of distribution, clearance and elimination rate constant for BHMC were calculated.
  17. Hisamuddin N, Shaik Mossadeq WM, Sulaiman MR, Abas F, Leong SW, Kamarudin N, et al.
    Molecules, 2019 Jul 18;24(14).
    PMID: 31323775 DOI: 10.3390/molecules24142614
    Curcumin, derived from the rhizome Curcuma longa, has been scientifically proven to possess anti-inflammatory activity but is of limited clinical and veterinary use owing to its low bioavailability and poor solubility. Hence, analogs of curcuminoids with improved biological properties have been synthesized to overcome these limitations. This study aims to provide the pharmacological basis for the use of 5-(3,4-dihydroxyphenyl)-3-hydroxy-1-(2-hydroxyphenyl)penta-2,4-dien-1-one (DHHPD), a synthetic curcuminoid analog, as an anti-edematogenic and anti-granuloma agent. The carrageenan-induced paw edema and the cotton pellet-induced granuloma assays were used to assess the anti-inflammatory activity of DHHPD in mice. The effects of DHHPD on the histaminergic, serotonergic, and bradykininergic systems were determined by the histamine-, serotonin-, and bradykinin-induced paw edema tests, respectively. DHHPD (0.1, 0.3, 1, and 3 mg/kg, intraperitoneal) evoked significant reductions (p < 0.05) in carrageenan-induced paw edema at different time intervals and granuloma formation (p < 0.0001) by 22.08, 32.57, 37.20, and 49.25%, respectively. Furthermore, DHHPD significantly reduced paw edema (p < 0.05) induced by histamine, serotonin, and bradykinin. The present study suggests that DHHPD exerts anti-edematogenic activity, possibly by inhibiting the synthesis or release of autacoid mediators of inflammation through the histaminergic, serotonergic, and bradykininergic systems. The anti-granuloma effect may be attributed to the suppression of transudative, exudative, and proliferative activities associated with inflammation.
  18. Gopalsamy B, Chia JSM, Farouk AAO, Sulaiman MR, Perimal EK
    Molecules, 2020 Aug 26;25(17).
    PMID: 32858809 DOI: 10.3390/molecules25173880
    Zerumbone, a monocyclic sesquiterpene from the wild ginger plant Zingiber zerumbet (L.) Smith, attenuates allodynia and hyperalgesia. Currently, its mechanisms of action in neuropathic pain conditions remain unclear. This study examines the involvement of potassium channels and opioid receptors in zerumbone-induced analgesia in a chronic constriction injury (CCI) neuropathic pain mice model. Male Institute of Cancer Research (ICR) mice were subjected to CCI and behavioral responses were tested on day 14. Responses toward mechanical allodynia and thermal hyperalgesia were tested with von Frey's filament and Hargreaves' tests, respectively. Symptoms of neuropathic pain were significantly alleviated following treatment with zerumbone (10 mg/kg; intraperitoneal, i.p.). However, when the voltage-dependent K+ channel blocker tetraethylammonium (TEA, 4 mg/kg; i.p.), ATP-sensitive K+ channel blocker, glibenclamide (GLIB, 10 mg/kg; i.p.); small-conductance Ca2+-activated K+ channel inhibitor apamin (APA, 0.04 mg/kg; i.p.), or large-conductance Ca2+-activated K+ channel inhibitor charybdotoxin (CHAR, 0.02 mg/kg; i.p.) was administered prior to zerumbone (10 mg/kg; i.p.), the antiallodynic and antihyperalgesic effects of zerumbone were significantly reversed. Additionally, non-specific opioid receptors antagonist, naloxone (NAL, 10 mg/kg; i.p.), selective µ-, δ- and κ-opioid receptor antagonists; β-funaltrexamine (β-FN, 40 mg/kg; i.p.), naltrindole (20 mg/kg; s.c.), nor-binaltorphamine (10 mg/kg; s.c.) respectively attenuated the antiallodynic and antihyperalgesic effects of zerumbone. This outcome clearly demonstrates the participation of potassium channels and opioid receptors in the antineuropathic properties of zerumbone. As various clinically used neuropathic pain drugs also share this similar mechanism, this compound is, therefore, a highly potential substitute to these therapeutic options.
  19. Pui Ping C, Akhtar MN, Israf DA, Perimal EK, Sulaiman MR
    Molecules, 2020 Nov 18;25(22).
    PMID: 33217904 DOI: 10.3390/molecules25225385
    The perception of pain caused by inflammation serves as a warning sign to avoid further injury. The generation and transmission of pain impulses involves various pathways and receptors. Cardamonin isolated from Boesenbergia rotunda (L.) Mansf. has been reported to exert antinociceptive effects in thermal and mechanical pain models; however, the precise mechanism has yet to be examined. The present study investigated the possible mechanisms involved in the antinociceptive activity of cardamonin on protein kinase C, N-methyl-d-aspartate (NMDA) and non-NMDA glutamate receptors, l-arginine/cyclic guanosine monophosphate (cGMP) mechanism, as well as the ATP-sensitive potassium (K+) channel. Cardamonin was administered to the animals intra-peritoneally. Present findings showed that cardamonin significantly inhibited pain elicited by intraplantar injection of phorbol 12-myristate 13-acetate (PMA, a protein kinase C activator) with calculated mean ED50 of 2.0 mg/kg (0.9-4.5 mg/kg). The study presented that pre-treatment with MK-801 (NMDA receptor antagonist) and NBQX (non-NMDA receptor antagonist) significantly modulates the antinociceptive activity of cardamonin at 3 mg/kg when tested with glutamate-induced paw licking test. Pre-treatment with l-arginine (a nitric oxide precursor), ODQ (selective inhibitor of soluble guanylyl cyclase) and glibenclamide (ATP-sensitive K+ channel inhibitor) significantly enhanced the antinociception produced by cardamonin. In conclusion, the present findings showed that the antinociceptive activity of cardamonin might involve the modulation of PKC activity, NMDA and non-NMDA glutamate receptors, l-arginine/nitric oxide/cGMP pathway and ATP-sensitive K+ channel.
  20. Saallah S, Roslan J, Julius FS, Saallah S, Mohamad Razali UH, Pindi W, et al.
    Molecules, 2021 Apr 28;26(9).
    PMID: 33924820 DOI: 10.3390/molecules26092564
    Collagen was extracted from the body wall of sea cucumber (Holothuria scabra) using the pepsin-solubilized collagen method followed by isolation using dialysis and the ultrafiltration membrane. The yield and physicochemical properties of the collagen obtained from both isolation methods, denoted as D-PSC and UF-PSC, were compared. The ultrafiltration method affords a higher yield of collagen (11.39%) than that of the dialysis (5.15%). The isolated collagens have almost the same amino acid composition, while their functional groups, referred to as amide A, B, I, II, and III bands, were in accordance with commercial collagen, as verified by Fourier Transform Infrared (FT-IR) spectroscopy. The UV-Vis absorption peaks at 240 nm and 220 nm, respectively, indicated that the collagens produced are type-I collagen. The D-PSC showed interconnecting sheet-like fibrils, while the UF-PSC exhibited a flaky structure with flat-sheets arranged very close to each other. The higher yield and comparable physicochemical properties of the collagen obtained by ultrafiltration as compared with dialysis indicate that the membrane process has high potential to be used in large-scale collagen production for food and pharmaceutical applications.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links