Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Sianturi J, Harneti D, Darwati, Mayanti T, Supratman U, Awang K
    Nat Prod Res, 2016 Oct;30(19):2204-8.
    PMID: 26985634 DOI: 10.1080/14786419.2016.1160233
    New (-)-5',6-dimethoxyisolariciresinol-(3″,4″-dimethoxy)-3α-O-β-d-glucopyranoside compound was isolated from the methanol extract of the bark of Aglaia eximia (Meliaceae). The chemical structure of the new compound were elucidated on the basis of spectroscopic data including, UV, IR, HR-ESI-TOFMS, 1D-NMR, 2D-NMR and comparison with those related compounds previously reported.
  2. Fun HK, Chantrapromma S, Supriadin A, Harneti D, Supratman U
    Acta Crystallogr Sect E Struct Rep Online, 2012 Nov 01;68(Pt 11):o3089-90.
    PMID: 23284420 DOI: 10.1107/S1600536812040366
    The title dammarane tritepene, 3α,20(S)-dihy-droxy-dammar-24-ene, which crystallized out in a hydrated form, C(30)H(52)O(2).1.075H(2)O, was isolated from the Aglaia eximia bark. The three cyclo-hexane rings adopt chair conformations. The cyclo-pentane has an envelope conformation with the quaternary C at position 14 as the flap atom with the maximum deviation of 0.288 (2) Å. The methyl-heptene side chain is disordered over two positions with 0.505 (1):0.495 (1) site occupancies and is axially attached with an (+)-syn-clinal conformation. The hydroxyl group at position 3 of dammarane is in a different conformation to the corresponding hydroxyl in Dammarenediol II. In the crystal, the dammarane and water mol-ecules are linked by O(Dammarane)-H⋯O(water) and O(water)-H⋯O(Dammarane) hydrogen bonds into a three-dimensional network.
  3. Awang K, Loong XM, Leong KH, Supratman U, Litaudon M, Mukhtar MR, et al.
    Fitoterapia, 2012 Dec;83(8):1391-5.
    PMID: 23098876 DOI: 10.1016/j.fitote.2012.10.004
    A study on the leaves of Aglaia exima led to the isolation of one new and seven known compounds: six triterpenoids and two steroids. Their structures were elucidated and analyzed mainly by using spectroscopic methods; 1D and 2D NMR, mass spectrometry, UV spectrometry and X-ray. All the triterpenoids and steroids were measured in vitro for their cytotoxic activities against eight cancer cell lines; lung (A549), prostate (DU-145), skin (SK-MEL-5), pancreatic (BxPC-3), liver (Hep G2), colon (HT-29), breast (MCF-7) and (MDA-MB-231). The new cycloartane triterpenoid, 24(E)-cycloart-24-ene-26-ol-3-one 1, showed potent cytotoxic activity against colon (HT-29) cancer cell line (IC(50) 11.5μM).
  4. Eryanti Y, Zamri A, Herlina T, Supratman U, Rosli MM, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Dec 01;71(Pt 12):1488-92.
    PMID: 26870411 DOI: 10.1107/S2056989015020976
    The title compounds, C20H19NO3, (1), and C20H17Cl2NO, (2), are the 3-hy-droxy-benzyl-idene and 2-chloro-benzyl-idene derivatives, respectively, of curcumin [systematic name: (1E,6E)-1,7-bis-(4-hy-droxy-3-meth-oxy-phen-yl)-1,6-hepta-diene-3,5-dione]. The dihedral angles between the benzene rings in each compound are 21.07 (6)° for (1) and 13.4 (3)° for (2). In both compounds, the piperidinone rings adopt a sofa confirmation and the methyl group attached to the N atom is in an equatorial position. In the crystal of (1), two pairs of O-H⋯N and O-H⋯O hydrogen bonds link the mol-ecules, forming chains along [10-1]. The chains are linked via C-H⋯O hydrogen bonds, forming undulating sheets parallel to the ac plane. In the crystal of (2), mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming chains along the [204] direction. The chains are linked along the a-axis direction by π-π inter-actions [inter-centroid distance = 3.779 (4) Å]. For compound (2), the crystal studied was a non-merohedral twin with the refined ratio of the twin components being 0.116 (6):0.886 (6).
  5. Wong KT, Osman H, Parumasivam T, Supratman U, Che Omar MT, Azmi MN
    Molecules, 2021 Apr 05;26(7).
    PMID: 33916423 DOI: 10.3390/molecules26072081
    A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 μM. In addition, six other synthesized compounds, 5a and 5c-5g, exhibited moderate activity, with MIC ranges between 60 μM to 140 μM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 μM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand-receptor interactions, and to hypothesize potential refinements for the compound.
  6. Hutagaol RP, Harneti D, Safari A, Hidayat AT, Supratman U, Awang K, et al.
    J Asian Nat Prod Res, 2021 Aug;23(8):781-788.
    PMID: 32536210 DOI: 10.1080/10286020.2020.1776704
    A seco-apotirucallane-type triterpenoid, namely angustifolianin (1), along with three dammarane-type triterpenoids, (20S, 24S)-epoxy-dammarane-3β,25-diol (2), 3-epi-cabraleahydroxylactone (3), and cabralealactone (4), were isolated from the stem bark of Aglaia angustifolia Miq. The Chemical structure of the new compounds was elucidated on the basis of spectroscopic data. All of the compounds were evaluated for their cytotoxic effects against MCF-7 breast cancer cells. Among those compounds, angustifolianin (1) showed strongest cytotoxic activity with an IC50 value of 50.5 μg/ml.
  7. Katja DG, Farabi K, Nurlelasari, Harneti D, Mayanti T, Supratman U, et al.
    J Asian Nat Prod Res, 2016 Jun 22.
    PMID: 27329305 DOI: 10.1080/10286020.2016.1196671
    A new lanostane-type triterpenoid, 3β-hydroxy-25-ethyl-lanost-9(11),24(24')-diene (1), along with 3β-hydroxy-lanost-7-ene (2) and β-sitosterol-3-O-acetate (3) was isolated from the stem bark of C. cumingianus. The chemical structure of the new compound was elucidated on the basis of spectroscopic data. All of the compounds were evaluated for their cytotoxic effects against P-388 murine leukemia cells. Compounds 1-3 showed cytotoxicity against P-388 murine leukemia cells with IC50 values of 28.8 ± 0.10, 4.29 ± 0.03, and 100.18 ± 0.16 μg/ml, respectively.
  8. Supriatno, Nurlelasari, Herlina T, Harneti D, Maharani R, Hidayat AT, et al.
    Nat Prod Res, 2018 Nov;32(21):2610-2616.
    PMID: 29368952 DOI: 10.1080/14786419.2018.1428600
    A new limonoid, pentandricine (1), along with three known limonoids, ceramicine B (2), 6-de(acetyloxy)-23-oxochisocheton (3), 6-de(acetyloxy)-23-oxo-7-O-deacetylchisocheton (4), have been isolated from the stembark of Chisocheton pentandrus. The chemical structures of the new compound were elucidated on the basis of spectroscopic evidence. All of the compounds were tested for their cytotoxic effects against MCF-7 breast cancer cells. Compounds 1-4 showed weak and no cytotoxicity against MCF-7 breast cancer cells with IC50 values of 369.84, 150.86, 208.93 and 120.09 μM, respectively.
  9. Purnama, Farabi K, Runadi D, Kuncoro H, Harneti D, Nurlelasari, et al.
    Molecules, 2023 Jun 23;28(13).
    PMID: 37446608 DOI: 10.3390/molecules28134946
    The Aglaia genus, a member of the Meliaceae family, is generally recognized to include a number of secondary metabolite compounds with diverse structures and biological activities, including triterpenoids. Among the members of this genus, Aglaia cucullata has been reported to have unique properties and thrives exclusively in mangrove ecosystems. This plant is also known to contain various metabolites, such as flavaglines, bisamides, and diterpenoids, but there are limited reports on the isolation of triterpenoid compounds from its stem bark. Therefore, this research attempted to isolate and elucidate seven triterpenoids belonging to dammarane-type (1-7) from the stem bark of Aglaia cucullata. The isolated compounds included 20S,24S-epoxy-3α,25-dihydroxy-dammarane (1), dammaradienone (2), 20S-hydroxy-dammar-24-en-3-on (3), eichlerianic acid (4), (20S,24RS)-23,24-epoxy-24-methoxy-25,26,27-tris-nor dammar-3-one (5), 3α-acetyl-cabraleahydroxy lactone (6), and 3α-acetyl-20S,24S-epoxy-3α,25-dihydroxydammarane (7). Employing spectroscopic techniques, the chemical structures of the triterpenoids were identified using FTIR, NMR, and HRESITOF-MS. The cytotoxic activity of compounds 1-7 was tested with the PrestoBlue cell viability reagent against MCF-7 breast cancer, B16-F10 melanoma, and CV-1 normal kidney fibroblast cell lines. The results displayed that compound 5 had the highest level of bioactivity compared to the others. Furthermore, the IC50 values obtained were more than 100 μM, indicating the low potential of natural dammarane-type triterpenoids as anticancer agents. These findings provided opportunities for further studies aiming to increase their cytotoxic activities through semi-synthetic methods.
  10. Ngadni MA, Chong SL, Kamarudin MNA, Hazni H, Litaudon M, Supratman U, et al.
    Fitoterapia, 2024 Mar;173:105765.
    PMID: 38042506 DOI: 10.1016/j.fitote.2023.105765
    A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against H2O2 exposure; 1 (83.77% ± 1.84 at 12.5 μM), 2 (69.07 ± 2.01 at 12.5 μM), 3 (80.38 ± 2.1 at 12.5 μM), 4 (62.33 ± 1.95 at 25 μM),5 (58.67 ± 1.85 at 50 μM) and 7 (66.07 ± 2.03 at 12.5 μM). Interestingly, 1 and 3 demonstrated comparable protective effects to positive control epigallocatechin gallate (EGCG) with similar cell viability capacity (≈ 80%), having achieved that at lower concentration (12.5 μM) than EGCG (50 μM). Collectively, the results suggested the promising use of 1 and 3 as potential neuroprotective agents against hydrogen peroxide-induced cytotoxicity in neuronal model.
  11. Kautsari A, Naini AA, Mayanti T, Nurlelasari, Harneti D, Farabi K, et al.
    J Asian Nat Prod Res, 2024 Mar 21.
    PMID: 38511479 DOI: 10.1080/10286020.2024.2329726
    A new seco-A tirucallane triterpenoid named excelxylin A (1), along with two known seco-A triterpenoids (2-3), were isolated from the n-hexane extract of Dysoxylum excelsum (Spreng.) Blume ex G.Don stem bark. The structure and stereochemistry configuration of compounds 1-3 was established by NMR, IR, and HR-ESI-MS spectroscopic data analyses and comparison of their NMR data with literatures. The compounds exhibited the carbon framework for seco-A ring tirucallane triterpenoid, first reported in the Dysoxylum genus. All compounds were tested for their cytotoxicity against human cervical HeLa cells.
  12. Riyadi SA, Naini AA, Mayanti T, Lesmana R, Azmi MN, Fajriah S, et al.
    J Nat Med, 2024 Mar 22.
    PMID: 38517622 DOI: 10.1007/s11418-024-01794-2
    A total of five new mexicanolides (1-5), namely alliaxylines A-E, together with two known limonoids 6 and 7, were isolated and identified from Dysoxylum alliaceum (Blume) Blume ex. A.Juss. (Meliaceae). The structures of these compounds were elucidated based on extensive spectroscopic analyses, including HR-ESI-MS, UV, IR, 1D, and 2D NMR, as well as theoretical stimulation of NMR shifts with the DP4 + algorithm. Consequently, this study aimed to examine cytotoxic activities of these compounds against MCF-7 and A549 cell lines. The results implied that compound 2 was the most potent against the two tested cells, with IC50 values of 34.95 ± 0.21 and 44.39 ± 1.03 µM.
  13. Leong KH, Looi CY, Loong XM, Cheah FK, Supratman U, Litaudon M, et al.
    PLoS One, 2016;11(4):e0152652.
    PMID: 27070314 DOI: 10.1371/journal.pone.0152652
    Plants in the Meliaceae family are known to possess interesting biological activities, such as antimalaral, antihypertensive and antitumour activities. Previously, our group reported the plant-derived compound cycloart-24-ene-26-ol-3-one isolated from the hexane extracts of Aglaia exima leaves, which shows cytotoxicity towards various cancer cell lines, in particular, colon cancer cell lines. In this report, we further demonstrate that cycloart-24-ene-26-ol-3-one, from here forth known as cycloartane, reduces the viability of the colon cancer cell lines HT-29 and CaCO-2 in a dose- and time-dependent manner. Further elucidation of the compound's mechanism showed that it binds to tumour necrosis factor-receptor 1 (TNF-R1) leading to the initiation of caspase-8 and, through the activation of Bid, in the activation of caspase-9. This activity causes a reduction in mitochondrial membrane potential (MMP) and the release of cytochrome-C. The activation of caspase-8 and -9 both act to commit the cancer cells to apoptosis through downstream caspase-3/7 activation, PARP cleavage and the lack of NFkB translocation into the nucleus. A molecular docking study showed that the cycloartane binds to the receptor through a hydrophobic interaction with cysteine-96 and hydrogen bonds with lysine-75 and -132. The results show that further development of the cycloartane as an anti-cancer drug is worthwhile.
  14. Salam S, Harneti D, Maharani R, Nurlelasari, Safari A, Hidayat AT, et al.
    Phytochemistry, 2021 Jul;187:112759.
    PMID: 33839518 DOI: 10.1016/j.phytochem.2021.112759
    Eleven undescribed triterpenoids (pentandrucines A to K) were isolated from the n-hexane extract of the stem bark of Chisocheton pentandrus (Blanco) Merr. These comprised ten undescribed dammarane-type triterpenoids and one undescribed apotirucallane-type triterpenoid. Additionally, two dammarane-type triterpenoids, four apotirucallane-type triterpenoids and two tirucallane-type triterpenoids were also isolated. The chemical structures of pentandrucine A-K, were fully elucidated using 1D and 2D-NMR, and high resolution MS. All of the compounds were evaluated for cytotoxic activity against MCF-7 breast cancer cells in vitro. Melianodiol proved to be the most active with an IC50 of 16.84 μM comparing favourably with Cisplatin (13.2 μM).
  15. Katja DG, Hilmayanti E, Nurlelasari, Mayanti T, Harneti D, Maharani R, et al.
    J Asian Nat Prod Res, 2023 Jan;25(1):36-43.
    PMID: 35128999 DOI: 10.1080/10286020.2022.2032678
    Two new azadirone-type limonoids, namely lasiocarpine A (1) and lasiocarpine B (2) were isolated from the fruit of Chisocheton lasiocarpus along with three known limonoids (3-5). UV, IR, one- and two- dimensional NMR, and mass spectrometry were used to determine the chemical structure of the isolated compounds. Furthermore, their cytotoxic activity against breast cancer cell line MCF-7 was evaluated using PrestoBlue reagent. From these compounds, lasiocarpine A (1) showed the strongest activity with an IC50 value of 43.38 μM.
  16. Phongphane L, Mohd Radzuan SN, Abu Bakar MH, Che Omar MT, Supratman U, Harneti D, et al.
    Comput Biol Chem, 2023 Oct;106:107938.
    PMID: 37542847 DOI: 10.1016/j.compbiolchem.2023.107938
    In our effort to develop potent anti-hyperglycemic compounds with inhibitory activity against α-amylase and α-glucosidase, a series of novel quinoxaline-isoxazole moieties were synthesized. The novel quinoxaline-isoxazole derivatives were assessed in vitro for their anti-hyperglycemic activities on α-amylase and α-glucosidase inhibitions. The results revealed promising IC50 values compared to acarbose as a positive control for α-amylase and α-glucosidase. Among them, N-Ethyl-7-chloro-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5b showed dual inhibitory with IC50 of 24.0 µM for α-amylase and 41.7 µM for α-glucosidase. In addition, N-Ethyl-7-methoxy-3-((3-(2-chlorophenyl)isoxazol-5-yl)methoxy)quinoxalin-2-amine 5j also had dual bioactivities against α-amylase and α-glucosidase with IC50 of 17.0 and 40.1 µM, respectively. Nevertheless, two more compounds N-Ethyl-7-cyano-3-((3-phenylisoxazol-5-yl)methoxy)quinoxaline-2-amine 5e showed strong mono-inhibition for α-glucosidase with IC50 of 16.6 µM followed by N-Ethyl-7-methoxy-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5 f with IC50 of 18.6 µM. The molecular docking study for α-glucosidase inhibitor provided the binding energy ranging from 8.3 to 9.1 kcal/mol and α-amylase inhibitor showed the binding energy score at 8.4 and 8.5 kcal/mol. The dual inhibitions nature of 5b and 5j were further analyzed and confirmed via molecular dynamics including the stability of the compound, interaction energy, binding free energy, and the interaction residue analysis using the MM-GBSA approach. The results showed that compound 5j was the most potent compound. Lastly, the drug-likeness properties were also evaluated with all synthesized compounds 5a-5j and the results reveal that all potent compounds meet Lipinski's rules of five.
  17. Farabi K, Harneti D, Darwati, Nurlelasari, Mayanti T, Maharani R, et al.
    Nat Prod Res, 2024;38(2):227-235.
    PMID: 35994369 DOI: 10.1080/14786419.2022.2114472
    Three new dammarane-type triterpenoids, namely elliptaglin A-C (1-3) were isolated from the stem bark of Aglaia elliptica (C.DC.) Blume along with three known derivatives, namely (20S)-hydroxydammar-24-en-3-on (4), cabralealactone (5), and E-25-hydroperoxydammar-23-en-20-ol-3-one (6). Subsequently, their chemical structures were determined using HR-ESI-MS, FTIR, 1D and 2D-NMR spectroscopic analysis as well as comparison with previous studies. The cytotoxicity activities of the isolated compounds against MCF-7 breast cancer and B16-F10 melanoma cell lines were then tested using PrestoBlue reagent. The analysis results showed that elliptaglin B (2) had the strongest activity against both cell lines with IC50 values of 60.98 and 51.83 µM, respectively.
  18. Muhammad MT, Beniddir MA, Phongphane L, Abu Bakar MH, Hussin MH, Awang K, et al.
    Fitoterapia, 2024 Apr;174:105873.
    PMID: 38417682 DOI: 10.1016/j.fitote.2024.105873
    Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 μM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 μM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.
  19. Murtihapsari M, Salam S, Kurnia D, Darwati D, Kadarusman K, Abdullah FF, et al.
    Nat Prod Res, 2021 Mar;35(6):937-944.
    PMID: 31210054 DOI: 10.1080/14786419.2019.1611815
    A new antimalarial sterol, kaimanol (1), along with a known sterol, saringosterol (2) was isolated from the Indonesian Marine sponge, Xestospongia sp. The chemical structure of the new compound was determined on the basis of spectroscopic evidences and by comparison to those related compounds previously reported. Isolated compounds, 1 and 2 were evaluated for their antiplasmodial effect against Plasmodium falciparum 3D7 strains. Compounds 1 and 2 exhibited antiplasmodial activity with IC50 values of 359 and 0.250 nM, respectively.
  20. Naini AA, Mayanti T, Harneti D, Darwati, Nurlelasari, Maharani R, et al.
    Phytochemistry, 2023 Jan;205:113477.
    PMID: 36283447 DOI: 10.1016/j.phytochem.2022.113477
    Two undescribed sesquiterpenoids, namely dysoticans A and B, and three undescribed sesquiterpenoid dimers, namely dysoticans C-E, together with six analogs, were isolated from the stem bark of Dysoxylum parasiticum (Osbeck) Kosterm. (Meliaceae), growing in West Java, Indonesia. Their structures were elucidated based on extensive spectroscopic analysis and theoretical simulations of ECD spectra and 13C NMR shifts. Dysoticans A and B possessed undescribed cadinanes with minor modifications, while C and D featured unprecedented pseudo-sesquiterpenoid dimers through O-ether linkages of cadinanes and guaianes, respectively. Dysotican E was also characterized as the true-sesquiterpenoid dimer featuring eudesmane-germacrene hybrid framework from the Meliaceae family. Furthermore, A-C and E showed moderate activities against the human breast cancer MCF-7 and cervical cancer HeLa cell lines with IC50 values ranging from 22.15 to 45.14 μM. D selectively exhibited significant cytotoxicity against the HeLa cell line with an IC50 value of 13.00 ± 0.13 μM.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links