Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Abdul Khodir WKW, Abdul Razak AH, Ng MH, Guarino V, Susanti D
    J Funct Biomater, 2018 May 18;9(2).
    PMID: 29783681 DOI: 10.3390/jfb9020036
    In the current practice, the clinical use of conventional skin substitutes such as autogenous skin grafts have shown several problems, mainly with respect to limited sources and donor site morbidity. In order to overcome these limitations, the use of smart synthetic biomaterials is tremendously diffusing as skin substitutes. Indeed, engineered skin grafts or analogues frequently play an important role in the treatment of chronic skin wounds, by supporting the regeneration of newly formed tissue, and at the same time preventing infections during the long-term treatment. In this context, natural proteins such as collagen-natively present in the skin tissue-embedded in synthetic polymers (i.e., PCL) allow the development of micro-structured matrices able to mimic the functions and to structure of the surrounding extracellular matrix. Moreover, the encapsulation of drugs, such as gentamicin sulfate, also improves the bioactivity of nanofibers, due to the efficient loading and a controlled drug release towards the site of interest. Herein, we have done a preliminary investigation on the capability of gentamicin sulfate, loaded into collagen-added nanofibers, for the controlled release in local infection treatments. Experimental studies have demonstrated that collagen added fibers can be efficaciously used to administrate gentamicin for 72 h without any toxic in vitro response, thus emerging as a valid candidate for the therapeutic treatment of infected wounds.
  2. Adom MB, Taher M, Mutalabisin MF, Amri MS, Abdul Kudos MB, Wan Sulaiman MWA, et al.
    Biomed Pharmacother, 2017 Dec;96:348-360.
    PMID: 29028587 DOI: 10.1016/j.biopha.2017.09.152
    The medicinal benefits of Plantago major have been acknowledged around the world for hundreds of years. This plant contains a number of effective chemical constituents including flavonoids, alkaloids, terpenoids, phenolic acid derivatives, iridoid glycosides, fatty acids, polysaccharides and vitamins which contribute to its exerting specific therapeutic effects. Correspondingly, studies have found that Plantago major is effective as a wound healer, as well as an antiulcerative, antidiabetic, antidiarrhoeal, anti-inflammatory, antinociceptive, antibacterial, and antiviral agent. It also combats fatigue and cancer, is an antioxidant and a free radical scavenger. This paper provides a review of the medicinal benefits and chemical constituents of Plantago major published in journals from year 1937 to 2015 which are available from PubMed, ScienceDirect and Google Scholar.
  3. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
  4. Ajiboye BO, Dada S, Fatoba HO, Lawal OE, Oyeniran OH, Adetuyi OY, et al.
    Biomed Pharmacother, 2023 Dec;168:115681.
    PMID: 37837880 DOI: 10.1016/j.biopha.2023.115681
    This experiment was conducted to evaluate the Dalbergiella welwitschia alkaloid-rich extracts on liver damage in streptozotocin-induced diabetic rats. Hence, to induce diabetes, 45 mg/kg body weight of streptozotocin was intraperitoneally injected into the Wistar rats. Subsequently, 5 % (w/v) of glucose water was given to the induced animals for 24 h. Thus, the animals (48) were grouped into five groups (n = 8), containing normal control (NC), diabetic control (DC), diabetic rats placed on low (50 mg/kg body weight) and high (100 mg/kg body weight) doses of D. welwitschi alkaloid-rich leaf extracts (i.e. DWL and DWH respectively), and diabetic rats administered 200 mg/kg body weight of metformin (MET). The animals were sacrificed on the 21st day of the experiment, blood and liver were harvested, and different liver damage biomarkers were evaluated. The results obtained demonstrated that diabetic rats administered DWL, DWH and MET significantly (p  0.05) different when compared with NC. Also, diabetic rats administered DWL, DWH and MET revealed a significant (p  0.05) different when compared with NC. In addition, histological examination revealed that diabetic rats placed on DWL, DWH and MET normalized the hepatocytes. Consequently, it can be inferred that alkaloid-rich extracts from D. welwitschi leaf could be helpful in improving liver damage associated with diabetes mellitus rats.
  5. Ali Y, Muhamad Bunnori N, Susanti D, Muhammad Alhassan A, Abd Hamid S
    Front Chem, 2018;6:210.
    PMID: 29946538 DOI: 10.3389/fchem.2018.00210
    Calixarene derivatives are reported as potential therapeutic agents. Azo derivatives of calixarenes have not been given much consideration to explore their biomedical applications. In the present study, some azo-based derivatives of calix[4]arene were synthesized and characterized and their antibacterial and antiviral potentials were studied. The mono azo products of sulphanilamide, sulfaguanidine and 2-methyl-4-aminobenzoic acid showed good activity against bacterial strains with minimum inhibition concentration values ranging from 0.97 to 62.5 μg/mL. For mono azo products, the diazotized salt was applied as a limiting reagent. The use of calix[4]arene and sodium acetate trihydrate in 1:3 (molar ratio) helped in partial substitution. Molecular docking was performed to see the interaction of the designed compounds with two bacterial and one viral (neuraminidase) receptor. Some of the derivatives showed good interaction with the active site of bacterial and neuraminidase enzymes through hydrogen, hydrophobic and pi-pi interactions, and could inhibit the activity of the selected enzymes.
  6. Alkhamaiseh SI, Taher M, Ahmad F, Qaralleh H, Althunibat OY, Susanti D, et al.
    Pak J Pharm Sci, 2012 Jul;25(3):555-63.
    PMID: 22713941
    Recently there was huge increase in using of 'herbal products'. These can be defined as plants, parts of plants or extracts from plants that are used for curing disease. However, Calophyllum species is a tropical plant and it has been used in traditional medicine, the limitation in safety and effectiveness information could lead to serious health problems. Providing information for communities by evaluating the phytochemical contents, antioxidant, antimicrobial and cytotoxic activities will improve the therapeutic values. Three main Calophyllum canum fractions (none - high polar) were tested to find out the phenolic, flavonoid, flavonol content, DPPH radical scavenging, reducing power and chelating iron ions. Also were tested against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Psedomonas aeruginosa, Candida albicans, and Cryptococcus neoformans. In addition, cytotoxic activity was assayed against lung cancer A549 cell line. The methanol fraction showed no bioactivity but achieved the highest amount of phenolic, flavonol and flavonoid contents, also it showed a significant result as antioxidant, reducing power and chelating agent. The n-hexane fraction achieved the minimum inhibitory concentration (MIC) value 12.5 μg. mL(-1) against B. cereus while the MIC value for DCM fraction was 25 μg. mL(-1). The DCM fraction was more active against S. aureus where the result was 50 μg. mL(-1) while the n-hexane fraction was 100 μg. mL(-1). The three main fractions have shown no activity against gram negative bacterial and fungal. The n-hexane and DCM fractions have shown cytotoxicity against lung cancer cell line; the 50% inhibition concentration (IC(50)) was 22 ± 2.64 and 32 ± 3.78 μg. mL(-1) respectively. The results were statistically significant (P < 0.05). Among the results, C. canum fractions proved to be effective against gram positive bacterial and anti-proliferation activity. Also it showed antioxidant activity as well. The results provided beneficial information for communities as well as can help to search for alternative drugs, and will contribute to establish safe and effective use of phytomedicines in the treatment of diseases.
  7. Aminudin NI, Ridzuan M, Susanti D, Zainal Abidin ZA
    J Asian Nat Prod Res, 2022 Feb;24(2):103-145.
    PMID: 33783284 DOI: 10.1080/10286020.2021.1906657
    Sesquiterpenoids have been identified as natural compounds showing remarkable biological activities found in medicinal plants. There is great interest in developing methods to obtain sesquiterpenoids derivatives and biotransformation is one of the alternative methods for structural modification of complex sesquiterpenes structures. Biotransformation is a great drug design tool offering high selectivity and green method. The present review describes a comprehensive summary of biotransformation products of sesquiterpenoids and its structural modification utilizing a variety of biocatalysts including microorganisms, plant tissue culture and enzymes. This review covers recent literatures from 2007 until 2020 and highlights the experimental conditions for each biotransformation process.
  8. Aminudin NI, Abdul Aziz AA, Zainal Abidin ZA, Susanti D, Taher M
    Nat Prod Res, 2022 Dec 28.
    PMID: 36577029 DOI: 10.1080/14786419.2022.2161543
    Biotransformation is acknowledged as one of the green chemistry methods to synthesis various analogues for further valorization of natural product compounds chemistry and bioactivities. It has huge advantage over chemical synthesis due to its cost-efficiency and higher selectivity. In this work, a xanthorrhizol derivatives, namely (7 R,10S)-10,11-dihydro-10,11-dihydroxyxanthorrhizol was produced in 60% yield from the biotransformation process utilizing A. niger. The structure of the compound was established by extensive spectroscopic methods and comparison with literature data. This biotransformation successfully afforded enantioselective dihydroxylation reaction via green chemistry route. This is the first report on both biotransformation of xanthorrhizol and utilization of A. niger as its biocatalyst.
  9. Arbain D, Sinaga LMR, Taher M, Susanti D, Zakaria ZA, Khotib J
    Front Pharmacol, 2022;13:849704.
    PMID: 35685633 DOI: 10.3389/fphar.2022.849704
    The genus Alocasia (Schott) G. Don consists of 113 species distributed across Asia, Southeast Asia, and Australia. Alocasia plants grow in tropical and subtropical forests with humid lowlands. Featuring their large green heart-shaped or arrow-shaped ear leaves and occasionally red-orange fruit, they are very popular ornamental plants and are widely used as traditional medicines to treat various diseases such as jaundice, snake bite, boils, and diabetes. This manuscript critically analysed the distribution, traditional uses, and phytochemical contents of 96 species of Alocasia. The numerous biological activities of Alocasia species were also presented, which include anti-cancer, antidiabetic and antihyperglycaemic, antioxidant, antidiarrhoea, antimicrobial and antifungal, antiparasitic (antiprotozoal and anthelminthic), antinociceptive and anti-inflammatory, brine shrimp lethality, hepatoprotective, anti-hemagglutinin, anti-constipation and diuretic, and radioprotective activities as well as acute toxicity studies. Research articles were acquired by the accessing three scientific databases comprising PubMed, Scopus, and Google Scholar. For this review, specific information was obtained using the general search term "Alocasia", followed by the "plant species names" and "phytochemical" or "bioactivity" or "pharmacological activity". The accepted authority of the plant species was referred from theplantlist.org. Scientific studies have revealed that the genus is mainly scattered throughout Asia. It has broad traditional benefits, which have been associated with various biological properties such as cytotoxic, antihyperglycaemic, antimicrobial, and anti-inflammatory. Alocasia species exhibit diverse biological activities that are very useful for medical treatment. The genus Alocasia was reported to be able to produce a strong and high-quality anti-cancer compound, namely alocasgenoside B, although information on this compound is currently limited. Therefore, it is strongly recommended to further explore the relevant use of natural compounds present in the genus Alocasia, particularly as an anti-cancer agent. With only a few Alocasia species that have been scientifically studied so far, more attention and effort is required to establish the link between traditional uses, active compounds, and pharmacological activities of various species of this genus.
  10. Badrillah N, Susanti D, Kamil TKTM, Swandiny GF, Widyastuti Y, Zaini E, et al.
    Heliyon, 2024 Feb 29;10(4):e25454.
    PMID: 38379964 DOI: 10.1016/j.heliyon.2024.e25454
    Silver nanoparticle is widely used in various field including medical, cosmetic, food and industrial purposes due to their unique properties in electrical conductivity, thermal, and biological activities. In the medical field, silver nanoparticles (AgNPs) have been reported to have strong antimicrobial and cytotoxic activities. This study aimed to synthesize and characterize silver nanoparticles (AgNPs) using Maclurodendron porteri (MP) extract and to evaluate the antimicrobial and cytotoxic activities of the synthesised MP-AgNPs. Green method of Ultrasound Assisted Extraction (UAE) was used to extract the leaves of M. porter. Liquid Chromatography -Mass Spectrometry/Quadrupole time-of-flight (LC-MS/QTOF) was used to identify the compounds in the leaf extract of M. porteri. Characterisation of the synthesised nanoparticles involved ultraviolet-visible (UV-Vis), Fourier Transform Infrared (FTIR), scanning electromagnetic microscopy (SEM), Zeta potential Analyzer and Particle Size Analyzer. The cytotoxic assay was conducted on MCF-7 and Caco-2 cell lines by MTT assay. Antimicrobial activity was tested on Gram-negative and Gram-positive bacteria using the disc diffusion method. Based on LC-MS/QTOF analysis, 430 compounds were found. The identified major compounds consist of amino acids, polyphenols, steroids, terpenoids and heterocyclic compounds which possibly act as reducing agents. 1 mM, 5 mM and 10 mM of silver nitrate solution were mixed with the leaf extract to form silver nanoparticles. 1.2 mg/ml of MP-AgNPs were found to have antibacterial activity against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibitory zones of 8.0 ± 0.36 mm, 8.5 ± 0.45 mm, 7.5 ± 0.36 mm, and 9.0 ± 0.40 mm respectively. MP-AgNPs showed no cytotoxic activity against Caco-2 and MCF-7 cells. In conclusion, the presence of major amine compounds such as 10,11-dihydro-10,11-dihydroxyprotriptyline and harderoporphyrin in the extract facilitated the synthesis of AgNPs and the nanoparticle showed weak bioactivities in the assay conducted.
  11. Che Hassan NKN, Taher M, Susanti D
    Biomed Pharmacother, 2018 Oct;106:1378-1389.
    PMID: 30119210 DOI: 10.1016/j.biopha.2018.07.087
    The purpose of this study was to determine the phytochemical constituents and pharmacological properties of Garcinia xanthochymus which is commonly known as gamboge, yellow mangosteen and false mangosteen. The phytochemicals constituents, pharmacological benefits and their mechanisms were previously presented in a number of studies including in vitro and in vivo studies from published books, journals and articles. The literature used in this review were published between 1970 and 2017 and were available from databases such as Google Scholar, ScienceDirect, Scopus, PubMed, ProQuest and others. The chemical structures in this paper are drawn using ChemBio Ultra 14.0. G. xanthocymus contains many phytochemicals that can be extracted from its constituent parts; the bark, fruits, leaves, roots, twigs and seeds. The predominant extracted phytochemicals are xanthones, benzophenones, flavonoids, depsidones and isocoumarins. These phytochemicals contribute to the pharmacological activities of this plant as an antioxidant, antidiabetic, and for having Nerve Growth Factor-potentiating, antimicrobial and cytotoxic activities. This species contains a broad range of phytochemicals with curative properties that can be greatly beneficial to man. Notably, this review focused on those studies of the pharmacological effects of this plant that were concentrated on by previous researchers. Thus, further study needs to be done on G. xanthocymus in order to unlock additional potential activities and to pinpoint the exact mechanisms of how these activities can be induced, leading to new drug discoveries which have fewer side effects.
  12. Jaswir, I., Ahmad, H., Susanti, D., Bakhtiar, M.T., Octavianti, F.
    MyJurnal
    In recent years, the search for natural, safe and effective therapies for the management of obesity has become important. The present study investigated the potential of brown seaweeds Sargassum oligocystum and Padina australis from Malaysian waters as natural alternatives for the management of obesity. Both seaweeds were macerated using acetone at room temperature for ten hours. The S. oligocystum extracts (SE) and P. australis extracts (PE) were then applied to 3T3-L1 cells during the differentiation stage and during the mature stage of the adipocyte life cycle to assess the effects of extracts on adipogenesis and adipolysis. Application of SE at 12.5 and 50 µg/ml to the cells decreased adipogenesis by 71.7%, and 84.8%, respectively, while cells treated with 12.5 and 50 µg/ml PE showed 85.7%, and 89.0% adipogenesis respectively, compared to control. Application of SE and PE to mature lipid cells stimulated adipolysis and the release of glycerol into the culture media. Application of SE at 12.5 and 50 µg µg/ ml in the cell media induced glycerol release by up to 88.6 and 93.0%, respectively, while PE increased glycerol release up to 92.9 and 95.6% respectively, compared to isoproterenol. This study demonstrates the potential of whole brown seaweed extracts from S. oligocystum and P. australis collected from Malaysian waters as natural anti- obesity agents. Incorporation of the brown seaweed into the diet as a functional food will be useful for prevention and treatment of obesity.
  13. Kamarudin KR, Ngah N, Hamid TH, Susanti D
    Trop Life Sci Res, 2013 Aug;24(1):85-100.
    PMID: 24575244
    Staphylococcus kloosii, an orange pigment-producing bacterium, was isolated from the respiratory tree of Holothuria (Mertensiothuria) leucospilota (Brandt 1835) from Teluk Nipah, Pangkor Island, Perak, Malaysia. This report is the first documentation of this Gram-positive strain, referred to as Strain 68 in Malaysia. A partial 16S ribosomal RNA gene sequence of the mesophilic strain has been registered with GenBank (National Center for Biotechnology Information, US National Library of Medicine) with accession number JX102547. Phylogenetic analysis using the neighbour-joining method further supported the identification of Strain 68 as S. kloosii. The circular strain produced orange pigments on tryptone glucose yeast extract agar (TGYEA) and in nutrient broth (NB) at approximately pH 7. The visible spectra of ethanolic and methanolic pigment extracts of the bacterial strain were considered identical with λmax at 426, 447 and 475 nm and λmax at 426, 445 and 473 nm, respectively. Both visible spectra resemble the visible spectra of lutein, which is a commercial carotenoid; however, further analyses are required to confirm the identity of this pigment. The methanolic extracts of the intracellular pigments comprised at least three pigment compounds: an orange pigment compound (major compound), a yellow pigment compound (the least polar) and a pink pigment compound (the most polar). These findings are the first documentation of the pigment composition of S. kloosii as no such record could be found to date.
  14. Kamazeri TS, Samah OA, Taher M, Susanti D, Qaralleh H
    Asian Pac J Trop Med, 2012 Mar;5(3):202-9.
    PMID: 22305785 DOI: 10.1016/S1995-7645(12)60025-X
    OBJECTIVE: To analyze the chemical composition of the essential oils of Curcuma aeruginosa (C. aeruginosa), Curcuma mangga (C. mangga), and Zingiber cassumunar (Z. cassumunar), and study their antimicrobial activity.

    METHODS: Essential oils obtained by steam distillation were analyzed by gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of the essential oils was evaluated against four bacteria: Bacillus cereus (B. cereus), Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa); and two fungi: Candida albicans (C. albicans) and Cyptococcus neoformans (C. neoformans), using disc-diffusion and broth microdilution methods.

    RESULTS: Cycloisolongifolene, 8,9-dehydro formyl (35.29%) and dihydrocostunolide (22.51%) were the major compounds in C. aeruginosa oil; whereas caryophyllene oxide (18.71%) and caryophyllene (12.69%) were the major compounds in C. mangga oil; and 2,6,9,9-tetramethyl-2,6,10-cycloundecatrien-1-one (60.77%) and α-caryophyllene (23.92%) were abundant in Z. cassumunar oil. The essential oils displayed varying degrees of antimicrobial activity against all tested microorganisms. C. mangga oil had the highest and most broad-spectrum activity by inhibiting all microorganisms tested, with C. neoformans being the most sensitive microorganism by having the lowest minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values of 0.1 μL/mL. C. aeruginosa oil showed mild antimicrobial activity, whereas Z. cassumunar had very low or weak activity against the tested microorganisms.

    CONCLUSIONS: The preliminary results suggest promising antimicrobial properties of C. mangga and C. aeruginosa, which may be useful for food preservation, pharmaceutical treatment and natural therapies.

  15. Mamat SS, Kamarolzaman MF, Yahya F, Mahmood ND, Shahril MS, Jakius KF, et al.
    PMID: 24267313 DOI: 10.1186/1472-6882-13-326
    Melastoma malabathricum L. (Melastomaceae) is a small shrub with various medicinal uses. The present study was carried out to determine the hepatoprotective activity of methanol extract of M. malabathricum leaves (MEMM) against the paracetamol-induced liver toxicity in rats model.
  16. Mohamad Razif MI, Nizar N, Zainal Abidin NH, Muhammad Ali SN, Wan Zarimi WNN, Khotib J, et al.
    Expert Rev Vaccines, 2023;22(1):629-642.
    PMID: 37401128 DOI: 10.1080/14760584.2023.2232450
    INTRODUCTION: mRNA vaccines have been developed as a promising cancer management. It is noted that specification of the antigen sequence of the target antigen is necessary for the design and manufacture of an mRNA vaccine.

    AREAS COVERED: The steps involved in preparing the mRNA-based cancer vaccines are isolation of the mRNA cancer from the target protein using the nucleic acid RNA-based vaccine, sequence construction to prepare the DNA template, in vitro transcription for protein translation from DNA into mRNA strand, 5' cap addition and poly(A) tailing to stabilize and protect the mRNA from degradation and purification process to remove contaminants produced during preparation.

    EXPERT OPINION: Lipid nanoparticles, lipid/protamine/mRNA nanoparticles, and cell-penetrating peptides have been used to formulate mRNA vaccine and to ensure vaccine stability and delivery to the target site. Delivery of the vaccine to the target site will trigger adaptive and innate immune responses. Two predominant factors of the development of mRNA-based cancer vaccines are intrinsic influence and external influence. In addition, research relating to the dosage, route of administration, and cancer antigen types have been observed to positively impact the development of mRNA vaccine.

  17. Mohd Jamil MDH, Taher M, Susanti D, Rahman MA, Zakaria ZA
    Nutrients, 2020 Aug 26;12(9).
    PMID: 32858812 DOI: 10.3390/nu12092584
    Picrasma quassioides is a member of the Simaroubaceae family commonly grown in the regions of Asia, the Himalayas, and India and has been used as a traditional herbal medicine to treat various illnesses such as fever, gastric discomfort, and pediculosis. This study aims to critically review the presence of phytochemicals in P. quassioides and correlate their pharmacological activities with the significance of its use as traditional medicine. Data were collected by reviewing numerous scientific articles from several journal databases on the pharmacological activities of P. quassioides using certain keywords. As a result, approximately 94 phytochemicals extracted from P. quassioides were found to be associated with quassinoids, β-carbolines and canthinones. These molecules exhibited various pharmacological benefits such as anti-inflammatory, antioxidant, anti-cancer, anti-microbial, and anti-parasitic activities which help to treat different diseases. However, P. quassioides were also found to have several toxicity effects in high doses, although the evidence regarding these effects is limited in proving its safe use and efficacy as herbal medicine. Accordingly, while it can be concluded that P. quassioides may have many potential pharmacological benefits with more phytochemistry discoveries, further research is required to determine its real value in terms of quality, safety, and efficacy of use.
  18. Onikanni SA, Lawal B, Munyembaraga V, Bakare OS, Taher M, Khotib J, et al.
    Molecules, 2023 Jul 30;28(15).
    PMID: 37570723 DOI: 10.3390/molecules28155752
    Glucokinase plays an important role in regulating the blood glucose level and serves as an essential therapeutic target in type 2 diabetes management. Entada africana is a medicinal plant and highly rich source of bioactive ligands with the potency to develop new target drugs for glucokinase such as diabetes and obesity. Therefore, the study explored a computational approach to predict identified compounds from Entada africana following its intermolecular interactions with the allosteric binding site of the enzymes. We retrieved the three-dimensional (3D) crystal structure of glucokinase (PDB ID: 4L3Q) from the online protein data bank and prepared it using the Maestro 13.5, Schrödinger Suite 2022-3. The compounds identified were subjected to ADME, docking analysis, pharmacophore modeling, and molecular simulation. The results show the binding potential of the identified ligands to the amino acid residues, thereby suggesting an interaction of the amino acids with the ligand at the binding site of the glucokinase activator through conventional chemical bonds such as hydrogen bonds and hydrophobic interactions. The compatibility of the molecules was highly observed when compared with the standard ligand, thereby leading to structural and functional changes. Therefore, the bioactive components from Entada africana could be a good driver of glucokinase, thereby paving the way for the discovery of therapeutic drugs for the treatment of diabetes and its related complications.
  19. Saad S, Taher M, Susanti D, Qaralleh H, Awang AF
    Asian Pac J Trop Biomed, 2012 Jun;2(6):427-9.
    PMID: 23569943 DOI: 10.1016/S2221-1691(12)60069-0
    To investigate the antimicrobial property of mangrove plant Sonneratia alba (S. alba).
  20. Saad S, Taher M, Susanti D, Qaralleh H, Rahim NA
    Asian Pac J Trop Med, 2011 Jul;4(7):523-5.
    PMID: 21803301 DOI: 10.1016/S1995-7645(11)60138-7
    OBJECTIVE: To investigate the antimicrobial activities of n-hexane, ethyl acetate and methanol extracts of the leaves of Lumnitzera littorea (L. littorea) against six human pathogenic microbes.

    METHODS: The antimicrobial activity was evaluated using disc diffusion and microdilution methods.

    RESULTS: The antimicrobial activities of the crude extracts were increased with increasing the concentration. It is clear that n-hexane extract was the most effective extract. Additionally, Gram positive Bacillus cereus (B. cereus) appear to be the most sensitive strain while Pseudomonas aeruginosa (P. aeruginosa) and the yeast strains (Candida albicans (C. albicans) and Cryptococcus neoformans (C. neoformans)) appear to be resistance to the tested concentrations since no inhibition zone was observed. The inhibition of microbial growth at concentration as low as 0.04 mg/mL indicated the potent antimicrobial activity of L. littorea extracts.

    CONCLUSIONS: The obtained results are considered sufficient for further study to isolate the compounds responsible for the activity and suggesting the possibility of finding potent antibacterial agents from L. littorea extracts.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links