Displaying publications 1 - 20 of 63 in total

Abstract:
Sort:
  1. Aghbashlo M, Tabatabaei M, Soltanian S, Ghanavati H, Dadak A
    Waste Manag, 2019 Mar 15;87:485-498.
    PMID: 31109549 DOI: 10.1016/j.wasman.2019.02.029
    A comprehensive exergoeconomic performance analysis of a municipal solid waste digestion plant integrated with a biogas genset was conducted throughout this study in order to highlight its bottlenecks for further improvements. Exergoeconomic performance parameters of each component of the plant were determined by solving exergy and cost balance equations based on Specific Exergy Costing (SPECO) approach. The analysis was conducted to reveal the cost structure of the plant based on actual operating information and economic data. The exergy unitary cost of two main products of the plant, i.e., bioelectricity and biofertilizer were determined at 26.27 and 2.27 USD/GJ, respectively. The genset showed the highest overall cost rate (101.27 USD/h) followed by digester (68.41 USD/h). Furthermore, the net bioelectricity amounted to 67.81% of the overall cost rate of the products, while this value was 32.19% for both liquid and dewatered digestates. According to the results obtained, efforts should mainly focus on enhancing the efficiency of the genset in order to boost the overall performance of the system exergoeconomically. In addition, minimizing the investment-related cost of the digester could also substantially enhance the exergoeconomic performance of the plant.
  2. Yusof N, Hassan MA, Yee PL, Tabatabaei M, Othman MR, Mori M, et al.
    Waste Manag Res, 2011 Jun;29(6):602-11.
    PMID: 21447612 DOI: 10.1177/0734242X10397581
    Nitrification of mature sanitary landfill leachate with high-strength of N-NH(4) + (1080-2350 mg L(-1)) was performed in a 10 L continuous nitrification activated sludge reactor. The nitrification system was acclimatized with synthetic leachate during feed batch operation to avoid substrate inhibition before being fed with actual mature leachate. Successful nitrification was achieved with an approximately complete ammonium removal (99%) and 96% of N-NH(4) + conversion to N-NO(-) (3) . The maximum volumetric and specific nitrification rates obtained were 2.56 kg N-NH(4) (+) m(-3) day(-1) and 0.23 g N-NH(4) ( +) g(-1) volatile suspended solid (VSS) day(-1), respectively, at hydraulic retention time (HRT) of 12.7 h and solid retention time of 50 days. Incomplete nitrification was encountered when operating at a higher nitrogen loading rate of 3.14 kg N-NH(4) (+) m(-3) day(-1). The substrate overloading and nitrifiers competition with heterotrophs were believed to trigger the incomplete nitrification. Fluorescence in situ hybridization (FISH) results supported the syntrophic association between the ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria. FISH results also revealed the heterotrophs as the dominant and disintegration of some AOB cell aggregates into single cells which further supported the incomplete nitrification phenomenon.
  3. Sharma VK, Sharma M, Usmani Z, Pandey A, Singh BN, Tabatabaei M, et al.
    Trends Biotechnol, 2022 Feb 07.
    PMID: 35144849 DOI: 10.1016/j.tibtech.2022.01.009
    Enzymes have the potential for biotransformation in the food industry. Engineering tools can be used to develop tailored enzymes for food-packaging systems that perform well and retain their activity under adverse conditions. Consequently, novel tailored enzymes have been produced to improve or include new and useful characteristics for intelligent food-packaging systems. This review discusses the protein-engineering tools applied to create new functionality in food-packaging enzymes. The challenges in applications and anticipated directions for future developments are also highlighted. The development and discovery of tailored enzymes for smart food packaging is a promising way to ensure safe and high-quality food products.
  4. Aghbashlo M, Amiri H, Moosavi Basri SM, Rastegari H, Lam SS, Pan J, et al.
    Trends Biotechnol, 2023 Jun;41(6):785-797.
    PMID: 36535818 DOI: 10.1016/j.tibtech.2022.11.009
    Chitosan, an amino polysaccharide mostly derived from crustaceans, has been recently highlighted for its biological activities that depend on its molecular weight (MW), degree of deacetylation (DD), and acetylation pattern (AP). More importantly, for some advanced biomaterials, the homogeneity of the chitosan structure is an important factor in determining its biological activity. Here we review emerging enzymes and cell factories, respectively, for in vitro and in vivo preparation of chitosan oligosaccharides (COSs), focusing on advances in the analysis of the AP and structural modification of chitosan to tune its functions. By 'mapping' current knowledge on chitosan's in vitro and in vivo activity with its MW and AP, this work could pave the way for future studies in the field.
  5. Hosseinzadeh-Bandbafha H, Nazemi F, Khounani Z, Ghanavati H, Shafiei M, Karimi K, et al.
    Sci Total Environ, 2021 Aug 21;802:149842.
    PMID: 34455274 DOI: 10.1016/j.scitotenv.2021.149842
    Global environmental awareness has encouraged further research towards biofuel production and consumption. Despite the favorable properties of biofuels, the sustainability of their conventional production pathways from agricultural feedstocks has been questioned. Therefore, the use of non-food feedstocks as a promising approach to ensure sustainable biofuel production is encouraged. However, the use of synthetic solvents/chemicals and energy carriers during biofuel production and the consequent adverse environmental effects are still challenging. On the other hand, biofuel production is also associated with generating large volumes of waste and wastewater. Accordingly, the circular bioeconomy as an innovative approach to ensure complete valorization of feedstocks and generated waste streams under the biorefinery scheme is proposed. In line with that, the current study aims to assess the environmental sustainability of bioethanol production in a safflower-based biorefinery using the life cycle assessment framework. Based on the obtained results, safflower production and its processing into 1 MJ bioethanol under the safflower-based biorefinery led to damage of 2.23E-07 disability-adjusted life years (DALY), 2.35E-02 potentially disappeared fraction (PDF)*m2*yr, 4.76E-01 kg CO2 eq., and 3.82 MJ primary on the human health, ecosystem quality, climate change, and resources, respectively. Moreover, it was revealed that despite adverse environmental effects associated with safflower production and processing, the substitution of conventional products, i.e., products that are the typical products in the market without having environmental criteria, with their bio-counterparts, i.e., products produced in the biorefinery based on environmental criteria could overshadow the unfavorable effects and substantially enhance the overall sustainability of the biorefinery system. The developed safflower-based biorefinery led to seven- and two-time reduction in damage to the ecosystem quality and resources damage categories, respectively. The reductions in damage to human health and climate change were also found to be 52% and 24%, respectively. The weighted environmental impacts of the safflower-based biorefinery decreased by 64% due to the production of bioproducts, mainly biodiesel and biogas, replacing their fossil-based counterparts, i.e., diesel and natural gas, respectively. Finally, although the main focus of the developed safflower-based biorefinery was biofuel production, waste valorization and mainly animal feed played a significant role in improving the associated environmental impacts.
  6. Amid S, Aghbashlo M, Peng W, Hajiahmad A, Najafi B, Ghaziaskar HS, et al.
    Sci Total Environ, 2021 Oct 20;792:148435.
    PMID: 34147796 DOI: 10.1016/j.scitotenv.2021.148435
    A diesel engine running on diesel/biodiesel mixtures containing ethylene glycol diacetate (EGDA) was investigated from the exergoeconomic and exergoenvironmental viewpoints. Biodiesel was mixed with petrodiesel at 5% and 20% volume ratios, and the resultant mixtures were then doped with EGDA at 1-3% volume ratios. The exergetic sustainability indicators of the engine operating on the prepared fuel formulations were determined at varying engine loads. The indicators were selected to support decision-making on fuel composition and engine load following thermodynamic, economic, and environmental considerations. The engine load markedly affected all the studied exergetic parameters. The highest engine exergetic efficiency (39.5%) was obtained for petrodiesel doped with 1 v/v% EGDA at the engine load of 50%. The minimum value of the unit cost of brake power exergy (49.6 US$/GJ) was found for straight petrodiesel at full-load conditions, while the minimum value of the unit environmental impact of brake power exergy (29.9 mPts/GJ) was observed for petrodiesel mixed with 5 v/v% biodiesel at the engine load of 75%. Overall, adding EGDA to fuel mixtures did not favorably influence the outcomes of both exergetic methods due to its energy-intensive and cost-prohibitive production process. In conclusion, although petrodiesel fuel improvers such EGDA used in the present study could properly mitigate pollutant emissions, the adverse effects of such additives on thermodynamic parameters of diesel engines, particularly on exergoeconomic and exergoenvironmental indices, need to be taken into account, and necessary optimizations should be made before their real-world application.
  7. Lu L, Fan W, Meng X, Xue L, Ge S, Wang C, et al.
    Sci Total Environ, 2023 Jan 15;856(Pt 1):158798.
    PMID: 36116663 DOI: 10.1016/j.scitotenv.2022.158798
    The rapid development of the textile industry and improvement of people's living standards have led to the production of cotton textile and simultaneously increased the production of textile wastes. Cotton is one of the most common textile materials, and the waste cotton accounts for 24% of the total textile waste. To effectively manage the waste, recycling and reusing waste cotton are common practices to reduce global waste production. This paper summarizes the characteristics of waste cotton and high-value products derived from waste cotton (e.g., yarns, composite reinforcements, regenerated cellulose fibers, cellulose nanocrystals, adsorptive materials, flexible electronic devices, and biofuels) via mechanical, chemical, and biological recycling methods. The advantages and disadvantages of making high-value products from waste cotton are summarized and discussed. New technologies and products for recycling waste cotton are proposed, providing a guideline and direction for merchants and researchers. This review paper can shed light on converting textile wastes other than cotton (e.g., bast, silk, wool, and synthetic fibers) into value-added products.
  8. Li J, Li L, Suvarna M, Pan L, Tabatabaei M, Ok YS, et al.
    Sci Total Environ, 2022 Jan 07;817:152921.
    PMID: 35007594 DOI: 10.1016/j.scitotenv.2022.152921
    The ever-increasing rise in the global population coupled with rapid urbanization demands considerable consumption of fossil fuel, food, and water. This in turn leads to energy depletion, greenhouse gas emissions and wet wastes generation (including food waste, animal manure, and sewage sludge). Conversion of the wet wastes to bioenergy and biochar is a promising approach to mitigate wastes, emissions and energy depletion, and simultaneously promotes sustainability and circular economy. In this study, various conversion technologies for transformation of wet wastes to bioenergy and biochar, including anaerobic digestion, gasification, incineration, hydrothermal carbonization, hydrothermal liquefaction, slow and fast pyrolysis, are comprehensively reviewed. The technological challenges impeding the widespread adoption of these wet waste conversion technologies are critically examined. Eventually, the study presents insightful recommendations for the technological advancements and wider acceptance of these processes by establishing a hierarchy of factors dictating their performance. These include: i) life-cycle assessment of these conversion technologies with the consideration of reactor design and catalyst utilization from lab to plant level; ii) process intensification by integrating one or more of the wet waste conversion technologies for improved performance and sustainability; and iii) emerging machine learning modeling is a promising strategy to aid the product characterization and optimization of system design for the specific to the bioenergy or biochar application.
  9. Mahyari KF, Sun Q, Klemeš JJ, Aghbashlo M, Tabatabaei M, Khoshnevisan B, et al.
    Sci Total Environ, 2022 Sep 01;837:155829.
    PMID: 35561899 DOI: 10.1016/j.scitotenv.2022.155829
    The world has been grappling with the crisis of the COVID-19 pandemic for more than a year. Various sectors have been affected by COVID-19 and its consequences. The waste management system is one of the sectors affected by such unpredictable pandemics. The experience of COVID-19 proved that adaptability to such pandemics and the post-pandemic era had become a necessity in waste management systems and this requires an accurate understanding of the challenges that have been arising. The accurate information and data from most countries severely affected by the pandemic are not still available to identify the key challenges during and post-COVID-19. The documented evidence from literature has been collected, and the attempt has been made to summarize the rising challenges and the lessons learned. This review covers all raised challenges concerning the various aspects of the waste management system from generation to final disposal (i.e., generation, storage, collection, transportation, processing, and burial of waste). The necessities and opportunities are recognized for increasing flexibility and adaptability in waste management systems. The four basic pillars are enumerated to adapt the waste management system to the COVID-19 pandemic and post-COVID-19 conditions. Striving to support and implement a circular economy is one of its basic strategies.
  10. Usmani Z, Sharma M, Tripathi M, Lukk T, Karpichev Y, Gathergood N, et al.
    Sci Total Environ, 2023 Jul 10;881:163002.
    PMID: 37003333 DOI: 10.1016/j.scitotenv.2023.163002
    The increasing emphasis on the development of green replacements to traditional organic solvents and ionic liquids (ILs) can be attributed to the rising concerns over human health and detrimental impacts of conventional solvents towards the environment. A new generation of solvents inspired by nature and extracted from plant bioresources has evolved over the last few years, and are referred to as natural deep eutectic solvents (NADES). NADES are mixtures of natural constituents like sugars, polyalcohols, sugar-based alcohols, amino acids and organic acids. Interest in NADES has exponentially grown over the last eight years, which is evident from an upsurge in the number of research projects undertaken. NADES are highly biocompatible as they can be biosynthesized and metabolized by nearly all living organisms. These solvents pose several noteworthy advantages, such as easy synthesis, tuneable physico-chemical properties, low toxicity, high biodegradability, solute sustainability and stabilization and low melting point. Research on the applicability of NADES in diverse areas is gaining momentum, which includes as - media for chemical and enzymatic reactions; extraction media for essential oils; anti-inflammatory and antimicrobial agent; extraction of bioactive composites; as chromatographic media; preservatives for labile compounds and in drug synthesis. This review gives a complete overview of the properties, biodegradability and toxicity of NADES which we propose can assist in further knowledge generation on their significance in biological systems and usage in green and sustainable chemistry. Information on applications of NADES in biomedical, therapeutic and pharma-biotechnology fields is also highlighted in the current article along with the recent progress and future perspectives in novel applications of NADES.
  11. Ghorbani M, Kianmehr MH, Sarlaki E, Angelidaki I, Yang Y, Tabatabaei M, et al.
    Sci Total Environ, 2023 Sep 20;892:164526.
    PMID: 37257609 DOI: 10.1016/j.scitotenv.2023.164526
    The livestock industry needs to use crop straws that are highly digestible to improve feed productivity and reduce ruminal methane emissions. Hence, this study aimed to use the ozonation and pelleting processes to enhance the digestibility and reduce the ruminal methane emissions of wheat straw enriched with two nitrogen sources (i.e., urea and heat-processed broiler litter). Various analyses were conducted on the pellets, including digestibility indicators, mechanical properties, surface chemistry functionalization, chemical-spectral-structural features, and energy requirements. For comparison, loose forms of the samples were also analyzed. The nitrogen-enriched ozonated wheat straw pellets had 43.06 % lower lignin, 28.30 % higher gas production for 24 h, 12.28 % higher metabolizable energy, 13.78 % higher in vitro organic matter digestibility for 24 h, and 28.81 % higher short-chain fatty acid content than the nitrogen-enriched loose sample. The reduction of methane emissions by rumen microorganisms of nitrogen-enriched wheat straw by ozonation, pelleting, and ozonation-pelleting totaled 89.15 %, 23.35 %, and 66.98 %, respectively. The ozonation process resulted in a 64 % increase in the particle density, a 5.5-time increase in the tensile strength, and a 75 % increase in the crushing energy of nitrogen-enriched wheat straw. In addition, ozone treatment could also reduce the specific and thermal energy consumption required in the pelleting process by 15.10 % and 7.61 %, respectively.
  12. Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, et al.
    Sci Total Environ, 2023 Nov 15;899:165751.
    PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751
    Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
  13. Shojaei TR, Mohd Salleh MA, Tabatabaei M, Ekrami A, Motallebi R, Rahmani-Cherati T, et al.
    Braz J Infect Dis, 2014 Nov-Dec;18(6):600-8.
    PMID: 25181404 DOI: 10.1016/j.bjid.2014.05.015
    Mycobacterium tuberculosis, the causing agent of tuberculosis, comes second only after HIV on the list of infectious agents slaughtering many worldwide. Due to the limitations behind the conventional detection methods, it is therefore critical to develop new sensitive sensing systems capable of quick detection of the infectious agent. In the present study, the surface modified cadmium-telluride quantum dots and gold nanoparticles conjunct with two specific oligonucleotides against early secretory antigenic target 6 were used to develop a sandwich-form fluorescence resonance energy transfer-based biosensor to detect M. tuberculosis complex and differentiate M. tuberculosis and M. bovis Bacille Calmette-Guerin simultaneously. The sensitivity and specificity of the newly developed biosensor were 94.2% and 86.6%, respectively, while the sensitivity and specificity of polymerase chain reaction and nested polymerase chain reaction were considerably lower, 74.2%, 73.3% and 82.8%, 80%, respectively. The detection limits of the sandwich-form fluorescence resonance energy transfer-based biosensor were far lower (10 fg) than those of the polymerase chain reaction and nested polymerase chain reaction (100 fg). Although the cost of the developed nanobiosensor was slightly higher than those of the polymerase chain reaction-based techniques, its unique advantages in terms of turnaround time, higher sensitivity and specificity, as well as a 10-fold lower detection limit would clearly recommend this test as a more appropriate and cost-effective tool for large scale operations.
  14. Shojaei TR, Salleh MA, Sijam K, Rahim RA, Mohsenifar A, Safarnejad R, et al.
    PMID: 27380305 DOI: 10.1016/j.saa.2016.06.052
    Due to the low titer or uneven distribution of Citrus tristeza virus (CTV) in field samples, detection of CTV by using conventional detection techniques may be difficult. Therefore, in the present work, the cadmium-telluride quantum dots (QDs) was conjugated with a specific antibody against coat protein (CP) of CTV, and the CP were immobilized on the surface of gold nanoparticles (AuNPs) to develop a specific and sensitive fluorescence resonance energy transfer (FRET)-based nanobiosensor for detecting CTV. The maximum FRET efficiency for the developed nano-biosensor was observed at 60% in AuNPs-CP/QDs-Ab ratio of 1:8.5. The designed system showed higher sensitivity and specificity over enzyme linked immunosorbent assay (ELISA) with a limit of detection of 0.13μgmL(-1) and 93% and 94% sensitivity and specificity, respectively. As designed sensor is rapid, sensitive, specific and efficient in detecting CTV, this could be envisioned for diagnostic applications, surveillance and plant certification program.
  15. Kazemi Shariat Panahi H, Dehhaghi M, Lam SS, Peng W, Aghbashlo M, Tabatabaei M, et al.
    Semin Cancer Biol, 2022 Nov;86(Pt 3):1122-1142.
    PMID: 34004331 DOI: 10.1016/j.semcancer.2021.05.013
    Human livelihood highly depends on applying different sources of energy whose utilization is associated with air pollution. On the other hand, air pollution may be associated with glioblastoma multiforme (GBM) development. Unlike other environmental causes of cancer (e.g., irradiation), air pollution cannot efficiently be controlled by geographical borders, regulations, and policies. The unavoidable exposure to air pollution can modify cancer incidence and mortality. GBM treatment with chemotherapy or even its surgical removal has proven insufficient (100% recurrence rate; patient's survival mean of 15 months; 90% fatality within five years) due to glioma infiltrative and migratory capacities. Given the barrage of attention and research investments currently plowed into next-generation cancer therapy, oncolytic viruses are perhaps the most vigorously pursued. Provision of an insight into the current state of the research and future direction is essential for stimulating new ideas with the potentials of filling research gaps. This review manuscript aims to overview types of brain cancer, their burden, and different causative agents. It also describes why air pollution is becoming a concerning factor. The different opinions on the association of air pollution with brain cancer are reviewed. It tries to address the significant controversy in this field by hypothesizing the air-pollution-brain-cancer association via inflammation and atopic conditions. The last section of this review deals with the oncolytic viruses, which have been used in, or are still under clinical trials for GBM treatment. Engineered adenoviruses (i.e., DNX-2401, DNX-2440, CRAd8-S-pk7 loaded Neural stem cells), herpes simplex virus type 1 (i.e., HSV-1 C134, HSV-1 rQNestin34.5v.2, HSV-1 G207, HSV-1 M032), measles virus (i.e., MV-CEA), parvovirus (i.e., ParvOryx), poliovirus (i.e., Poliovirus PVSRIPO), reovirus (i.e., pelareorep), moloney murine leukemia virus (i.e., Toca 511 vector), and vaccinia virus (i.e., vaccinia virus TG6002) as possible life-changing alleviations for GBM have been discussed. To the best of our knowledge, this review is the first review that comprehensively discusses both (i) the negative/positive association of air pollution with GBM; and (ii) the application of oncolytic viruses for GBM, including the most recent advances and clinical trials. It is also the first review that addresses the controversies over air pollution and brain cancer association. We believe that the article will significantly appeal to a broad readership of virologists, oncologists, neurologists, environmentalists, and those who work in the field of (bio)energy. Policymakers may also use it to establish better health policies and regulations about air pollution and (bio)fuels exploration, production, and consumption.
  16. Karami R, Mohsenifar A, Mesbah Namini SM, Kamelipour N, Rahmani-Cherati T, Roodbar Shojaei T, et al.
    PMID: 26503886
    Organophosphorus (OP) compounds are one of the most hazardous chemicals used as insecticides/pesticide in agricultural practices. A large variety of OP compounds are hydrolyzed by organophosphorus hydrolases (OPH; EC 3.1.8.1). Therefore, OPHs are among the most suitable candidates which could be used in designing enzyme-based sensors for detecting OP compounds. In the present work, a novel nanobiosensor for the detection of paraoxon was designed and fabricated. More specifically, OPH was covalently embedded onto chitosan and the enzyme-chitosan bioconjugate was then immobilized on negatively charged gold nanoparticles (AuNPs) electrostatically. The enzyme was immobilized on AuNPs without chitosan as well to compare the two systems in terms of detection limit and enzyme stability under different pH and temperature conditions. Coumarin 1, a competitive inhibitor of the enzyme, was used as a fluorogenic probe. The emission of coumarin 1 was effectively quenched by the immobilized Au-NPs when bound to the developed nanobioconjugates. However, in the presence of paraoxon, coumarin 1 left the nanobioconjugate leading to enhanced fluorescence intensity. Moreover, compared to the immobilized enzyme without chitosan, the chitosan-immobilized enzyme was found to possess decreased Km value by over 50%, increased Vmax and Kcat values by around 15% and 74%, respectively. Higher stability within a wider range of pH (2-12) and temperature (25-90°C) was also achieved. The method worked in the 0 to 1050 nM concentration ranges, and had a detection limit as low as 5 × 10(-11) M.
  17. Samiei A, Liang JB, Ghorbani GR, Hirooka H, Yaakub H, Tabatabaei M
    Pol J Vet Sci, 2010;13(2):349-56.
    PMID: 20731192
    The first objective of this study was to investigate the relationship between concentrations of beta-hydroxybutyrate (BHBA) in milk and blood to assess the reliability of the BHBA concentrations in milk measured by a semi quantitative keto-test paper to detect subclinical ketosis (SCK) in 50 fresh high-producing Iranian Holstein cows in Golestan Province, Iran. The second objective was the effects of SCK on milk yield and components. Concentrations of nonesterified fatty acids (NEFA) and BHBA were analyzed quantitatively in blood plasma and commercial keto-test paper was used for semi quantitative determination of BHBA concentration in milk. Milk yield was measured until 60 d after calving but milk compositions were measured until 30 d after calving. The mean plasma BHBA, milk BHBA, plasma NEFA, milk yield, milk fat percentage and milk fat: protein ratio were 1,234 micromol/L, 145 micromol/L, 0.482 mEq/L, 29.5 kg, 3.9% and 1.4, respectively. Fifty eight percent of the cows had SCK during the first month of lactation. High correlation coefficients were observed between blood BHBA and blood NEFA, and between blood and milk BHBA. The milk yield of cattle with SCK decreased (P < 0.01) but the fat percentage and milk fat: protein ratio increased (P < 0.01). The commercial keto-test paper used had a low false positive result at a cut-off point of 200 fmol of BHBA/L of milk. The results showed that the best time to assess SCK using the commercial keto-test paper was d 10, 14 and 17 after calving.
  18. Amiri H, Aghbashlo M, Sharma M, Gaffey J, Manning L, Moosavi Basri SM, et al.
    Nat Food, 2022 Oct;3(10):822-828.
    PMID: 37117878 DOI: 10.1038/s43016-022-00591-y
    Crustacean waste, consisting of shells and other inedible fractions, represents an underutilized source of chitin. Here, we explore developments in the field of crustacean-waste-derived chitin and chitosan extraction and utilization, evaluating emerging food systems and biotechnological applications associated with this globally abundant waste stream. We consider how improving the efficiency and selectivity of chitin separation from wastes, redesigning its chemical structure to improve biotechnology-derived chitosan, converting it into value-added chemicals, and developing new applications for chitin (such as the fabrication of advanced nanomaterials used in fully biobased electric devices) can contribute towards the United Nations Sustainable Development Goals. Finally, we consider how gaps in the research could be filled and future opportunities could be developed to make optimal use of this important waste stream for food systems and beyond.
  19. Diwan D, Sharma M, Tabatabaei M, Gupta VK
    Nat Food, 2021 Dec;2(12):924-925.
    PMID: 37118249 DOI: 10.1038/s43016-021-00438-y
  20. Shojaei TR, Tabatabaei M, Shawky S, Salleh MA, Bald D
    Mol Biol Rep, 2015 Jan;42(1):187-99.
    PMID: 25245956 DOI: 10.1007/s11033-014-3758-5
    Biotechnology-based detection systems and sensors are in use for a wide range of applications in biomedicine, including the diagnostics of viral pathogens. In this review, emerging detection systems and their applicability for diagnostics of viruses, exemplified by the case of avian influenza virus, are discussed. In particular, nano-diagnostic assays presently under development or available as prototype and their potentials for sensitive and rapid virus detection are highlighted.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links