Displaying publications 1 - 20 of 131 in total

Abstract:
Sort:
  1. Uni S, Mat Udin AS, Agatsuma T, Saijuntha W, Junker K, Ramli R, et al.
    Parasit Vectors, 2017 Apr 20;10(1):194.
    PMID: 28427478 DOI: 10.1186/s13071-017-2105-9
    BACKGROUND: The filarial nematodes Wuchereria bancrofti (Cobbold, 1877), Brugia malayi (Brug, 1927) and B. timori Partono, Purnomo, Dennis, Atmosoedjono, Oemijati & Cross, 1977 cause lymphatic diseases in humans in the tropics, while B. pahangi (Buckley & Edeson, 1956) infects carnivores and causes zoonotic diseases in humans in Malaysia. Wuchereria bancrofti, W. kalimantani Palmieri, Pulnomo, Dennis & Marwoto, 1980 and six out of ten Brugia spp. have been described from Australia, Southeast Asia, Sri Lanka and India. However, the origin and evolution of the species in the Wuchereria-Brugia clade remain unclear. While investigating the diversity of filarial parasites in Malaysia, we discovered an undescribed species in the common treeshrew Tupaia glis Diard & Duvaucel (Mammalia: Scandentia).

    METHODS: We examined 81 common treeshrews from 14 areas in nine states and the Federal Territory of Peninsular Malaysia for filarial parasites. Once any filariae that were found had been isolated, we examined their morphological characteristics and determined the partial sequences of their mitochondrial cytochrome c oxidase subunit 1 (cox1) and 12S rRNA genes. Polymerase chain reaction (PCR) products of the internal transcribed spacer 1 (ITS1) region were then cloned into the pGEM-T vector, and the recombinant plasmids were used as templates for sequencing.

    RESULTS: Malayfilaria sofiani Uni, Mat Udin & Takaoka, n. g., n. sp. is described based on the morphological characteristics of adults and microfilariae found in common treeshrews from Jeram Pasu, Kelantan, Malaysia. The Kimura 2-parameter distance between the cox1 gene sequences of the new species and W. bancrofti was 11.8%. Based on the three gene sequences, the new species forms a monophyletic clade with W. bancrofti and Brugia spp. The adult parasites were found in tissues surrounding the lymph nodes of the neck of common treeshrews.

    CONCLUSIONS: The newly described species appears most closely related to Wuchereria spp. and Brugia spp., but differs from these in several morphological characteristics. Molecular analyses based on the cox1 and 12S rRNA genes and the ITS1 region indicated that this species differs from both W. bancrofti and Brugia spp. at the genus level. We thus propose a new genus, Malayfilaria, along with the new species M. sofiani.

  2. Uni S, Mat Udin AS, Agatsuma T, Junker K, Saijuntha W, Bunchom N, et al.
    Parasit Vectors, 2020 Feb 06;13(1):50.
    PMID: 32028994 DOI: 10.1186/s13071-020-3907-8
    BACKGROUND: The genus Onchocerca Diesing, 1841 includes species of medical importance, such as O. volvulus (Leuckart, 1893), which causes river blindness in the tropics. Recently, zoonotic onchocercosis has been reported in humans worldwide. In Japan, O. dewittei japonica Uni, Bain & Takaoka, 2001 from wild boars is a causative agent for this zoonosis. Many filarioid nematodes are infected with Wolbachia endosymbionts which exhibit various evolutionary relationships with their hosts. While investigating the filarial fauna of Borneo, we discovered an undescribed Onchocerca species in the bearded pig Sus barbatus Müller (Cetartiodactyla: Suidae).

    METHODS: We isolated Onchocerca specimens from bearded pigs and examined their morphology. For comparative material, we collected fresh specimens of O. d. dewittei Bain, Ramachandran, Petter & Mak, 1977 from banded pigs (S. scrofa vittatus Boie) in Peninsular Malaysia. Partial sequences of three different genes (two mitochondrial genes, cox1 and 12S rRNA, and one nuclear ITS region) of these filarioids were analysed. By multi-locus sequence analyses based on six genes (16S rDNA, ftsZ, dnaA, coxA, fbpA and gatB) of Wolbachia, we determined the supergroups in the specimens from bearded pigs and those of O. d. dewittei.

    RESULTS: Onchocerca borneensis Uni, Mat Udin & Takaoka n. sp. is described on the basis of morphological characteristics and its genetic divergence from congeners. Molecular characteristics of the new species revealed its close evolutionary relationship with O. d. dewittei. Calculated p-distance for the cox1 gene sequences between O. borneensis n. sp. and O. d. dewittei was 5.9%, while that between O. d. dewittei and O. d. japonica was 7.6%. No intraspecific genetic variation was found for the new species. Wolbachia strains identified in the new species and O. d. dewittei belonged to supergroup C and are closely related.

    CONCLUSIONS: Our molecular analyses of filarioids from Asian suids indicate that the new species is sister to O. d. dewittei. On the basis of its morphological and molecular characteristics, we propose to elevate O. d. japonica to species level as O. japonica Uni, Bain & Takaoka, 2001. Coevolutionary relationships exist between the Wolbachia strains and their filarial hosts in Borneo and Peninsular Malaysia.

  3. Uni S, Fukuda M, Ogawa K, Lim YA, Agatsuma T, Bunchom N, et al.
    Parasitol Int, 2017 Oct;66(5):593-595.
    PMID: 28648713 DOI: 10.1016/j.parint.2017.06.006
    An 11-year-old boy living in Otsu City, Shiga Prefecture, Kansai Region, Western Honshu, Japan had zoonotic onchocercosis. The patient developed a painful swelling on the little finger of his left hand. The worm detected in the excised mass had external transverse ridges but did not have inner striae in the cuticle. On the basis of the parasite's histopathological characteristics, the causative agent was identified as a female Onchocerca dewittei japonica (Spirurida: Onchocercidae). The species of the filarial parasite was confirmed by sequencing the cox1 gene of the parasite. The Japanese wild boar Sus scrofa leucomystax is a definitive host for O. dewittei japonica, which is then transmitted by blackflies as the vector to humans. The current case described occurred in the Kansai Region, Western Honshu, where such infections were previously not reported.
  4. Urabe M, Nor Hashim NE, Uni S, Iwaki T, Abdullah Halim MR, Marzuki ME, et al.
    Parasitol Int, 2020 Jun;76:102074.
    PMID: 32057926 DOI: 10.1016/j.parint.2020.102074
    We describe Morishitium polonicum malayense n. subsp. from Asian glossy starlings (Aplonis panayensis strigata) (Horsfield, 1821) (Passeriformis: Sturnidae) caught in Malaysia. The trematodes had parasitized the air sacs and the thoracic and body cavities of 40 out of 67 (59.7%) birds examined. The specimens each had an oral sucker, a postpharyngeal genital pore, and tandem testes, but lacked a ventral sucker. The morphological characteristics of our specimens were similar to those of M. polonicum polonicum (Machalska, 1980) from Poland. However, the anterior extremity of vitelline follicles of the present specimens sometimes extended to the level of pharynx. The oral sucker width, oral sucker width/pharynx width ratio, and intertesticular space metrics differed from those of M. p. polonicum. The maximum-likelihood trees based on the cytochrome c oxidase subunit I (COI) and the internal transcribed spacer 2 (ITS2) sequences indicated that the species from the present study formed a sister group with M. p. polonicum from the Czech Republic. The p-distances of COI and ITS2 sequences between the present specimens and M. p. polonicum from the Czech Republic were 6.9-7.5% and 0.6%, respectively. These genetic divergences indicate the border for intra- or interspecific variation of digeneans. The definitive host species and geographical distribution of the current specimens were distinct from those of M. p. polonicum from Europe. We thus concluded that the present specimens are ranked as a new subspecies of M. polonicum, namely M. polonicum malayense n. subsp.
  5. Uni S, Mat Udin AS, Tan PE, Rodrigues J, Martin C, Junker K, et al.
    PMID: 36589876 DOI: 10.1016/j.crpvbd.2022.100078
    Species of the genus Pelecitus Railliet & Henry, 1910 the most widely distributed avian filariae in Africa and South America. Zoonotic cases in humans were reported in South America. While investigating the filarial fauna of wild animals in Malaysia, we discovered an undescribed filaria from the swollen footpad of the left leg of Copsychus malabaricus (Scopoli) in Pahang, Peninsular Malaysia. Adults of both sexes have a corkscrew-shaped body. Based on comparison of their morphological characteristics (i.e. pre-oesophageal cuticular ring distinct, oesophagus divided, vulva protuberant and situated at the level of anterior half of oesophagus, spicules strongly sclerotized and left spicule with broad blade) with other Pelecitus species, they are here described as Pelecitus copsychi Uni, Mat Udin & Martin n. sp. Multi-locus sequence analyses based on seven genes (12S rDNA, cox1, 18S rDNA, 28S rDNA, MyoHC, rbp1 and hsp70) were performed to determine the phylogenetic position of the new species. The calculated p-distance between the cox1 gene sequences for P. copsychi n. sp. and Pelecitus fulicaeatrae (Diesing, 1861) was 14.1%. Intraspecific genetic variation between two individuals of the new species was 0.4%. In both the Bayesian inference and maximum-likelihood trees, P. copsychi n. sp. was positioned in the second clade of ONC5, containing three genera of the subfamily Dirofilariinae (Foleyella Seurat, 1917, Pelecitus and Loa Stiles, 1905). Immunostaining and molecular analyses remained negative for the presence of Wolbachia endosymbionts. Our findings corroborate the division of the subfamily Dirofilariinae into ONC3 with Dirofilaria Railliet & Henry, 1911 and ONC5 with Pelecitus.
  6. Hew YX, Ya'cob Z, Adler PH, Chen CD, Lau KW, Sofian-Azirun M, et al.
    Parasit Vectors, 2023 Jul 22;16(1):248.
    PMID: 37480109 DOI: 10.1186/s13071-023-05875-1
    BACKGROUND: DNA barcoding is a valuable taxonomic tool for rapid and accurate species identification and cryptic species discovery in black flies. Indonesia has 143 nominal species of black flies, but information on their biological aspects, including vectorial capacity and biting habits, remains underreported, in part because of identification problems. The current study represents the first comprehensive DNA barcoding of Indonesian black flies using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences.

    METHODS: Genomic DNA of Indonesian black fly samples were extracted and sequenced, producing 86 COI sequences in total. Two hundred four COI sequences, including 118 GenBank sequences, were analysed. Maximum likelihood (ML) and Bayesian inference (BI) trees were constructed and species delimitation analyses, including ASAP, GMYC and single PTP, were performed to determine whether the species of Indonesian black flies could be delineated. Intra- and interspecific genetic distances were also calculated and the efficacy of COI sequences for species identification was tested.

    RESULTS: The DNA barcodes successfully distinguished most morphologically distinct species (> 80% of sampled taxa). Nonetheless, high maximum intraspecific distances (3.32-13.94%) in 11 species suggested cryptic diversity. Notably, populations of the common taxa Simulium (Gomphostilbia) cheongi, S. (Gomphostilbia) sheilae, S. (Nevermannia) feuerborni and S. (Simulium) tani in the islands of Indonesia were genetically distinct from those on the Southeast Asian mainland (Malaysia and Thailand). Integrated morphological, cytogenetic and nuclear DNA studies are warranted to clarify the taxonomic status of these more complex taxa.

    CONCLUSIONS: The findings showed that COI barcoding is a promising taxonomic tool for Indonesian black flies. The DNA barcodes will aid in correct identification and genetic study of Indonesian black flies, which will be helpful in the control and management of potential vector species.

  7. Uni S, Fukuda M, Otsuka Y, Hiramatsu N, Yokobayashi K, Takahashi H, et al.
    Parasit Vectors, 2015;8:59.
    PMID: 25623081 DOI: 10.1186/s13071-015-0655-2
    Zoonotic infections with Onchocerca species are uncommon, and to date only 25 clinical cases have been reported worldwide. In Japan, five previous zoonotic infections were concentrated in Oita, Kyushu (the southern island), with one previous case in Hiroshima in the western part of Honshu (the main island). The causative agent in Japan was identified as Onchocerca dewittei japonica Uni, Bain & Takaoka, 2001 from Japanese wild boars (Sus scrofa leucomystax Temminck, 1842). Here we report two infections caused by a female and male O. dewittei japonica, respectively, among residents of Hiroshima and Shimane Prefectures in the western part of Honshu.
  8. Low VL, Adler PH, Takaoka H, Ya'cob Z, Lim PE, Tan TK, et al.
    PLoS One, 2014;9(6):e100512.
    PMID: 24941043 DOI: 10.1371/journal.pone.0100512
    The population genetic structure of Simulium tani was inferred from mitochondria-encoded sequences of cytochrome c oxidase subunits I (COI) and II (COII) along an elevational gradient in Cameron Highlands, Malaysia. A statistical parsimony network of 71 individuals revealed 71 haplotypes in the COI gene and 43 haplotypes in the COII gene; the concatenated sequences of the COI and COII genes revealed 71 haplotypes. High levels of genetic diversity but low levels of genetic differentiation were observed among populations of S. tani at five elevations. The degree of genetic diversity, however, was not in accordance with an altitudinal gradient, and a Mantel test indicated that elevation did not have a limiting effect on gene flow. No ancestral haplotype of S. tani was found among the populations. Pupae with unique structural characters at the highest elevation showed a tendency to form their own haplotype cluster, as revealed by the COII gene. Tajima's D, Fu's Fs, and mismatch distribution tests revealed population expansion of S. tani in Cameron Highlands. A strong correlation was found between nucleotide diversity and the levels of dissolved oxygen in the streams where S. tani was collected.
  9. Low VL, Takaoka H, Pramual P, Adler PH, Ya'cob Z, Chen CD, et al.
    J Med Entomol, 2016 07;53(4):972-976.
    PMID: 27208009
    We access the molecular diversity of the black fly Simulium nobile De Mejiere, using the universal cytochrome c oxidase subunit I (COI) barcoding gene, across its distributional range in Southeast Asia. Our phylogenetic analyses recovered three well-supported mitochondrial lineages of S. nobile, suggesting the presence of cryptic species. Lineage A is composed of a population from Sabah, East Malaysia (Borneo); lineage B represents the type population from Java, Indonesia; and lineage C includes populations from the mainland of Southeast Asia (Peninsular Malaysia and Thailand). The genetic variation of lineage C on the mainland is greater than that of lineages A and B on the islands of Borneo and Java. Our study highlights the value of a molecular approach in assessing species status of simuliids in geographically distinct regions.
  10. Low VL, Takaoka H, Pramual P, Adler PH, Ya'cob Z, Huang YT, et al.
    Sci Rep, 2016 Feb 03;6:20346.
    PMID: 26839292 DOI: 10.1038/srep20346
    Perspicuous assessments of taxonomic boundaries and discovery of cryptic taxa are of paramount importance in interpreting ecological and evolutionary phenomena among black flies (Simuliidae) and combating associated vector-borne diseases. Simulium tani Takaoka & Davies is the largest and perhaps the most taxonomically challenging species complex of black flies in the Oriental Region. We use a DNA sequence-based method to delineate currently recognized chromosomal and morphological taxa in the S. tani complex on the Southeast Asian mainland and Taiwan, while elucidating their phylogenetic relationships. A molecular approach using multiple genes, coupled with morphological and chromosomal data, supported recognition of cytoform K and morphoform 'b' as valid species; indicated that S. xuandei, cytoform L, and morphoform 'a' contain possible cryptic species; and suggested that cytoform B is in the early stages of reproductive isolation whereas lineage sorting is incomplete in cytoforms A, C, and G.
  11. Uni S, Fukuda M, Agatsuma T, Bain O, Otsuka Y, Nakatani J, et al.
    Parasitol Int, 2015 Dec;64(6):493-502.
    PMID: 26165205 DOI: 10.1016/j.parint.2015.07.001
    Human zoonotic onchocercosis is caused by Onchocerca dewittei japonica, parasitic in wild boars (Sus scrofa leucomystax) in Japan. Previously, microfilariae longer than those of Onchocerca dewittei japonica were observed in skin snips from wild boars during the study of O. dewittei japonica. Moreover, the third-stage larvae (L3) of these longer microfilariae were obtained from the blackfly Simulium bidentatum after experimental injections. Based on morphometric and molecular studies, similar L3 were found in blackflies during fieldwork in Oita, Japan. However, except for O. dewittei japonica, adult worms of Onchocerca have not been found in wild boars. In this study, we discovered adult females of a novel Onchocerca species in the skin of a wild boar in Oita, and named it Onchocerca takaokai n. sp. Females of this new species had longer microfilariae and differed from O. dewittei japonica in terms of their morphological characteristics and parasitic location. The molecular characteristics of the cytochrome c oxidase subunit 1 and 12S rRNA genes of the new species were identical to those of the longer microfilariae and L3 previously detected, but they differed from those of O. dewittei japonica at the species level. However, both species indicated a close affinity among their congeners and Onchocerca ramachandrini, parasitic in the warthog in Africa, was basal in the Suidae cluster of the 12S rRNA tree.
  12. Lee HY, Loong SK, Ya'cob Z, Low VL, Teoh BT, Ahmad-Nasrah SN, et al.
    Acta Trop, 2021 Jul;219:105923.
    PMID: 33878305 DOI: 10.1016/j.actatropica.2021.105923
    Although the microbiome of blood-feeding insects serves an integral role in host physiology, both beneficial and pathogenic, little is known of the microbial community of black flies. An investigation, therefore, was undertaken to identify culturable bacteria from one of Malaysia's most common black flies, Simulium tani Takaoka and Davies, using 16S rDNA sequencing, and then evaluate the isolates for antibiotic resistance and virulence genes. A total of 20 isolates representing 11 bacterial species in four genera were found. Five isolates showed β-hemolysis on Columbia agar, and virulence genes were found in three of these isolates. Some degree of resistance to six of the 12 tested antibiotics was found among the isolates. The baseline data from this study suggest rich opportunities for comparative studies exploring the diversity and roles of the microbiome of S. tani and other Southeast Asian black flies.
  13. Low VL, Takaoka H, Adler PH, Tan TK, Weng FC, Chen CY, et al.
    Parasitol Res, 2018 Oct;117(10):3137-3143.
    PMID: 30006809 DOI: 10.1007/s00436-018-6011-7
    The Simulium rufibasis subgroup is one of three subgroups of the Simulium (Simulium) tuberosum species-group; it is characterized by a pair of clustered stout hairs on the ventral surface of female abdominal segment 7. A member of the S. rufibasis subgroup in Taiwan was investigated morphologically and genetically using the universal cytochrome c oxidase subunit I (COI) barcoding gene and polytene chromosomal banding pattern. The Taiwanese material is morphologically similar to S. rosliramlii Takaoka & Chen from Vietnam and represents the second species of the S. rufibasis subgroup known from Taiwan. It also represents a novel molecular lineage that is distinct from three other primary lineages identified as S. doipuiense, S. doipuiense/S. rufibasis, and S. weji previously reported from Thailand. The mitochondrial evidence for a distinct lineage in Taiwan is supported by chromosomal analysis, which revealed unique sex chromosomes. For nomenclatural stability, we associate the name S. arisanum Shiraki with the Taiwanese entity. Originally described from females from Taiwan, S. arisanum until now has remained an enigmatic species.
  14. Putt QY, Ya'cob Z, Adler PH, Chen CD, Hew YX, Izwan-Anas N, et al.
    Parasit Vectors, 2023 Aug 07;16(1):266.
    PMID: 37545007 DOI: 10.1186/s13071-023-05892-0
    BACKGROUND: Prompt and precise identification of black flies (Simuliidae) is crucial, given their biting behaviour and significant impact on human and animal health. To address the challenges presented by morphology and chromosomes in black fly taxonomy, along with the limited availability of molecular data pertaining to the black fly fauna in Vietnam, this study employed DNA-based approaches. Specifically, we used mitochondrial and nuclear-encoded genes to distinguish nominal species of black flies in Vietnam.

    METHODS: In this study, 135 mitochondrial cytochrome c oxidase subunit I (COI) sequences were established for 45 species in the genus Simulium in Vietnam, encompassing three subgenera (Gomphostilbia, Nevermannia, and Simulium), with 64 paratypes of 27 species and 16 topotypes of six species. Of these COI sequences, 71, representing 27 species, are reported for the first time.

    RESULTS: Combined with GenBank sequences of specimens from Malaysia, Myanmar, Thailand, and Vietnam, a total of 234 DNA barcodes of 53 nominal species resulted in a 71% success rate for species identification. Species from the non-monophyletic Simulium asakoae, S. feuerborni, S. multistriatum, S. striatum, S. tuberosum, and S. variegatum species groups were associated with ambiguous or incorrect identifications. Pairwise distances, phylogenetics, and species delimitation analyses revealed a high level of cryptic diversity, with discovery of 15 cryptic taxa. The current study also revealed the limited utility of a fast-evolving nuclear gene, big zinc finger (BZF), in discriminating closely related, morphologically similar nominal species of the S. asakoae species group.

    CONCLUSION: This study represents the first comprehensive molecular genetic analysis of the black fly fauna in Vietnam to our knowledge, providing a foundation for future research. DNA barcoding exhibits varying levels of differentiating efficiency across species groups but is valuable in the discovery of cryptic diversity.

  15. Mat Udin AS, Uni S, Rodrigues J, Martin C, Junker K, Agatsuma T, et al.
    PMID: 38193019 DOI: 10.1016/j.crpvbd.2023.100154
    The genus Mansonella Faust, 1929 includes 29 species, mainly parasites of platyrrhine monkeys in South America and anthropoid apes in Africa. In Malaysia, Mansonella (Tupainema) dunni (Mullin & Orihel, 1972) was described from the common treeshrew Tupaia glis Diard & Duvaucel (Scandentia). In a recent classification of the genus Mansonella, seven subgenera were proposed, with M. (Tup.) dunni as a monotypic species in the subgenus Tupainema. In this study, we collected new material of M. (Tup.) dunni from common treeshrews in Peninsular Malaysia and redescribed the morphological features of this species. We found that M. (Tup.) dunni differs from M. (Cutifilaria) perforata Uni et al., 2004 from sika deer Cervus nippon (Cetartiodactyla) in Japan, with regards to morphological features and predilection sites in their respective hosts. Based on multi-locus sequence analyses, we examined the molecular phylogeny of M. (Tup.) dunni and its Wolbachia genotype. Species of the genus Mansonella grouped monophyletically in clade ONC5 and M. (Tup.) dunni was placed in the most derived position within this genus. Mansonella (Tup.) dunni was closely related to M. (M.) ozzardi (Manson, 1897) from humans in Central and South America, and most distant from M. (C.) perforata. The calculated p-distances between the cox1 gene sequences for M. (Tup.) dunni and its congeners were 13.09% for M. (M.) ozzardi and 15.6-16.15% for M. (C.) perforata. The molecular phylogeny of Mansonella spp. thus corroborates their morphological differences. We determined that M. (Tup.) dunni harbours Wolbachia endosymbionts of the supergroup F genotype, in keeping with all other Mansonella species screened to date.
  16. Hew YX, Ya'cob Z, Chen CD, Lau KW, Sofian-Azirun M, Muhammad-Rasul AH, et al.
    Acta Trop, 2024 Feb;250:107097.
    PMID: 38097150 DOI: 10.1016/j.actatropica.2023.107097
    Mitochondrial cytochrome c oxidase subunit I (COI) sequences were utilized to infer the population genetic structure of Simulium (Gomphostilbia) atratum De Meijere, an endemic simulid species to Indonesia. Both median-joining haplotype network and maximum-likelihood tree revealed two genetic lineages (A and B) within the species, with an overlap distribution in Lombok, which is situated along Wallace's line. Genetic differentiation and gene flow with varying frequencies (FST = 0.02-0.967; Nm = 0.01-10.58) were observed between populations of S. (G.) atratum, of which population pairs of different lineages showed high genetic differentiation. Notably, the high genetic distance of up to 5.92 % observed within S. (G.) atratum in Lombok was attributed to the existence of two genetically distinct lineages. The co-occurrence of distinct lineages in Lombok indicated that Wallace's line did not act as faunistic border for S. (G.) atratum in the present study. Moreover, both lineages also exhibited unimodal distributions and negative values of neutrality tests, suggesting a pattern of population expansion. The expansion and divergence time estimation suggested that the two lineages of S. (G.) atratum diverged and expanded during the Pleistocene era in Indonesia.
  17. Uni S, Bain O, Suzuki K, Agatsuma T, Harada M, Motokawa M, et al.
    Parasitol Int, 2013 Feb;62(1):14-23.
    PMID: 22926421 DOI: 10.1016/j.parint.2012.08.004
    Acanthocheilonema delicata n. sp. (Filarioidea: Onchocercidae: Onchocercinae) is described based on adult filarioids and microfilariae obtained from subcutaneous connective tissues and skin, respectively, of Japanese badgers (Meles anakuma) in Wakayama Prefecture, Japan. No endemic species of the genus had been found in Japan. Recently, some filarioids (e.g., Acanthocheilonema reconditum, Dirofilaria spp., and Onchocerca spp.) have come to light as causative agents of zoonosis worldwide. The new species was readily distinguished from its congeners by morphologic characteristics such as body length, body width, esophagus length, spicule length, and the length of microfilariae. Based on the molecular data of the mitochondrial cytochrome c oxidase subunit 1 (cox1) gene, A. delicata n. sp. was included in the clade of the genus Acanthocheilonema but differed from two other congeneric species available for study, A. viteae and A. reconditum. Acanthocheilonema delicata n. sp. did not harbor Wolbachia. It is likely that the fauna of filarioids from mammals on the Japanese islands is characterized by a high level of endemicity.
  18. Low VL, Adler PH, Sofian-Azirun M, Srisuka W, Saeung A, Huang YT, et al.
    Parasit Vectors, 2015 May 29;8:297.
    PMID: 26022092 DOI: 10.1186/s13071-015-0911-5
    BACKGROUND: Allopatric populations present challenges for biologists working with vectors. We suggest that conspecificity can be concluded in these cases when data from four character sets-chromosomal, ecological, molecular, and morphological-express variation no greater between the allopatric populations than between corresponding sympatric populations. We use this approach to test the conspecificity of Simulium nodosum Puri on the mainland of Southeast Asia and Simulium shirakii Kono & Takahasi in Taiwan. The validity of these two putative species has long been disputed given that they are morphologically indistinguishable.

    FINDINGS: The mitochondria-encoded cytochrome c oxidase subunit I (COI), 12S rRNA, and 16S rRNA genes and the nuclear-encoded 28S rRNA gene support the conspecific status of S. nodosum from Myanmar, Thailand, and Vietnam and S. shirakii from Taiwan; 0 to 0.19 % genetic differences between the two taxa suggest intraspecific polymorphism. The banding patterns of the polytene chromosomes of the insular Taiwanese population of S. shirakii and mainland populations of S. nodosum are congruent. The overlapping ranges of habitat characteristics and hosts of S. nodosum and S. shirakii corroborate the chromosomal, molecular, and morphological data.

    CONCLUSIONS: Four independent sources of evidence (chromosomes, DNA, ecology, and morphology) support the conspecificity of S. nodosum and S. shirakii. We, therefore, synonymize S. shirakii with S. nodosum. This study provides a guide for applying the procedure of testing conspecificity to other sets of allopatric vectors.

  19. Fukuda M, Uni S, Otsuka Y, Eshita Y, Nakatani J, Ihara K, et al.
    Parasitol Int, 2015 Dec;64(6):519-21.
    PMID: 26209456 DOI: 10.1016/j.parint.2015.07.006
    A case of zoonotic onchocercosis has been found in a resident who lived in Iizuka City, Fukuoka Prefecture, Japan for some time. A 24-year-old male developed a painful nodule on the middle finger of his right hand. The nodule was surgically removed from the vagina fibrosa tendinis of the finger at Beppu Medical Center, Beppu City, Oita Prefecture in 2012. The causative agent was identified as a female Onchocerca dewittei japonica based on its histopathological characteristics. The identity of the filarioid has been confirmed by sequencing the cox1 gene. The present study indicates that the zoonotic onchocercosis caused by O. dewittei japonica has been concentrated in northeast Kyushu.
  20. Takaoka H, Low VL, Tan TK, Ya'cob Z, Sofian-Azirun M, Dhang Chen C, et al.
    J Med Entomol, 2019 02 25;56(2):432-440.
    PMID: 30597034 DOI: 10.1093/jme/tjy222
    Simulium (Gomphostilbia) yvonneae sp. nov. is described based on adults, pupae, and mature larvae from Vietnam. This new species belongs to the Simulium duolongum subgroup in the S. batoense species-group of the subgenus Gomphostilbia Enderlein. It is distinguished by having a relatively larger number of male upper-eye facets in 16 vertical columns and 16 horizontal rows and a pupal gill with eight filaments arranged as 3+(1+2)+2 from dorsal to ventral, of which two filaments of the ventral pair are 1.8 times as long as the longest filament of the middle and dorsal triplets. Morphological comparisons are made to distinguish this new species from all 22 related species. The genetic distinctiveness of this new species in the S. duolongum subgroup is also presented based on the DNA barcoding COI gene.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links