Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Ng KT, Oong XY, Lim SH, Chook JB, Takebe Y, Chan YF, et al.
    Clin Infect Dis, 2018 07 02;67(2):261-268.
    PMID: 29385423 DOI: 10.1093/cid/ciy063
    Background: Rhinovirus (RV) is one of the main viral etiologic agents of acute respiratory illnesses. Despite the heightened disease burden caused by RV, the viral factors that increase the severity of RV infection, the transmission pattern, and seasonality of RV infections remain unclear.

    Methods: An observational study was conducted among 3935 patients presenting with acute upper respiratory illnesses in the ambulatory settings between 2012 and 2014.

    Results: The VP4/VP2 gene was genotyped from all 976 RV-positive specimens, where the predominance of RV-A (49%) was observed, followed by RV-C (38%) and RV-B (13%). A significant regression in median nasopharyngeal viral load (VL) (P < .001) was observed, from 883 viral copies/µL at 1-2 days after symptom onset to 312 viral copies/µL at 3-4 days and 158 viral copies/µL at 5-7 days, before declining to 35 viral copies/µL at ≥8 days. In comparison with RV-A (median VL, 217 copies/µL) and RV-B (median VL, 275 copies/µL), RV-C-infected subjects produced higher VL (505 copies/µL; P < .001). Importantly, higher RV VL (median, 348 copies/µL) was associated with more severe respiratory symptoms (Total Symptom Severity Score ≥17, P = .017). A total of 83 phylogenetic-based transmission clusters were identified in the population. It was observed that the relative humidity was the strongest environmental predictor of RV seasonality in the tropical climate.

    Conclusions: Our findings underline the role of VL in increasing disease severity attributed to RV-C infection, and unravel the factors that fuel the population transmission dynamics of RV.

  2. Weniger BG, Takebe Y, Ou CY, Yamazaki S
    AIDS, 1994;8 Suppl 2:S13-28.
    PMID: 7857556
  3. Tee KK, Chan PQ, Loh AM, Singh S, Teo CH, Iyadorai T, et al.
    J Med Virol, 2023 Feb;95(2):e28520.
    PMID: 36691929 DOI: 10.1002/jmv.28520
    Pteropine orthoreovirus (PRV), an emerging bat-borne virus, has been linked to cases of acute respiratory infections (ARI) in humans. The prevalence, epidemiology and genomic diversity of PRV among ARI of unknown origin were studied. Among 632 urban outpatients tested negative for all known respiratory viruses, 2.2% were PRV-positive. Patients mainly presented with moderate to severe forms of cough, sore throat and muscle ache, but rarely with fever. Phylogenetic analysis revealed that over 90% of patients infected with the Melaka virus (MelV)-like PRV, while one patient infected with the Pulau virus previously found only in fruit bats. Human oral keratinocytes and nasopharyngeal epithelial cells were susceptible to clinical isolates of PRV, including the newly isolated MelV-like 12MYKLU1034. Whole genome sequence of 12MYKLU1034 using Nanopore technique revealed a novel reassortant strain. Evolutionary analysis of the global PRV strains suggests the continuous evolution of PRV through genetic reassortment among PRV strains circulating in human, bats and non-human primate hosts, creating a spectrum of reassortant lineages with complex evolutionary characteristics. In summary, the role of PRV as a common etiologic agent of ARI is evident. Continuous monitoring of PRV prevalence, pathogenicity and diversity among human and animal hosts is important to trace the emergence of novel reassortants.
  4. Takebe Y, Tsujigiwa H, Katase N, Siar CH, Takabatake K, Fujii M, et al.
    J Oral Pathol Med, 2017 Jan;46(1):67-75.
    PMID: 27327904 DOI: 10.1111/jop.12467
    BACKGROUND: Tumor parenchyma-stromal interactions affect the properties of tumors and their dynamics. Our group previously showed that secreted frizzled related protein (sFRP)-2 impairs bone formation and promotes bone invasion in ameloblastoma. However, the effects of the secreted growth factors CCN2, TGF-β, and BMP4 on stromal tissues in ameloblastoma remain unclear.

    MATERIALS AND RESULTS: Thirty-five paraffin-embedded ameloblastoma cases, ameloblastoma-derived cell lines (AM-1), and primary cultures of ameloblastoma stromal fibroblasts (ASF) were used. Immunohistochemistry, MTT assay, Western blotting, and RT-PCR were performed on these samples. Parenchyma-stromal CCN2 overexpression correlated significantly with fibrous-type stroma, but not with myxoid-type stroma, suggesting a role of CCN2 in fibrosis (P < 0.05). Recombinant CCN2 induction of enhanced ASF proliferation in AM-1 medium supports this view. Conversely, BMP4 and TGF-β were expressed in myxoid-type fibroblasts, but little expression was found in parenchyma. RANKL-positive and CD68-positive stromal cell populations were significantly greater in myxoid-type tumor areas than in fibrous-type tumor areas, while a higher Ki-67 labeling index was recorded in ameloblastoma with fibrous-type stroma. These data suggest that stromal properties influence bone resorption-related activities and growth rates, respectively.

    CONCLUSIONS: These results suggest that the effects of secreted growth factors are governed by ameloblastoma parenchyma-stromal interactions. CCN2 promotes fibrogenesis independent of TGF-β signaling. Absence of CCN2 expression is associated with a phenotypic switch to a myxoid-type microenvironment that is conducive for TGF-β/BMP4 signaling to promote osteoclastogenesis.

  5. Al-Khannaq MN, Ng KT, Oong XY, Pang YK, Takebe Y, Chook JB, et al.
    Virol J, 2016 Feb 25;13:33.
    PMID: 26916286 DOI: 10.1186/s12985-016-0488-4
    BACKGROUND: Despite the worldwide circulation of human coronavirus OC43 (HCoV-OC43) and HKU1 (HCoV-HKU1), data on their molecular epidemiology and evolutionary dynamics in the tropical Southeast Asia region is lacking.
    METHODS: The study aimed to investigate the genetic diversity, temporal distribution, population history and clinical symptoms of betacoronavirus infections in Kuala Lumpur, Malaysia between 2012 and 2013. A total of 2,060 adults presented with acute respiratory symptoms were screened for the presence of betacoronaviruses using multiplex PCR. The spike glycoprotein, nucleocapsid and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference.
    RESULTS: A total of 48/2060 (2.4 %) specimens were tested positive for HCoV-OC43 (1.3 %) and HCoV-HKU1 (1.1 %). Both HCoV-OC43 and HCoV-HKU1 were co-circulating throughout the year, with the lowest detection rates reported in the October-January period. Phylogenetic analysis of the spike gene showed that the majority of HCoV-OC43 isolates were grouped into two previously undefined genotypes, provisionally assigned as novel lineage 1 and novel lineage 2. Sign of natural recombination was observed in these potentially novel lineages. Location mapping showed that the novel lineage 1 is currently circulating in Malaysia, Thailand, Japan and China, while novel lineage 2 can be found in Malaysia and China. Molecular dating showed the origin of HCoV-OC43 around late 1950s, before it diverged into genotypes A (1960s), B (1990s), and other genotypes (2000s). Phylogenetic analysis revealed that 27.3 % of the HCoV-HKU1 strains belong to genotype A while 72.7 % belongs to genotype B. The tree root of HCoV-HKU1 was similar to that of HCoV-OC43, with the tMRCA of genotypes A and B estimated around the 1990s and 2000s, respectively. Correlation of HCoV-OC43 and HCoV-HKU1 with the severity of respiratory symptoms was not observed.
    CONCLUSIONS: The present study reported the molecular complexity and evolutionary dynamics of human betacoronaviruses among adults with acute respiratory symptoms in a tropical country. Two novel HCoV-OC43 genetic lineages were identified, warranting further investigation on their genotypic and phenotypic characteristics.
    Study site: Primary Care Clinic, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
  6. Chow WZ, Ong LY, Razak SH, Lee YM, Ng KT, Yong YK, et al.
    PLoS One, 2013;8(5):e62560.
    PMID: 23667490 DOI: 10.1371/journal.pone.0062560
    Since the discovery of HIV-1 circulating recombinant form (CRF) 33_01B in Malaysia in the early 2000 s, continuous genetic diversification and active recombination involving CRF33_01B and other circulating genotypes in the region including CRF01_AE and subtype B' of Thai origin, have led to the emergence of novel CRFs and unique recombinant forms. The history and magnitude of CRF33_01B transmission among various risk groups including people who inject drugs (PWID) however have not been investigated despite the high epidemiological impact of CRF33_01B in the region. We update the most recent molecular epidemiology of HIV-1 among PWIDs recruited in Malaysia between 2010 and 2011 by population sequencing and phylogenetic analysis of 128 gag-pol sequences. HIV-1 CRF33_01B was circulating among 71% of PWIDs whilst a lower prevalence of other previously dominant HIV-1 genotypes [subtype B' (11%) and CRF01_AE (5%)] and CRF01_AE/B' unique recombinants (13%) were detected, indicating a significant shift in genotype replacement in this population. Three clusters of CRF01_AE/B' recombinants displaying divergent yet phylogenetically-related mosaic genomes to CRF33_01B were identified and characterized, suggestive of an abrupt emergence of multiple novel CRF clades. Using rigorous maximum likelihood approach and the Bayesian Markov chain Monte Carlo (MCMC) sampling of CRF33_01Bpol sequences to elucidate the past population dynamics, we found that the founder lineages of CRF33_01B were likely to have first emerged among PWIDs in the early 1990 s before spreading exponentially to various high and low-risk populations (including children who acquired infections from their mothers) and later on became endemic around the early 2000 s. Taken together, our findings provide notable genetic evidence indicating the widespread expansion of CRF33_01B among PWIDs and into the general population. The emergence of numerous previously unknown recombinant clades highlights the escalating genetic complexity of HIV-1 in the Southeast Asian region.
  7. Chook JB, Ong LY, Takebe Y, Chan KG, Choo M, Kamarulzaman A, et al.
    Am J Trop Med Hyg, 2015 Mar;92(3):507-512.
    PMID: 25535315 DOI: 10.4269/ajtmh.14-0681
    A molecular genotyping assay for human immunodeficiency virus type 1 (HIV-1) circulating in Southeast Asia is difficult to design because of the high level of genetic diversity. We developed a multiplex real-time polymerase chain reaction (PCR) assay to detect subtype B, CRF01_AE, CRF33_01B, and three newly described circulating recombinant forms, (CRFs) (CRF53_01B, CRF54_01B, and CRF58_01B). A total of 785 reference genomes were used for subtype-specific primers and TaqMan probes design targeting the gag, pol, and env genes. The performance of this assay was compared and evaluated with direct sequencing and phylogenetic analysis. A total of 180 HIV-infected subjects from Kuala Lumpur, Malaysia were screened and 171 samples were successfully genotyped, in agreement with the phylogenetic data. The HIV-1 genotype distribution was as follows: subtype B (16.7%); CRF01_AE (52.8%); CRF33_01B (24.4%); CRF53_01B (1.1%); CRF54_01B (0.6%); and CRF01_AE/B unique recombinant forms (4.4%). The overall accuracy of the genotyping assay was over 95.0%, in which the sensitivities for subtype B, CRF01_AE, and CRF33_01B detection were 100%, 100%, and 97.7%, respectively. The specificity of genotyping was 100%, inter-subtype specificities were > 95% and the limit of detection of 10(3) copies/mL for plasma. The newly developed real-time PCR assay offers a rapid and cost-effective alternative for large-scale molecular epidemiological surveillance for HIV-1.
  8. Tee KK, Kusagawa S, Li XJ, Onogi N, Isogai M, Hase S, et al.
    PLoS One, 2009;4(8):e6666.
    PMID: 19688091 DOI: 10.1371/journal.pone.0006666
    A growing number of emerging HIV-1 recombinants classified as circulating recombinant forms (CRFs) have been identified in Southeast Asia in recent years, establishing a molecular diversity of increasing complexity in the region. Here, we constructed a replication-competent HIV-1 clone for CRF33_01B (designated p05MYKL045.1), a newly identified recombinant comprised of CRF01_AE and subtype B. p05MYKL045.1 was reconstituted by cloning of the near full-length HIV-1 sequence from a newly-diagnosed individual presumably infected heterosexually in Kuala Lumpur, Malaysia. The chimeric clone, which contains the 5' LTR (long terminal repeat) region of p93JP-NH1 (a previously isolated CRF01_AE infectious clone), showed robust viral replication in the human peripheral blood mononuclear cells. This clone demonstrated robust viral propagation and profound syncytium formation in CD4+, CXCR4-expressing human glioma NP-2 cells, indicating that p05MYKL045.1 is a CXCR4-using virus. Viral propagation, however, was not detected in various human T cell lines including MT-2, M8166, Sup-T1, H9, Jurkat, Molt-4 and PM1. p05MYKL045.1 appears to proliferate only in restricted host range, suggesting that unknown viral and/or cellular host factors may play a role in viral infectivity and replication in human T cell lines. Availability of a CRF33_01B molecular clone will be useful in facilitating the development of vaccine candidates that match the HIV-1 strains circulating in Southeast Asia.
  9. Chow WZ, Lim SH, Ong LY, Yong YK, Takebe Y, Kamarulzaman A, et al.
    PLoS One, 2015;10(9):e0137281.
    PMID: 26335136 DOI: 10.1371/journal.pone.0137281
    Human immunodeficiency virus type 1 (HIV-1) subtypes have been shown to differ in the rate of clinical progression. We studied the association between HIV-1 subtypes and the rate of CD4+ T-cell recovery in a longitudinal cohort of patients on combination antiretroviral therapy (cART). We studied 103 patients infected with CRF01_AE (69%) and subtype B (31%) who initiated cART between 2006 and 2013. Demographic data, CD4+ T-cell counts and HIV-1 viral load were abstracted from patient medical charts. Kaplan-Meier was used to estimate the time to CD4+ T-cell count increase to ≥350 between subtypes and effects of covariates were analysed using Cox proportional hazards. An 87% of the study population were male adults (mean age of 38.7 years old). Baseline CD4+ T-cell counts and viral loads, age at cART initiation, sex, ethnicity and co-infection did not differ significantly between subtypes. A shorter median time for CD4+ T-cell count increase to ≥350 cells/μL was observed for CRF01_AE (546 days; 95% confidence interval [CI], 186-906 days; P = .502) compared to subtype B (987 days; 95% CI, 894-1079 days). In multivariate analysis, female sex was significantly associated with a 2.7 times higher chance of achieving CD4+ T-cell recovery (adjusted hazard ratio [HR], 2.75; 95% CI, 1.21-6.22; P = .025) and both baseline CD4+ T-cell count (P = .001) and viral load (P = .001) were important predictors for CD4+ T-cell recovery. Immunological recovery correlated significantly with female sex, baseline CD4+ T-cell counts and viral load but not subtype.
  10. Li Y, Tee KK, Liao H, Hase S, Uenishi R, Li XJ, et al.
    J Acquir Immune Defic Syndr, 2010 Jun;54(2):129-36.
    PMID: 20386110 DOI: 10.1097/QAI.0b013e3181d82ce5
    A molecular epidemiological investigation conducted among injecting drug users in eastern Peninsular Malaysia in 2007 identified a cluster of sequences (n = 3) located outside any known HIV-1 genotype. Analyses of near full-length nucleotide sequences of these strains from individuals with no recognizable linkage revealed that they have an identical subtype structure comprised of CRF01_AE and subtype B', distinct from any known circulating recombinant forms (CRFs). This novel CRF, designated CRF48_01B, is closely related to CRF33_01B, previously identified in Kuala Lumpur. Phylogenetic analysis of multiple CRF48_01B genome regions showed that CRF48_01B forms a monophyletic cluster within CRF33_01B, suggesting that this new recombinant is very likely a descendant of CRF33_01B. CRF48_01B thus represents one of the first examples of a "second-generation" CRF, generated by additional crossover with pre-existing CRFs. Corroborating these results, Bayesian molecular clock analyses indicated that CRF48_01B emerged in approximately 2001, approximately approximately 8 years after the emergence of CRF33_01B.
  11. Tee KK, Li XJ, Nohtomi K, Ng KP, Kamarulzaman A, Takebe Y
    J Acquir Immune Defic Syndr, 2006 Dec 15;43(5):523-9.
    PMID: 17031320
    A molecular epidemiological investigation was conducted among various risk populations (n = 184) in Kuala Lumpur, Malaysia, in 2003 to 2005, on the basis of nucleotide sequences of protease and reverse transcriptase regions. In addition to circulating HIV-1 strains, including CRF01_AE (57.1%), subtype B (20.1%), and subtype C (0.5%), we detected a candidate with a new circulating recombinant form (CRF). We determined four near-full-length nucleotide sequences with identical subtype structure from epidemiologically unlinked individuals of different risk and ethnic groups. In this chimera, two short subtype B segments were inserted into the gag-RT region in a backbone of CRF01_AE. The recombinant structure was distinct from previously identified CRF15_01B in Thailand. In agreement with the current HIV nomenclature system, this constitutes a novel CRF (CRF33_01B). The overall prevalence of CRF33_01B is 19.0% (35/184). Although the prevalence of CRF33_01B is particularly high among injecting drug users (42.0%, 21/50), it is also detected in a substantial proportion of homo-/bisexual males (18.8%, 3/16) and heterosexuals (9.8%, 9/92). Moreover, unique recombinant forms composed of CRF01_AE and subtype B that have a significant structural relationship with CRF33_01B were detected in 1.6% (3/184) of study subjects, suggesting an ongoing recombination process in Malaysia. This new CRF seems to be bridging viral transmission between different risk populations in this country.
  12. Oong XY, Ng KT, Takebe Y, Ng LJ, Chan KG, Chook JB, et al.
    Emerg Microbes Infect, 2017 Jan 04;6(1):e3.
    PMID: 28050020 DOI: 10.1038/emi.2016.132
    Human coronavirus OC43 (HCoV-OC43) is commonly associated with respiratory tract infections in humans, with five genetically distinct genotypes (A to E) described so far. In this study, we obtained the full-length genomes of HCoV-OC43 strains from two previously unrecognized lineages identified among patients presenting with severe upper respiratory tract symptoms in a cross-sectional molecular surveillance study in Kuala Lumpur, Malaysia, between 2012 and 2013. Phylogenetic, recombination and comparative genomic analyses revealed two distinct clusters diverging from a genotype D-like common ancestor through recombination with a putative genotype A-like lineage in the non-structural protein (nsp) 10 gene. Signature amino acid substitutions and a glycine residue insertion at the N-terminal domain of the S1 subunit of the spike gene, among others, exhibited further distinction in a recombination pattern, to which these clusters were classified as genotypes F and G. The phylogeographic mapping of the global spike gene indicated that the genetically similar HCoV-OC43 genotypes F and G strains were potentially circulating in China, Japan, Thailand and Europe as early as the late 2000s. The transmission network construction based on the TN93 pairwise genetic distance revealed the emergence and persistence of multiple sub-epidemic clusters of the highly prevalent genotype D and its descendant genotypes F and G, which contributed to the spread of HCoV-OC43 in the region. Finally, a more consistent nomenclature system for non-recombinant and recombinant HCoV-OC43 lineages is proposed, taking into account genetic recombination as an important feature in HCoV evolution and classification.
  13. Ng KT, Takebe Y, Kamarulzaman A, Tee KK
    Arch Virol, 2021 Jan;166(1):225-229.
    PMID: 33084935 DOI: 10.1007/s00705-020-04855-5
    Genome sequences of members of a potential fourth rhinovirus (RV) species, provisionally denoted as rhinovirus A clade D, from patients with acute respiratory infection were determined. Bayesian coalescent analysis estimated that clade D emerged around the 1940s and diverged further around 2006-2007 into two distinctive sublineages (RV-A8-like and RV-A45-like) that harbored unique "clade-defining" substitutions. Similarity plots and bootscan mapping revealed a recombination breakpoint located in the 5'-UTR region of members of the RV-A8-like sublineage. Phylogenetic reconstruction revealed the distribution of clade D viruses in the Asia Pacific region and in Europe, underlining its worldwide distribution.
  14. Chow WZ, Al-Darraji H, Lee YM, Takebe Y, Kamarulzaman A, Tee KK
    J Virol, 2012 Oct;86(20):11398-9.
    PMID: 22997419
    A novel HIV-1 genotype designated CRF53_01B was recently characterized from three epidemiologically unrelated persons in Malaysia. Here we announced three recently isolated full-length genomes of CRF53_01B, which is likely to be phylogenetically linked to CRF33_01B, circulating widely in Southeast Asia. The genome sequences may contribute to HIV-1 molecular surveillance and future vaccine development in the region.
  15. Ng KT, Lee YM, Al-Darraji HA, Xia X, Takebe Y, Chan KG, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23409272 DOI: 10.1128/genomeA.00168-12
    We report the full genome sequence of hepatitis C virus (HCV) subtype 6n from Kuala Lumpur, Malaysia. Phylogenetic analysis of the isolate 10MYKJ032 suggests that Southeast Asia might be the origin for the HCV subtype 6n and highlights the possible spread of this lineage from Southeast Asia to other regions.
  16. Ng KT, Ong LY, Takebe Y, Kamarulzaman A, Tee KK
    J Virol, 2012 Oct;86(20):11405-6.
    PMID: 22997423
    We report here the first novel HIV-1 circulating recombinant form (CRF) 54_01B (CRF54_01B) isolated from three epidemiologically unlinked subjects of different risk groups in Malaysia. These recently sampled recombinants showed a complex genome organization composed of parental subtype B' and CRF01_AE, with identical recombination breakpoints observed in the gag, pol, and vif genes. Such a discovery highlights the ongoing active generation and spread of intersubtype recombinants involving the subtype B' and CRF01_AE lineages and indicates the potential of the new CRF in bridging HIV-1 transmission among different risk groups in Southeast Asia.
  17. Tee KK, Bon AH, Chow WZ, Ng KT, Chan KG, Kamarulzaman A, et al.
    Genome Announc, 2017 Jun 29;5(26).
    PMID: 28663289 DOI: 10.1128/genomeA.00459-17
    We report here the first HIV-1 circulating recombinant form (CRF) complex identified among the blood donors in Malaysia. The CRF77_cpx mosaic genome consists of parental subtypes B', C, and CRF01_AE and is structurally related to CRF07_BC. The identification of CRF77_cpx underlines the genetic complexity and mobility of HIV-1 among the blood donors.
  18. Chow WZ, Nizam S, Ong LY, Ng KT, Chan KG, Takebe Y, et al.
    Genome Announc, 2014;2(2).
    PMID: 24675847 DOI: 10.1128/genomeA.00139-14
    A complex HIV-1 unique recombinant form involving subtypes CRF01_AE, B, and B' was recently identified from an injecting drug user in Malaysia. A total of 13 recombination breakpoints were mapped across the near-full-length genome of isolate 10MYPR226, indicating the increasingly diverse molecular epidemiology and frequent linkage among various high-risk groups.
  19. Cheong HT, Ng KT, Ong LY, Takebe Y, Chan KG, Koh C, et al.
    Genome Announc, 2015;3(6).
    PMID: 26543107 DOI: 10.1128/genomeA.01220-15
    Three strains of HIV-1 unique recombinant forms (URFs) descended from subtypes B, B', and CRF01_AE were identified among people who inject drugs in Kuala Lumpur, Malaysia. These three URFs shared a common recombination breakpoint in the reverse transcriptase region, indicating frequent linkage within the drug-injecting networks in Malaysia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links