Displaying publications 1 - 20 of 203 in total

Abstract:
Sort:
  1. Shi J, Zhao J, Zhang Y, Wang Y, Tan CP, Xu YJ, et al.
    Anal Chem, 2023 Dec 26;95(51):18793-18802.
    PMID: 38095040 DOI: 10.1021/acs.analchem.3c03785
    Metabolomics and proteomics offer significant advantages in understanding biological mechanisms at two hierarchical levels. However, conventional single omics analysis faces challenges due to the high demand for specimens and the complexity of intrinsic associations. To obtain comprehensive and accurate system biological information, we developed a multiomics analytical method called Windows Scanning Multiomics (WSM). In this method, we performed simultaneous extraction of metabolites and proteins from the same sample, resulting in a 10% increase in the coverage of the identified biomolecules. Both metabolomics and proteomics analyses were conducted by using ultrahigh-performance liquid chromatography mass spectrometry (UPLC-MS), eliminating the need for instrument conversions. Additionally, we designed an R-based program (WSM.R) to integrate mathematical and biological correlations between metabolites and proteins into a correlation network. The network created from simultaneously extracted biomolecules was more focused and comprehensive compared to those from separate extractions. Notably, we excluded six pairs of false-positive relationships between metabolites and proteins in the network established using simultaneously extracted biomolecules. In conclusion, this study introduces a novel approach for multiomics analysis and data processing that greatly aids in bioinformation mining from multiomics results. This method is poised to play an indispensable role in systems biology research.
  2. Liu Y, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Chem, 2022 Mar 15;372:131305.
    PMID: 34653777 DOI: 10.1016/j.foodchem.2021.131305
    High internal phase emulsions (HIPEs) show promising application in food and cosmetic industries. In this work, diacylglycerol (DAG) was applied to fabricate water-in-oil (W/O) HIPEs. DAG-based emulsion can hold 60% water and the emulsion rigidity increased with water content, indicating the water droplets acted as "active fillers". Stable HIPE with 80% water fraction was formed through the combination of 6 wt% DAG with 1 wt% polyglycerol polyricinoleate (PGPR). The addition of 1 w% kappa (κ)-carrageenan and 0.5 M NaCl greatly reduced the droplet size and enhanced emulsion rigidity, and the interfacial tension of the internal phase was reduced. Benefiting from the Pickering crystals-stabilized interface by DAG as revealed by the microscopy and enhanced elastic modulus of emulsions with the gelation agents, the HIPEs demonstrated good retaining ability for anthocyanin and β-carotene. This study provides insights for the development of W/O HIPEs to fabricate low-calories margarines, spread or cosmetic creams.
  3. Xu YJ, Jiang F, Song J, Yang X, Shu N, Yuan L, et al.
    J Agric Food Chem, 2020 Aug 19;68(33):8847-8854.
    PMID: 32806128 DOI: 10.1021/acs.jafc.0c03539
    The thermal pretreatment of oilseed prior to oil extraction could increase the oil yield and improve the oil quality. Phenolic compounds are important antioxidants in rapeseed oil. In this study, we investigated the impact of thermal pretreatment method on the rapeseed oil based on phenolic compound levels. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) analysis showed that the phenolic compound contents in the microwave-pretreated oil were higher than those in the oven- and infrared-treated oils. Sinapic acid (SA) and canolol (CA), which are the top two phenolic compounds in rapeseed oil, exerted well 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity with IC50 values of 8.45 and 8.80 μmol/L. The cell experiment uncovered that SA and CA have significant biological activities related to rapeseed oil quality, including increase of antioxidant enzymes superoxide dismutase (SOD), alleviation of reactive oxygen species (ROS), and cytotoxicity of HepG2 cells after the intake of excessive oleic acid. Further investigation indicated that SA and CA reduced cell apoptosis rate through Bax-Bcl-2-caspase-3 and p53-Bax-Bcl-2-caspase-3, respectively. Taken together, our findings suggest that microwave pretreatment is the best method to improve the content of phenolic compounds in rapeseed oil compared with oven and infrared pretreatments.
  4. Ho SK, Tan CP, Thoo YY, Abas F, Ho CW
    Molecules, 2014 Aug 19;19(8):12640-59.
    PMID: 25153876 DOI: 10.3390/molecules190812640
    Ultrasound-assisted extraction (UAE) with ethanol was used to extract the compounds responsible for the antioxidant activities of Misai Kucing (Orthosiphon stamineus). Response surface methodology (RSM) was used to optimize four independent variables: ethanol concentration (%), amplitude (%), duty cycle (W/s) and extraction time (min). Antioxidant compounds were determined by total phenolic content and total flavonoid content to be 1.4 g gallic acid equivalent/100 g DW and 45 g catechin equivalent/100 g DW, respectively. Antioxidant activities were evaluated using the 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) radical scavenging capacity assay and the 2,2-diphenyl-1-picrylhydrazyl (DPPH•) radical scavenging capacity assay to be 1,961.3 and 2,423.3 µmol Trolox Equivalent Antioxidant Capacity (TEAC)/100 g DW, respectively. Based on the optimal conditions, experimental values were reported to be close to the predicted value by RSM modeling (p>0.05), indicating the suitability of UAE for extracting the antioxidants of Misai Kucing. Rosmarinic acid, kaempferol-rutinoside and sinesetine were identified by high performance liquid chromatography-mass spectrometry.
  5. Samaram S, Mirhosseini H, Tan CP, Ghazali HM
    Molecules, 2013 Oct 10;18(10):12474-87.
    PMID: 24152670 DOI: 10.3390/molecules181012474
    The main objective of the current work was to evaluate the suitability of ultrasound-assisted extraction (UAE) for the recovery of oil from papaya seed as compared to conventional extraction techniques (i.e., Soxhlet extraction (SXE) and solvent extraction (SE)). In the present study, the recovery yield, fatty acid composition and triacylglycerol profile of papaya seed oil obtained from different extraction methods and conditions were compared. Results indicated that both solvent extraction (SE, 12 h/25 °C) and ultrasound-assisted extraction (UAE) methods recovered relatively high yields (79.1% and 76.1% of total oil content, respectively). Analysis of fatty acid composition revealed that the predominant fatty acids in papaya seed oil were oleic (18:1, 70.5%-74.7%), palmitic (16:0, 14.9%-17.9%), stearic (18:0, 4.50%-5.25%), and linoleic acid (18:2, 3.63%-4.6%). Moreover, the most abundant triacylglycerols of papaya seed oil were triolein (OOO), palmitoyl diolein (POO) and stearoyl oleoyl linolein (SOL). In this study, ultrasound-assisted extraction (UAE) significantly (p < 0.05) influenced the triacylglycerol profile of papaya seed oil, but no significant differences were observed in the fatty acid composition of papaya seed oil extracted by different extraction methods (SXE, SE and UAE) and conditions.
  6. Thayan R, Huat TL, See LL, Tan CP, Khairullah NS, Yusof R, et al.
    Trans R Soc Trop Med Hyg, 2009 Apr;103(4):413-9.
    PMID: 19203772 DOI: 10.1016/j.trstmh.2008.12.018
    Dengue infection is a major public health problem affecting millions of people living in tropical countries. With no suitable vaccines and specific antiviral drugs, treatment for dengue is usually symptomatic and supportive. Early diagnosis and recognition of severe disease is therefore crucial for better management of the patient. Two-dimension electrophoresis was used to identify disease-associated proteins that can be used for diagnosis and as drug targets for treatment. Two markers, identified by mass spectrometry analysis as alpha1-antitrypsin and NS1 proteins were found to be upregulated in dengue fever (DF; n=10) and dengue haemorrhagic fever (DHF; n=10) patients compared with healthy individuals (n=8). Both alpha1-antitrypsin and NS1 proteins were overexpressed two-fold in DHF patients compared with DF patients. Our study suggests that alpha1-antitrypsin and NS1 protein could be used as biomarkers as early indicators of DHF risk among patients with suspected dengue infection.
  7. Tan CP, Rokiah P
    Med J Malaysia, 2005 Aug;60 Suppl D:48-53.
    PMID: 16315624
    Formative and summative student assessment has always been of concern to medical teachers, and this is especially important at the level of graduating doctors. The effectiveness and comprehensiveness of the clinical training provided is tested with the use of clinical cases, either with real patients who have genuine medical conditions, or with the use of standardised patients who are trained to simulate accurately actual patients. The Objective Structured Clinical Examination (OSCE) is one method of assessing the adequacy of clinical skills of medical students, and their level of competence. It can be used to test a variety of skills such as history taking (communication and interpersonal skills) and performing aspects of physical examination, undertaking emergency procedures, and interpreting investigational data. It can also be used to ensure an adequate depth and breadth of coverage of clinical skills expected of a graduating doctor.
  8. Lim PK, Jinap S, Sanny M, Tan CP, Khatib A
    J Food Sci, 2014 Jan;79(1):T115-21.
    PMID: 24344977 DOI: 10.1111/1750-3841.12250
    The objective of this study was to evaluate the precursors of acrylamide formation in sweet potato (SP) (Ipomoea batatas L. Lam) chips and to determine the effect of different types of vegetable oils (VOs), that is, palm olein, coconut oil, canola oil, and soya bean oil, on acrylamide formation. The reducing sugars and amino acids in the SP slices were analyzed, and the acrylamide concentrations of SP chips were measured. SP chips that were fried in a lower degree of unsaturation oils contained a lower acrylamide concentration (1443 μg/kg), whereas those fried with higher degree of unsaturated oils contained a higher acrylamide concentration (2019 μg/kg). SP roots were found to contain acrylamide precursors, that is, 4.17 mg/g glucose and 5.05 mg/g fructose, and 1.63 mg/g free asparagine. The type of VO and condition used for frying, significantly influenced acrylamide formation. This study clearly indicates that the contribution of lipids in the formation of acrylamide should not be neglected.
  9. Lim TW, Choo KY, Lim RLH, Pui LP, Tan CP, Ho CW
    Heliyon, 2023 Nov;9(11):e21940.
    PMID: 38027851 DOI: 10.1016/j.heliyon.2023.e21940
    Red dragon fruit (RDF) is well-known for its high nutritional content, especially the red pigment betacyanins that possess high antioxidant activity. Natural fermentation is an ancient yet outstanding technique that relies on the autochthonous microbiota from fruits and vegetables surfaces to preserve and improve the nutritional values and quality of the food product. The present study was to evaluate and identify the indigenous microbial community (bacteria and fungi) that are involved in the natural fermentation of RDF. Results revealed a total of twenty bacterial pure cultures and nine fungal pure cultures were successfully isolated from fermented red dragon fruit drink (FRDFD). For the first time, the PCR amplification of 16S rRNA and ITS regions and sequence analysis suggested nine genera of bacteria and three genera of fungi (Aureobasidium pullulans, Clavispora opuntiae, and Talaromyces aurantiacus) present in the FRDFD. Four dominant (≥10 % isolates) bacteria species identified from FRDFD were Klebsiella pneumonia, Brevibacillus parabrevis, Bacillus tequilensis and Bacillus subtilis. The carbohydrate fermentation test showed that all the indigenous microbes identified were able to serve as useful starter culture by fermenting sucrose and glucose, thereby producing acid to lower the pH of FRDFD to around pH 4 for better betacyanins stability. The present study provides a more comprehensive understanding of the indigenous microbial community that serves as the starter culture in the fermentation of RDF. Besides, this study provides a useful guide for future research to be conducted on studying the rare bacterial strains (such as B. tequilensis) identified from the FRDFD for their potential bioactivities and applications in medical treatment and functional foods industries.
  10. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
  11. Cheong KW, Tan CP, Mirhosseini H, Joanne-Kam WY, Sheikh Abdul Hamid N, Osman A, et al.
    Chem Cent J, 2014;8:23.
    PMID: 24708894 DOI: 10.1186/1752-153X-8-23
    BACKGROUND: Perceptions of food products start when flavor compounds are released from foods, transported and appropriate senses in the oral and nose are triggered. However, the long-term stability of flavor compounds in food product has been a major concern in the food industry due to the complex interactions between key food ingredients (e.g., polysaccharides and proteins). Hence, this study was conducted to formulate emulsion-based beverage using natural food emulsifiers and to understand the interactions between emulsion compositions and flavor compounds.

    RESULTS: The influences of modified starch (x 1 ), whey protein isolate (x 2 ), soursop flavor oil (x 3 ) and deionized water (x 4 ) on the equilibrium headspace concentration of soursop volatile flavor compounds were evaluated using a four-component with constrained extreme vertices mixture design. The results indicated that the equilibrium headspace concentration of soursop flavor compounds were significantly (p 

  12. Wang Y, Shi J, Xu YJ, Tan CP, Liu Y
    Food Chem, 2024 Apr 16;438:137400.
    PMID: 38039864 DOI: 10.1016/j.foodchem.2023.137400
    The digestion behavior of lipids plays a crucial role in their nutritional bioaccessibility, which subsequently impacts human health. This study aims to investigate potential variations in lipid digestion profiles among individuals of different ages, considering the distinct physiological functions of the gastrointestinal tract in infants, aging populations, and healthy young adults. The digestion fates of high oleic peanut oil (HOPO), sunflower oil (SO), and linseed oil (LINO) were investigated using in vitro digestion models representing infants, adults, and elders. Comparatively, lipid digestion proved to be more comprehensive in adults, leading to free fatty acid (FFA) levels of 64.53%, 62.32%, and 57.90% for HOPO, SO, and LINO, respectively. Besides, infants demonstrated propensity to selectively release FFAs with shorter chain lengths and higher saturation levels during the digestion. In addition, in the gastric phase, particle sizes among the elderly were consistently larger than those observed in infants and adults, despite adults generating approximately 15% FFAs within the stomach. In summary, this study enhances our fundamental comprehension of how lipids with varying degrees of unsaturation undergo digestion in diverse age groups.
  13. Niaz A, Adnan A, Bashir R, Mumtaz MW, Raza SA, Rashid U, et al.
    Plants (Basel), 2021 Jun 02;10(6).
    PMID: 34199333 DOI: 10.3390/plants10061128
    The Tamarix dioica (T. dioica) is widely used medicinal plant to cure many chronic ailments. T. dioica is being used to manage diabetes mellitus in traditional medicinal system; however, very little scientific evidence is available on this plant in this context. The current study involves the fractionation of crude methanolic extract of T. dioica using n-hexane, ethyl acetate, chloroform, and n-butanol. The screening for antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay was carried out. The in vitro antidiabetic potential was assessed by measuring α-glucosidase inhibition. Total phenolic and flavonoid contents were also determined for each fraction. The metabolites were identified using highly sensitive and emerging 1H-NMR technique. The results revealed the ethyl acetate fraction as the most potent with DPPH scavenging activity of 84.44 ± 0.21% and α-glucosidase inhibition with IC50 value of 122.81 ± 2.05 µg/mL. The total phenolic and flavonoid content values of 205.45 ± 1.36 mg gallic acid equivalent per gram dried extract and 156.85 ± 1.33 mg quercetin equivalent per gram dried extract were obtained for ethyl acetate fraction. The bucketing of 1H-NMR spectra identified 22 metabolites including some pharmacologically important like tamarixetin, tamaridone, quercetin, rutin, apigenin, catechin, kaempferol, myricetin and isorhamnetin. Leucine, lysine, glutamic acid, aspartic acid, serine, and tyrosine were the major amino acids identified in ethyl acetate fraction. The molecular docking analysis provided significant information on the binding affinity among secondary metabolites and α-glucosidase. These metabolites were most probably responsible for the antioxidant activity and α-glucosidase inhibitory potential of ethyl acetate fraction. The study ascertained the ethnomedicinal use of T. dioica to manage diabetes mellitus and may be a helpful lead towards naturopathic mode for anti-hyperglycemia.
  14. Ji Y, Lan D, Wang W, Goh KM, Tan CP, Wang Y
    Foods, 2022 Dec 16;11(24).
    PMID: 36553815 DOI: 10.3390/foods11244073
    With the prevalence of edible diacylglycerol (DAG) oil, which is beneficial to human, the generation of 3-monochloropropanediol esters (3-MCPDE) and glycidyl esters (GE) as well as the stability of physical properties during heat-induced processing still need to be explored. In this study, the experiment used olive-based edible oil with different contents of DAG (40, 60, and 80%) to make crackers and fry chicken. They were heated at 160 and 180 °C to determine the changes in 3-MCPDE and GE, the crackers’ hardness and gumminess, and the physical properties of the oil. During baking and frying, 3-MCPDE decreased, while the content of GE slightly increased with the prolonged heating duration. Finally, 3-MCPDE and GE were lower than 1.25 mg/kg and 1.00 mg/kg, respectively. The AV increased proportionally as duration increased and POV was below 0.30 g/100 g. In general, the changes in 3-MCPDE and GE were related to the heating temperature and duration, and not significantly (p > 0.05) related to the content of DAG.
  15. Mohammed NK, Abd Manap MY, Tan CP, Muhialdin BJ, Alhelli AM, Meor Hussin AS
    PMID: 27642353 DOI: 10.1155/2016/6273817
    The Nigella sativa L. popularly referred to as black seeds are widely used as a form of traditional nutrition and medicine. N. sativa seeds were used for the extraction of their oil by way of supercritical fluid extraction (SFE) and cold press (CP) to determine the physicochemical properties, antioxidant activity, and thermal behavior. The GC-MS results showed the primary constituents in the Nigella sativa oil (NSO) were Caryophyllene (17.47%) followed by thymoquinone (TQ) (11.80%), 1,4-Cyclohexadiene (7.17%), longifolene (3.5%), and carvacrol (1.82%). The concentration of TQ was found to be 6.63 mg/mL for oil extracted using SFE and 1.56 mg/mL for oil extracted by CP method. The antioxidant activity measured by DPPH and the IC50 was 1.58 mg/mL and 2.30 mg/mL for SFE oil and cold pressed oil, respectively. The ferric reducing/antioxidant power (FRAP) activity for SFE oil and CP oil was 538.67 mmol/100 mL and 329.00 mmol/100 mL, respectively. The total phenolic content (TPC) of SFE oil was 160.51 mg/100 mL and 94.40 mg/100 mL for CP oil presented as gallic acid equivalents (GAE). This research showed that a high level of natural antioxidants could be derived from NSO extracted by SFE.
  16. Li G, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Funct, 2021 Nov 29;12(23):11732-11746.
    PMID: 34698749 DOI: 10.1039/d1fo01883c
    Pickering water-in-oil (W/O) emulsions were fabricated by using medium-long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (SLNs) and the connection between the characteristics of the SLNs and the colloidal stability of the emulsions was established. Via melt-emulsification and ultrasonication, MLCD-based SLNs with particle sizes of 120-300 nm were obtained with or without other surfactants. The particle size of the SLNs was influenced by the chemical properties of the surfactants, and surfactants decreased the contact angle of SLNs at the oil-water interface. Gelation was observed in SLNs modified by sodium stearoyl lactylate and lecithin, whereas the addition of Tween 20 resulted in a homogeneous SLN solution. The adsorption of surfactants onto SLN surfaces caused the production of higher amounts of α crystals accompanied by delayed crystallization onset which contributed to the reduction of particle size, interfacial tension and oil wetting ability. The W/O emulsions with higher rigidity and physical stability can be obtained by varying surfactant types and by increasing SLN mass ratios to 60%, whereby more SLNs are adsorbed at the droplet surface as a Pickering stabilizer. This study provides useful insights for the development of diacylglycerol-based SLNs and Pickering W/O emulsions which have great potential for food, cosmetic and pharmaceutical applications.
  17. Lian W, Li D, Zhang L, Wang W, Faiza M, Tan CP, et al.
    Enzyme Microb Technol, 2018 Oct;117:56-63.
    PMID: 30037552 DOI: 10.1016/j.enzmictec.2018.06.007
    Conjugated linoleic acid (CLA)-rich triacylglycerols (TAG) have received significant attention owing to their health promoting properties. In this study, CLA-rich TAG were successfully synthesized by an immobilized mutant lipase (MAS1-H108A)-catalyzed esterification of CLA-rich fatty acids and glycerol under vacuum. MAS1-H108A was first immobilized onto ECR1030 resin. Results showed that the lipase/support ratio of 41 mg/g was suitable for the immobilization and the thermostability of immobilized MAS1-H108A was greatly enhanced. Subsequently, the immobilized MAS1-H108A was employed for the synthesis of CLA-rich TAG and 95.21% TAG with 69.19% CLA was obtained under the optimized conditions. The TAG content (95.21%) obtained by immobilized MAS1-H108A is the reported highest value thus far, which was significantly higher than that (9.26%) obtained by Novozym 435 under the same conditions. Although the TAG content comparable to the results obtained in this study could also be obtained by Novozym 435, the used enzyme amount is approximately 5-fold of the immobilized MAS1-H108A. Additionally, the immobilized MAS1-H108A exhibited excellent recyclability during esterification retaining 95.11% of its initial activity after 10 batches. Overall, such immobilized mutant lipase with superior esterification activity and recyclability has the potential to be used in oils and fats industry.
  18. Lim TW, Lim RLH, Pui LP, Tan CP, Ho CW
    Heliyon, 2023 Oct;9(10):e21025.
    PMID: 37876430 DOI: 10.1016/j.heliyon.2023.e21025
    Nowadays, the demand for using healthy natural pigments (betacyanins) in the food industry is increasing. The present study aimed to overcome the circumstances that render the betacyanins instability in the red dragon fruit drink using mild approaches. These included optimised fermentation, incorporation of anionic polysaccharide mixture solution [xanthan gum (XG, 0.30-0.40 %, w/v) and carboxymethyl cellulose (CMC, 0.50-0.90 %, w/v)] and also addition of citric acid (CA, 0.05-0.20 %, w/v). The results of this study showed that the hydrocolloid mixture solution of XG and CMC significantly increased the samples' viscosity, pH and °Brix but reduced the aw, while betacyanins concentration had no significant change. The incorporation of CA at increasing concentration only reduced the samples' pH significantly without affecting the viscosity, aw and °Brix. Among all fermented samples, Formulation 3E (0.40 % XG + 0.50 % CMC + 0.20 % CA) had achieved the desired commercial reference viscosity while also successfully minimised betacyanins degradation from 60.18 % to 14.72 %, had the best pH stability and no significant change in viscosity, aw and °Brix values after 4-week storage at 25 °C. The fermented red dragon fruit drink with betacyanins stabilised by Formulation 3E can be produced and served as an independent functional drink product and as a stable, functional ingredient (natural colourant) for the food industry.
  19. Han W, Chai X, Zaaboul F, Sun Y, Tan CP, Liu Y
    Food Chem, 2024 Mar 01;435:137584.
    PMID: 37774617 DOI: 10.1016/j.foodchem.2023.137584
    This study investigates the impact of various chain lengths of hydrophilic polyglycerol fatty acid esters (HPGEs), namely SWA-10D, M-7D and M-10D on protein interactions and their influence on the surface morphology and interfacial properties of low-fat aerated emulsions under different pressures conditions. M-7D and M-10D samples exhibited larger particle sizes, higher ζ-potential and rougher surface compared to SWA-10D sample at 1 % concentration of HPGEs. Consequently, M-7D and M-10D samples demonstrated lower values of G', G'', and higher values tan δ at the oil-water interface as pressure increased, thereby promoting the formation of less viscoelastic structures. M-7D sample, characterized by lower content of α-helix structures, resulted in an observable redshift in the NH and CO groups of the protein. Molecular docking analysis affirmed that M-7D sample exhibited a lower absolute binding energy value, indicating stronger interaction with the protein compared to other samples, ultimately contributing to the unstable interfacial membrane formed.
  20. Choo KY, Ong YY, Lim RLH, Tan CP, Ho CW
    Food Sci Biotechnol, 2019 Aug;28(4):1163-1169.
    PMID: 31275716 DOI: 10.1007/s10068-018-00550-z
    Betacyanins are bioactive dietary phytochemicals which can be found in red dragon fruit (RDF). Therefore, the bioaccessibility of betacyanins that present in fermented red dragon fruit drink (RDFD) and pressed red dragon fruit juice (RDFJ) was accessed in simulated gastric and intestinal digestion. Results disclosed that betacyanins from RDFD and RDFJ suffered minor loss (
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links