Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Mohamed MS, Tan JS, Mohamad R, Mokhtar MN, Ariff AB
    ScientificWorldJournal, 2013;2013:948940.
    PMID: 24109209 DOI: 10.1155/2013/948940
    Mixotrophic metabolism was evaluated as an option to augment the growth and lipid production of marine microalga Tetraselmis sp. FTC 209. In this study, a five-level three-factor central composite design (CCD) was implemented in order to enrich the W-30 algal growth medium. Response surface methodology (RSM) was employed to model the effect of three medium variables, that is, glucose (organic C source), NaNO3 (primary N source), and yeast extract (supplementary N, amino acids, and vitamins) on biomass concentration, X(max), and lipid yield, P(max)/X(max). RSM capability was also weighed against an artificial neural network (ANN) approach for predicting a composition that would result in maximum lipid productivity, Pr(lipid). A quadratic regression from RSM and a Levenberg-Marquardt trained ANN network composed of 10 hidden neurons eventually produced comparable results, albeit ANN formulation was observed to yield higher values of response outputs. Finalized glucose (24.05 g/L), NaNO3 (4.70 g/L), and yeast extract (0.93 g/L) concentration, affected an increase of X(max) to 12.38 g/L and lipid a accumulation of 195.77 mg/g dcw. This contributed to a lipid productivity of 173.11 mg/L per day in the course of two-week cultivation.
  2. Tan JS, Ong Kc KC, Rhodes A
    Malays J Pathol, 2016 Aug;38(2):75-82.
    PMID: 27568663 MyJurnal
    Heat shock proteins (HSPs) are a family of evolutionary conserved proteins that work as molecular chaperones for cellular proteins essential for cell viability and growth as well as having numerous cyto-protective roles. They are sub-categorised based on their molecular weights; amongst which some of the most extensively studied are the HSP90 and HSP70 families. Important members of these two families; Heat shock proteins 70 and heat shock proteins 90 (Hsp70/90), are the glucose regulated proteins (GRP). These stress-inducible chaperones possess distinct roles from that of the other HSPs, residing mostly in the endoplasmic reticulum and mitochondria, but they can also be translocated to other cellular locations. Their ability in adapting to stress conditions in the tumour microenvironment suggests novel functions in cancer. GRPs have been implicated in many crucial steps of carcinogenesis to include stabilization of oncogenic proteins, induction of tumour angiogenesis, inhibition of apoptosis and replicative senescence, and promotion of invasion and metastasis.
  3. Tan JS, Abbasiliasi S, Lalung J, Tam YJ, Murugan P, Lee CK
    Prep Biochem Biotechnol, 2021;51(3):260-266.
    PMID: 32876520 DOI: 10.1080/10826068.2020.1808793
    This study aimed at purification of phycocyanin (PC) from Phormidium tergestinum using an aqueous two-phase system (ATPS) comprised of polyethylene glycol (PEG) and salts. The partitioning efficiency of PC in ATPS and the effect of phase composition, pH, crude loading, and neutral salts on purification factor and yield were investigated. Results showed that PC was selectively partitioned toward bottom phase of the system containing potassium phosphate. Under optimum conditions of 20% (w/w) PEG 4000, 10% (w/w) potassium phosphate, 20% (v/v) crude load at pH 7, with addition of 0.5% (w/w) NaCl, PC from P. tergestinum was partially purified up to 5.34-fold with a yield of 87.8%. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that the molecular weight of PC was ∼19 kDa. Results from this study demonstrated ATPS could be used as a potential approach for the purification of PC from P. tergestinum.
  4. Tang HW, Abbasiliasi S, Ng ZJ, Lee YY, Tang TK, Tan JS
    PMID: 34647854 DOI: 10.1080/10826068.2021.1986721
    Enterococcus sp. has been used as starters in food fermentation due to their probiotic and antimicrobial properties in food biopreservation. The antimicrobial properties were mainly contributed by the bacteriocin called enterocin. Hence, the availability of a cost-effective pilot-scale cultivation conditions is a necessity for the production of probiotic bacteria. This study aims to investigate optimization of medium composition using sugarcane molasses as a carbon source using response surface methodology and the potential use of fed-batch cultivation for improvement of the cell viability of Enterococcus faecium CW3801 for the use as a probiotic starter culture. Two feeding strategies (ramp and constant) were applied in fed-batch cultivation for enhancement of the production of E. faecium in a 2-L stirred tank bioreactor using the optimized medium and scaled up to a 15-L bioreactor. Optimized fermentation medium which comprised of 10% (v/v) of molasses and 10 g/L of yeast extract at pH 7 yielded maximum cell viability of 29.4 × 1011 CFU/mL with 3900 AU/mL of bacteriocin-like inhibitory substances (BLIS) activity. In the fed-batch, the cell viability (8.4 × 1013) and dry cell weight (6.34 g/L) reached the highest in optimized medium when the ramp (stepwise) feeding was applied. In scaling up to 15-L bioreactor, the growth of E. faecium was achieved at 2.3 × 1013 CFU/mL with the dry cell weight of 5.28 g/L under the same condition. The BLIS in 15-L bioreactor was 6% higher than the 2-L bioreactor. This study demonstrated that molasses and yeast extract are good feedstock for the growth of E. faecium. The E. faecium, a non-vancomycin resistant enterococcus (VRE) was successfully produced by a fed-batch cultivation approach and scaled up to a 15-L bioreactor using a ramp feeding strategy. Results from this study revealed that the fed-batch cultivation using molasses-based medium has industrial potential for the production of probiotics.
  5. Ng ZJ, Abbasiliasi S, Yew Joon T, Ng HS, Phapugrangkul P, Tan JS
    Prep Biochem Biotechnol, 2023;53(7):872-879.
    PMID: 36594706 DOI: 10.1080/10826068.2022.2158468
    In this work, porous glass beads grafted with polyethylene glycol (PEG) were used as an adsorbent to purify lipase from Burkholderia metallica in column chromatography. The purification parameters viz. salt stability, types and concentrations of PEG and salt, pH of the binding solution, and flow rate were studied to determine the performance of the purification system in an XK16/20 column. The crude lipase was mixed with different types and concentrations of salts 1-5% (w/w) (sodium citrate, potassium citrate, and sodium acetate) and subjected to the column containing the polymeric glass bead. One-variable-at-a-time experimentation revealed that 20% (w/w) PEG 6000 g/mol impregnated glass beads with a binding solution of 5% sodium citrate at pH 7.7, a flow rate of 1.0 mL/min and extraction time of 10 min resulted in the highest purification factor and recovery yield at 3.67 and 88%, respectively. The purified lipase has 55 ∼ 60 kDa molecular mass. The outcome of the study showed PEG could be applied to modify the inert glass beads into polymeric form, providing a biocompatible and mild separation condition for lipase. Thus, PEG could be successfully applied for the purification of lipase from B. metallica fermentation broth using column chromatography.
  6. Chuah WW, Tan JS, Hazwani Oslan SN, Bothi Raja P
    Prep Biochem Biotechnol, 2024 Apr;54(4):514-525.
    PMID: 37694843 DOI: 10.1080/10826068.2023.2252047
    Lactic acid bacteria (LAB) can produce γ-aminobutyric acid (GABA) with antioxidant properties and sedative effects when it binds to the GABA receptor in the human brain. LAB can also produce bacteriocin-like inhibitory substances (BLIS) with antimicrobial capabilities during carbohydrate fermentation. GABA and BLIS are natural compounds with potential health benefits and food preservation properties. Lactobacillus brevis C23 was co-cultured with three different LABs as inducers, which produced the highest GABA content and BLIS activity. They were cultured in various plant-based media to obtain an edible and better-tasting final product over commercially available media like MRS broth. A coconut-based medium with additives was optimized using response surface methodology (RSM) to increase GABA and BLIS production. The optimized medium for maximum GABA production (3.22 ± 0.01 mg/mL) and BLIS activity (84.40 ± 0.44%) was a 5.5% coconut medium containing 0.23% glucose, 1.44% Tween 20, 0.48% L-glutamic acid, and 0.02% pyridoxine. Due to the presence of GABA, the cell-free supernatant (CFS) as a postbiotic showed higher antioxidant activity than other food preservatives like nisin and potassium sorbate. Finally, microbiological tests on food samples showed that the postbiotic was more effective than other preservatives at combating the growth of LAB, molds and coliform bacteria, making it a possible food preservative.
  7. Ambang T, Tan JS, Ong S, Wong KT, Goh KJ
    PLoS One, 2016;11(9):e0162760.
    PMID: 27611456 DOI: 10.1371/journal.pone.0162760
    Telbivudine, a thymidine nucleoside analog, is a common therapeutic option for chronic hepatitis B infection. While raised serum creatine kinase is common, myopathy associated with telbivudine is rare. Reports on its myopathological features are few and immunohistochemical analyses of inflammatory cell infiltrates have not been previously described. We describe the clinical, myopathological and immunohistochemical features of four patients who developed myopathy after telbivudine therapy for chronic hepatitis B infection. All four patients presented with progressive proximal muscle weakness, elevation of serum creatine kinase and myopathic changes on electromyography. Muscle biopsies showed myofiber degeneration/necrosis, regeneration, and fibers with cytoplasmic bodies and cytochrome c oxidase deficiency. There was minimal inflammation associated with strong sarcolemmal overexpression of class I major histocompatibility complex (MHC class I). Upon withdrawal of telbivudine, muscle weakness improved in all patients and eventually completely resolved in three. In our series, telbivudine-associated myopathy is characterized by necrotizing myopathy which improved on drug withdrawal. Although the occasional loss of cytochrome c oxidase is consistent with mitochondrial toxicity, the overexpression of MHC class I in all patients could suggest an underlying immune-mediated mechanism which may warrant further investigation.
  8. Ling Tan JS, Roberts CJ, Billa N
    Pharm Dev Technol, 2019 Apr;24(4):504-512.
    PMID: 30132723 DOI: 10.1080/10837450.2018.1515225
    This study describes the properties of an amphotericin B-containing mucoadhesive nanostructured lipid carrier (NLC), with the intent to maximize uptake within the gastrointestinal tract. We have reported previously that lipid nanoparticles can significantly improve the oral bioavailability of amphotericin B (AmpB). On the other hand, the aggregation state of AmpB within the NLC has been ascribed to some of the side effects resulting from IV administration. In the undissolved state, AmpB (UAmpB) exhibited the safer monomeric conformation in contrast to AmpB in the dissolved state (DAmpB), which was aggregated. Chitosan-coated NLC (ChiAmpB NLC) presented a slightly slower AmpB release profile as compared to the uncoated formulation, achieving 26.1% release in 5 hours. Furthermore, the ChiAmpB NLC formulation appeared to prevent the expulsion of AmpB upon exposure to simulated gastrointestinal pH media, whereby up to 63.9% of AmpB was retained in the NLC compared to 56.1% in the uncoated formulation. The ChiAmpB NLC demonstrated mucoadhesive properties in pH 5.8 and 6.8. Thus, the ChiAmpB NLC formulation is well-primed for pharmacokinetic studies to investigate whether delayed gastrointestinal transit may be exploited to improve the systemic bioavailability of AmpB, whilst simultaneously addressing the side-effect concerns of AmpB.
  9. Abdul Aziz NFH, Abbasiliasi S, Abu Zarin M, Ng HS, Lan C, Tan JS
    PeerJ, 2021;9:e11920.
    PMID: 34963820 DOI: 10.7717/peerj.11920
    Background: Current advances in biotechnology have been looked at as alternative approaches towards the limited product recovery due to time- and cost-consuming drawbacks on the conventional purification methods. This study aimed to purify bovine serum albumin (BSA) as an exemplary target product using an aqueous impregnated resin system (AIRS). This method implies the concept of hydrophobicity of polymer that impregnated into the resins and driven by electrostatic attractions and hydrophilicity of aqueous salt solution to extract the target product.

    Methods: The extraction behaviors of impregnation in terms of stability and adsorption kinetics via protein-aqueous polymer impregnated resin were studied. Impregnation stability was determined by the leaching factor of polyethylene glycol (PEG). The major factors such as PEG molecular weights and concentration, pH of aqueous salt solution, extraction methods (sonication and agitation) and types of adsorbent material and concentration of aqueous salt phase influencing on partitioning of biomolecule were also investigated.

    Results: For impregnation stability, the leaching factor for Amberlite XAD4 did not exceed 1%. The scanning electron microscopy (SEM) image analysis of Amberlite XAD4 attributes the structural changes with impregnation of resins. For adsorption kinetics, Freundlich adsorption isotherm with the highest R2 value (0.95) gives an indication of favorable adsorption process. Performance of AIRS impregnated with 40% (w/w) of PEG 2000 was found better than aqueous-two phase system (ATPS) by yielding the highest recovery of BSA (53.72%). The outcomes of this study propound the scope for the application of AIRS in purification of biomolecules.

  10. Tan JS, Ambang T, Ahmad-Annuar A, Rajahram GS, Wong KT, Goh KJ
    Muscle Nerve, 2016 May;53(5):822-826.
    PMID: 26789281 DOI: 10.1002/mus.25037
    Choline acetyltransferase (CHAT) gene mutations cause a rare presynaptic congenital myasthenic syndrome due to impaired acetylcholine resynthesis.
  11. Chin ZW, Arumugam K, Ashari SE, Faizal Wong FW, Tan JS, Ariff AB, et al.
    Molecules, 2020 Jul 28;25(15).
    PMID: 32731437 DOI: 10.3390/molecules25153416
    The biosynthesis of calcium carbonate (CaCO3) minerals through a metabolic process known as microbially induced calcium carbonate precipitation (MICP) between diverse microorganisms, and organic/inorganic compounds within their immediate microenvironment, gives rise to a cementitious biomaterial that may emerge as a promissory alternative to conventional cement. Among photosynthetic microalgae, Chlorella vulgaris has been identified as one of the species capable of undergoing such activity in nature. In this study, response surface technique was employed to ascertain the optimum condition for the enhancement of biomass and CaCO3 precipitation of C. vulgaris when cultured in Blue-Green (BG)-11 aquaculture medium. Preliminary screening via Plackett-Burman Design showed that sodium nitrate (NaNO3), sodium acetate, and urea have a significant effect on both target responses (p < 0.05). Further refinement was conducted using Box-Behnken Design based on these three factors. The highest production of 1.517 g/L C. vulgaris biomass and 1.143 g/L of CaCO3 precipitates was achieved with a final recipe comprising of 8.74 mM of NaNO3, 61.40 mM of sodium acetate and 0.143 g/L of urea, respectively. Moreover, polymorphism analyses on the collected minerals through morphological examination via scanning electron microscopy and crystallographic elucidation by X-ray diffraction indicated to predominantly calcite crystalline structure.
  12. Norizan NABM, Halim M, Tan JS, Abbasiliasi S, Mat Sahri M, Othman F, et al.
    Molecules, 2020 Jul 31;25(15).
    PMID: 32752106 DOI: 10.3390/molecules25153516
    Palm kernel cake (PKC) has been largely produced in Malaysia as one of the cheap and abundant agro-waste by-products from the palm oil industry and it contains high fiber (mannan) content. The present study aimed to produce β-mannanase by Bacillus subtilis ATCC11774 via optimization of the medium composition using palm kernel cake as substrate in semi-solid fermentation. The fermentation nutrients such as PKC, peptone, yeast extract, sodium chloride, magnesium sulphate (MgSO2), initial culture pH and temperature were screened using a Plackett-Burman design. The three most significant factors identified, PKC, peptone and NaCl, were further optimized using central composite design (CCD), a response surface methodology (RSM) approach, where yeast extract and MgSO2 were fixed as a constant factor. The maximum β-mannanase activity predicted by CCD under the optimum medium composition of 16.50 g/L PKC, 19.59 g/L peptone, 3.00 g/L yeast extract, 2.72 g/L NaCl and 0.2 g/L MgSO2 was 799 U/mL. The validated β-mannanase activity was 805.12 U/mL, which was close to the predicted β-mannanas activity. As a comparison, commercial media such as nutrient broth, M9 and Luria bertani were used for the production of β-mannanase with activities achieved at 204.16 ± 9.21 U/mL, 50.32 U/mL and 88.90 U/mL, respectively. The optimized PKC fermentation medium was four times higher than nutrient broth. Hence, it could be a potential fermentation substrate for the production of β-mannanase activity by Bacillus subtilis ATCC11774.
  13. Abdul Aziz NFH, Abbasiliasi S, Ng ZJ, Abu Zarin M, Oslan SN, Tan JS, et al.
    Molecules, 2020 Nov 16;25(22).
    PMID: 33207534 DOI: 10.3390/molecules25225332
    Lactobacillus bulgaricus is a LAB strain which is capable of producing bacteriocin substances to inhibit Staphylococcus aureus. The aim of this study was to purify a bacteriocin-like inhibitory substance (BLIS) produced by L. bulgaricus FTDC 1211 using an aqueous impregnated resins system consisting of polyethylene-glycol (PEG) impregnated on Amberlite XAD4. Important parameters influencing on purification of BLIS, such as the molecular weight and concentration of PEG, the concentration and pH of sodium citrate and the concentration of sodium chloride, were optimized using a response surface methodology. Under optimum conditions of 11% (w/w) of PEG 4000 impregnated Amberlite XAD4 resins and 2% (w/w) of sodium citrate at pH 6, the maximum purification factor (3.26) and recovery yield (82.69% ± 0.06) were obtained. These results demonstrate that AIRS could be used as an alternate purification system in the primary recovery step.
  14. Oslan SNH, Tan JS, Oslan SN, Matanjun P, Mokhtar RAM, Shapawi R, et al.
    Molecules, 2021 Oct 27;26(21).
    PMID: 34770879 DOI: 10.3390/molecules26216470
    Haematococcus pluvialis, a green microalga, appears to be a rich source of valuable bioactive compounds, such as astaxanthin, carotenoids, proteins, lutein, and fatty acids (FAs). Astaxanthin has a variety of health benefits and is used in the nutraceutical and pharmaceutical industries. Astaxanthin, for example, preserves the redox state and functional integrity of mitochondria and shows advantages despite a low dietary intake. Because of its antioxidant capacity, astaxanthin has recently piqued the interest of researchers due to its potential pharmacological effects, which include anti-diabetic, anti-inflammatory, and antioxidant activities, as well as neuro-, cardiovascular-, ocular, and skin-protective properties. Astaxanthin is a popular nutritional ingredient and a significant component in animal and aquaculture feed. Extensive studies over the last two decades have established the mechanism by which persistent oxidative stress leads to chronic inflammation, which then mediates the majority of serious diseases. This mini-review provides an overview of contemporary research that makes use of the astaxanthin pigment. This mini-review provides insight into the potential of H. pluvialis as a potent antioxidant in the industry, as well as the broad range of applications for astaxanthin molecules as a potent antioxidant in the industrial sector.
  15. Kee PE, Phang SM, Lan JC, Tan JS, Khoo KS, Chang JS, et al.
    Mol Biotechnol, 2023 Nov 08.
    PMID: 37938536 DOI: 10.1007/s12033-023-00940-7
    Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.
  16. Oslan SNH, Tan JS, Abbasiliasi S, Ziad Sulaiman A, Saad MZ, Halim M, et al.
    Microorganisms, 2020 Oct 24;8(11).
    PMID: 33114463 DOI: 10.3390/microorganisms8111654
    Growth of mutant gdhA Pasteurella multocida B:2 was inhibited by the accumulation of a by-product, namely ammonium in the culture medium during fermentation. The removal of this by-product during the cultivation of mutant gdhA P. multocida B:2 in a 2 L stirred-tank bioreactor integrated with an internal column using cation-exchange adsorption resin for the improvement of cell viability was studied. Different types of bioreactor system (dispersed and internal) with resins were successfully used for ammonium removal at different agitation speeds. The cultivation in a bioreactor integrated with an internal column demonstrated a significant improvement in growth performance of mutant gdhA P. multocida B:2 (1.05 × 1011 cfu/mL), which was 1.6-fold and 8.4-fold as compared to cultivation with dispersed resin (7.2 × 1010 cfu/mL) and cultivation without resin (1.25 × 1010 cfu/mL), respectively. The accumulation of ammonium in culture medium without resin (801 mg/L) was 1.24-fold and 1.37-fold higher than culture with dispersed resin (642.50 mg/L) and culture in the bioreactor integrated with internal adsorption (586.50 mg/L), respectively. Results from this study demonstrated that cultivation in a bioreactor integrated with the internal adsorption column in order to remove ammonium could reduce the inhibitory effect of this by-product and improve the growth performance of mutant gdhA P. multocida B:2.
  17. Jawan R, Abbasiliasi S, Tan JS, Kapri MR, Mustafa S, Halim M, et al.
    Microorganisms, 2021 Mar 12;9(3).
    PMID: 33809201 DOI: 10.3390/microorganisms9030579
    Bacteriocin-like inhibitory substances (BLIS) produced by Lactococcus lactis Gh1 had shown antimicrobial activity against Listeria monocytogenes ATCC 15313. Brain Heart Infusion (BHI) broth is used for the cultivation and enumeration of lactic acid bacteria, but there is a need to improve the current medium composition for enhancement of BLIS production, and one of the approaches is to model the optimization process and identify the most appropriate medium formulation. Response surface methodology (RSM) and artificial neural network (ANN) models were employed in this study. In medium optimization, ANN (R2 = 0.98) methodology provided better estimation point and data fitting as compared to RSM (R2 = 0.79). In ANN, the optimal medium consisted of 35.38 g/L soytone, 16 g/L fructose, 3.25 g/L sodium chloride (NaCl) and 5.40 g/L disodium phosphate (Na2HPO4). BLIS production in optimal medium (717.13 ± 0.76 AU/mL) was about 1.40-fold higher than that obtained in nonoptimised (520.56 ± 3.37 AU/mL) medium. BLIS production was further improved by about 1.18 times higher in 2 L stirred tank bioreactor (787.40 ± 1.30 AU/mL) as compared to that obtained in 250 mL shake flask (665.28 ± 14.22 AU/mL) using the optimised medium.
  18. Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB
    Microorganisms, 2020 Sep 23;8(10).
    PMID: 32977375 DOI: 10.3390/microorganisms8101454
    Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
  19. Mohd Roslan MR, Mohd Kamal NL, Abdul Khalid MF, Mohd Nasir NF, Cheng EM, Beh CY, et al.
    Materials (Basel), 2021 Apr 14;14(8).
    PMID: 33919814 DOI: 10.3390/ma14081960
    Hydroxyapatite (HA) has been widely used as a scaffold in tissue engineering. HA possesses high mechanical stress and exhibits particularly excellent biocompatibility owing to its similarity to natural bone. Nonetheless, this ceramic scaffold has limited applications due to its apparent brittleness. Therefore, this had presented some difficulties when shaping implants out of HA and for sustaining a high mechanical load. Fortunately, these drawbacks can be improved by combining HA with other biomaterials. Starch was heavily considered for biomedical device applications in favor of its low cost, wide availability, and biocompatibility properties that complement HA. This review provides an insight into starch/HA composites used in the fabrication of bone tissue scaffolds and numerous factors that influence the scaffold properties. Moreover, an alternative characterization of scaffolds via dielectric and free space measurement as a potential contactless and nondestructive measurement method is also highlighted.
  20. Koh KK, Tan JS, Nambiar P, Ibrahim N, Mutalik S, Khan Asif M
    J Forensic Leg Med, 2017 May;48:15-21.
    PMID: 28407514 DOI: 10.1016/j.jflm.2017.03.004
    Forensic odontology plays a vital role in the identification and age estimation of unknown deceased individuals. The purpose of this study is to estimate the chronological age from Cone-Beam Computed Tomography (CBCT) images by measuring the buccal alveolar bone level (ABL) to the cemento-enamel junction and to investigate the possibility of employing the age-related structural changes of teeth as studied by Gustafson. In addition, this study will determine the forensic reliability of employing CBCT images as a technique for dental age estimation. A total of 284 CBCT images of Malays and Chinese patients (150 females and 134 males), aged from 20 years and above were selected, measured and stages of age-related changes were recorded using the i-CAT Vision software. Lower first premolars of both left and right side of the jaw were chosen and the characteristics described by Gustafson, namely attrition, secondary dentine formation and periodontal recession were evaluated. Linear regression analysis was performed for the buccal bone level and the R values obtained were 0.85 and 0.82 for left and right side respectively. Gustafson's characteristics were analysed using multiple regression analysis with chronological age as the dependent variable. The results of the analysis showed R values ranged from 0.44 to 0.62. Therefore it can be safely concluded that the buccal bone level highly correlated with the chronological age and is consequently the most suitable age-related characteristic for forensic age estimation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links