Displaying publications 1 - 20 of 140 in total

Abstract:
Sort:
  1. Tan KY, Tan CH, Fung SY, Tan NH
    J Proteomics, 2015 Apr 29;120:105-25.
    PMID: 25748141 DOI: 10.1016/j.jprot.2015.02.012
    Previous studies showed that venoms of the monocled cobra, Naja kaouthia from Thailand and Malaysia are substantially different in their median lethal doses. The intraspecific venom variations of N. kaouthia, however, have not been fully elucidated. Here we investigated the venom proteomes of N. kaouthia from Malaysia (NK-M), Thailand (NK-T) and Vietnam (NK-V) through reverse-phase HPLC, SDS-PAGE and tandem mass spectrometry. The venom proteins comprise 13 toxin families, with three-finger toxins being the most abundant (63-77%) and the most varied (11-18 isoforms) among the three populations. NK-T has the highest content of neurotoxins (50%, predominantly long neurotoxins), followed by NK-V (29%, predominantly weak neurotoxins and some short neurotoxins), while NK-M has the least (18%, some weak neurotoxins but less short and long neurotoxins). On the other hand, cytotoxins constitute the main bulk of toxins in NK-M and NK-V venoms (up to 45% each), but less in NK-T venom (27%). The three venoms show different lethal potencies that generally reflect the proteomic findings. Despite the proteomic variations, the use of Thai monovalent and Neuro polyvalent antivenoms for N. kaouthia envenomation in the three regions is appropriate as the different venoms were neutralized by the antivenoms albeit at different degrees of effectiveness.
  2. Tan CH, Tan KY, Lim SE, Tan NH
    J Proteomics, 2015 Aug 3;126:121-30.
    PMID: 26047715 DOI: 10.1016/j.jprot.2015.05.035
    The venom proteome of Hydrophis schistosus (syn: Enhydrina schistosa) captured in Malaysian waters was investigated using reverse-phase HPLC, SDS-PAGE and high-resolution liquid chromatography-tandem mass spectrometry. The findings revealed a minimalist profile with only 18 venom proteins. These proteins belong to 5 toxin families: three-finger toxin (3FTx), phospholipase A2 (PLA2), cysteine-rich secretory protein (CRISP), snake venom metalloprotease (SVMP) and L-amino acid oxidase (LAAO). The 3FTxs (3 short neurotoxins and 4 long neurotoxins) constitute 70.5% of total venom protein, 55.8% being short neurotoxins and 14.7% long neurotoxins. The PLA2 family consists of four basic (21.4%) and three acidic (6.1%) isoforms. The minor proteins include one CRISP (1.3%), two SVMPs (0.5%) and one LAAO (0.2%). This is the first report of the presence of long neurotoxins, CRISP and LAAO in H. schistosus venom. The neurotoxins and the basic PLA2 are highly lethal in mice with an intravenous median lethal dose of <0.2 μg/g. Cross-neutralization by heterologous elapid antivenoms (Naja kaouthia monovalent antivenom and Neuro polyvalent antivenom) was moderate against the long neurotoxin and basic PLA2, but weak against the short neurotoxin, indicating that the latter is the limiting factor to be overcome for improving the antivenom cross-neutralization efficacy.
  3. Tan CH, Tan KY, Yap MK, Tan NH
    Sci Rep, 2017 02 27;7:43237.
    PMID: 28240232 DOI: 10.1038/srep43237
    Tropidolaemus wagleri (temple pit viper) is a medically important snake in Southeast Asia. It displays distinct sexual dimorphism and prey specificity, however its venomics and inter-sex venom variation have not been thoroughly investigated. Applying reverse-phase HPLC, we demonstrated that the venom profiles were not significantly affected by sex and geographical locality (Peninsular Malaya, insular Penang, insular Sumatra) of the snakes. Essentially, venoms of both sexes share comparable intravenous median lethal dose (LD50) (0.56-0.63 μg/g) and cause neurotoxic envenomation in mice. LCMS/MS identified six waglerin forms as the predominant lethal principles, comprising 38.2% of total venom proteins. Fourteen other toxin-protein families identified include phospholipase A2, serine proteinase, snaclec and metalloproteinase. In mice, HPLC fractions containing these proteins showed insignificant contribution to the overall venom lethality. Besides, the unique elution pattern of approximately 34.5% of non-lethal, low molecular mass proteins (3-5 kDa) on HPLC could be potential biomarker for this primitive crotalid species. Together, the study unveiled the venom proteome of T. wagleri that is atypical among many pit vipers as it comprises abundant neurotoxic peptides (waglerins) but little hemotoxic proteinases. The findings also revealed that the venom is relatively well conserved intraspecifically despite the drastic morphological differences between sexes.
  4. Tan NH, Wong KY, Tan CH
    J Proteomics, 2017 03 22;157:18-32.
    PMID: 28159706 DOI: 10.1016/j.jprot.2017.01.018
    The venom proteome of Naja sputatrix (Javan spitting cobra) was elucidated through reverse-phase HPLC, nano-ESI-LCMS/MS and data mining. A total of 97 distinct protein forms belonging to 14 families were identified. The most abundant proteins are the three-finger toxins (3FTXs, 64.22%) and phospholipase A2 (PLA2, 31.24%), followed by nerve growth factors (1.82%), snake venom metalloproteinase (1.33%) and several proteins of lower abundance (<1%) including a variety of venom enzymes. At subproteome, the 3FTx is dominated by cytotoxins (48.08%), while short neurotoxins (7.89%) predominate over the long neurotoxins (0.48%) among other neurotoxins of lesser toxicity (muscarinic toxin-like proteins, 5.51% and weak neurotoxins, 2.26%). The major SNTX, CTX and PLA2 toxins were isolated with intravenous median lethal doses determined as 0.13, 1.06 and 0.50μg/g in mice, respectively. SABU, the Indonesia manufactured homologous tri-specific antivenom could neutralize the CTX and PLA2 fraction with moderate potency (potency=0.14-0.16mg toxin per ml antivenom). The SNTX, however, was very poorly neutralized with a potency level of 0.034mg/ml, indicating SNTX as the main limiting factor in antivenom neutralization. The finding helps elucidate the inferior efficacy of SABU reported in neutralizing N. sputatrix venom, and supports the call for antivenom improvement.

    BIOLOGICAL SIGNIFICANCE: The Javan spitting cobra, Naja sputatrix is by itself a unique species and should not be confused as the equatorial and the Indochinese spitting cobras. The distinction among the spitting cobras was however unclear prior to the revision of cobra systematics in the mid-90's, and results of some earlier studies are now questionable as to which species was implicated back then. The current study successfully profiled the venom proteome of authenticated N. sputatrix, and showed that the venom is made up of approximately 64% three-finger toxins (including neurotoxins and cytotoxins) and 31% phospholipases A2 by total venom proteins. The findings verified that the paralyzing components in the venom i.e. neurotoxins are predominantly the short-chain subtype (SNTX) far exceeding the long-chain subtype (LNTX) which is more abundant in the venoms of monocled cobra and Indian common cobra. The neurotoxicity of N. sputatrix venom is hence almost exclusively SNTX-driven, and effective neutralization of the SNTX is the key to early reversal of paralysis. Unfortunately, as shown through a toxin-specific assay, the immunological neutralization of the SNTX using the Indonesian antivenom (SABU) was extremely weak, implying that SABU has limited therapeutic efficacy in treating N. sputatrix envenomation clinically. From the practical standpoint, actions need to be taken at all levels from laboratory to production and policy making to ensure that the shortcoming is overcome.

  5. Tang EL, Tan CH, Fung SY, Tan NH
    J Proteomics, 2016 10 04;148:44-56.
    PMID: 27418434 DOI: 10.1016/j.jprot.2016.07.006
    The venom of Malayan pit viper (Calloselasma rhodostoma) is highly toxic but also valuable in drug discovery. However, a comprehensive proteome of the venom that details its toxin composition and abundance is lacking. This study aimed to unravel the venom complexity through a multi-step venomic approach. At least 96 distinct proteins (29 basic, 67 acidic) in 11 families were identified from the venom. The venom consists of mainly snake venom metalloproteinases (SVMP, 41.17% of total venom proteins), within which the P-I (kistomin, 20.4%) and P-II (rhodostoxin, 19.8%) classes predominate. This is followed by C-type lectins (snaclec, 26.3%), snake venom serine protease (SVSP, 14.9%), L-amino acid oxidase (7.0%), phospholipase A2 (4.4%), cysteine-rich secretory protein (2.5%), and five minor toxins (nerve growth factor, neurotrophin, phospholipase B, 5' nucleotidase and phosphodiesterase, totaling 2.6%) not reported in the proteome hitherto. Importantly, all principal hemotoxins unveiled correlate with the syndrome: SVSP ancrod causes venom-induced consumptive coagulopathy, aggravated by thrombocytopenia caused by snaclec rhodocytin, a platelet aggregation inducer, while P-II rhodostoxin mediates hemorrhage, exacerbated by P-I kistomin and snaclec rhodocetin that inhibit platelet plug formation. These toxins exist in multiple isoforms and/or complex subunits, deserving further characterization for the development of an effective, polyspecific regional antivenom.

    BIOLOGICAL SIGNIFICANCE: Advents in proteomics and bioinformatics have vigorously propelled the scientific discoveries of toxins from various lineages of venomous snakes. The Malayan pit viper, Calloselasma rhodostoma, is a medically important species in Southeast Asia as its bite can cause envenomation, while the venom is also a source of bioactive compounds for drug discovery. Detailed profiling of the venom, however, is inadequate possibly due to the complex nature of the venom and technical limitation in separating the constituents into details. Integrating a multi-step fractionation method, this study successfully revealed a comprehensive and quantitative profile of the composition of the venom of this medically important venomous snake. The relative abundance of the various venom proteins is determined in a global profile, providing useful information for understanding the pathogenic roles of the different toxins in C. rhodostoma envenomation. Notably, the principal hemotoxins were identified in great details, including the variety of toxin subunits and isoforms. The findings indicate that these toxins are the principal targets for effective antivenom neutralization, and should be addressed in the production of a pan-regional polyspecific antivenom. In addition, minor toxin components not reported previously in the venom were also detected in this study, enriching the current toxin database for the venomous snakes.

  6. Oh AMF, Tan CH, Ariaranee GC, Quraishi N, Tan NH
    J Proteomics, 2017 07 05;164:1-18.
    PMID: 28476572 DOI: 10.1016/j.jprot.2017.04.018
    The Indian krait (Bungarus caeruleus) is one of the "Big Four" venomous snakes widely distributed in South Asia. The present venomic study reveals that its venom (Sri Lankan origin) is predominated by phospholipases A2 (64.5% of total proteins), in which at least 4.6% are presynaptically-acting β-bungarotoxin A-chains. Three-finger toxins (19.0%) are the second most abundant, comprising 15.6% κ-neurotoxins, the potent postsynaptically-acting long neurotoxins. Comparative chromatography showed that venom samples from Sri Lanka, India and Pakistan did not exhibit significant variation. These venoms exhibited high immunoreactivity toward VINS Indian Polyvalent Antivenom (VPAV). The Pakistani krait venom, however, had a relatively lower degree of binding, consistent with its moderate neutralization by VPAV (potency=0.3mg venom neutralized per ml antivenom) while the Sri Lankan and Indian venoms were more effectively neutralized (potency of 0.44 mg/ml and 0.48 mg/ml, respectively). Importantly, VPAV was able to neutralize the Sri Lankan and Indian venoms to a comparable extent, supporting its use in Sri Lanka especially in the current situation where Sri Lanka-specific antivenom is unavailable against this species. The findings also indicate that the Pakistani B. caeruleus venom is immunologically less comparable and should be incorporated in the production of a pan-regional, polyspecific antivenom.

    BIOLOGICAL SIGNIFICANCE: The Indian krait or blue krait, Bungarus caeruleus, is a highly venomous snake that contributes to the snakebite envenoming problem in South Asia. This is a less aggressive snake species but its accidental bite can cause rapid and severe neurotoxicity, in which the patient may succumb to paralysis, respiratory failure and death within a short frame of time. The proteomic analysis of its venom (sourced from Sri Lanka) unveils its content that well correlates to its envenoming pathophysiology, driven primarily by the abundant presynaptic and postsynaptic neurotoxins (β-bungarotoxins and κ-neurotoxins, respectively). The absence of cytotoxins in the venom proteome also correlates with the lack of local envenoming sign (pain, swelling), and explains why the bite may be insidious until later stage when paralysis sets in. The muscarinic toxin-like proteins in the venom may be the cause of severe abdominal pain that precedes paralysis in many cases, and justifies the need of closely monitoring this symptom in suspected cases. Venom samples from Sri Lanka, India and Pakistan exhibited no remarkable variation in protein profiling and reacted immunologically toward the VINS Indian Polyvalent Antivenom, though to a varying extent. The antivenom is effective in neutralizing the Sri Lankan and Indian venoms, confirming its clinical use in the countries. The antivenom efficacy against the Pakistani venom, however, may be further optimized by incorporating the Pakistani venom in the antivenom production.

  7. Tan CH, Tan KY, Fung SY, Tan NH
    BMC Genomics, 2015;16:687.
    PMID: 26358635 DOI: 10.1186/s12864-015-1828-2
    The king cobra (Ophiophagus hannah) is widely distributed throughout many parts of Asia. This study aims to investigate the complexity of Malaysian Ophiophagus hannah (MOh) venom for a better understanding of king cobra venom variation and its envenoming pathophysiology. The venom gland transcriptome was investigated using the Illumina HiSeq™ platform, while the venom proteome was profiled by 1D-SDS-PAGE-nano-ESI-LCMS/MS.
  8. Tan KY, Tan NH, Tan CH
    Sci Rep, 2018 06 04;8(1):8545.
    PMID: 29867131 DOI: 10.1038/s41598-018-25955-y
    The eastern Russell's viper (Daboia siamensis) causes primarily hemotoxic envenomation. Applying shotgun proteomic approach, the present study unveiled the protein complexity and geographical variation of eastern D. siamensis venoms originated from Guangxi and Taiwan. The snake venoms from the two geographical locales shared comparable expression of major proteins notwithstanding variability in their toxin proteoforms. More than 90% of total venom proteins belong to the toxin families of Kunitz-type serine protease inhibitor, phospholipase A2, C-type lectin/lectin-like protein, serine protease and metalloproteinase. Daboia siamensis Monovalent Antivenom produced in Taiwan (DsMAV-Taiwan) was immunoreactive toward the Guangxi D. siamensis venom, and effectively neutralized the venom lethality at a potency of 1.41 mg venom per ml antivenom. This was corroborated by the antivenom effective neutralization against the venom procoagulant (ED = 0.044 ± 0.002 µl, 2.03 ± 0.12 mg/ml) and hemorrhagic (ED50 = 0.871 ± 0.159 µl, 7.85 ± 3.70 mg/ml) effects. The hetero-specific Chinese pit viper antivenoms i.e. Deinagkistrodon acutus Monovalent Antivenom and Gloydius brevicaudus Monovalent Antivenom showed negligible immunoreactivity and poor neutralization against the Guangxi D. siamensis venom. The findings suggest the need for improving treatment of D. siamensis envenomation in the region through the production and the use of appropriate antivenom.
  9. Tan CH, Wong KY, Tan KY, Tan NH
    J Proteomics, 2017 08 23;166:48-58.
    PMID: 28688916 DOI: 10.1016/j.jprot.2017.07.002
    The venom proteome of Laticauda colubrina (Bali, Indonesia) was elucidated by nano-ESI-LCMS/MS of the venom reverse-phase HPLC fractions. Altogether 31 distinct forms of proteins were identified and clustered into three toxin families: three-finger toxin (3FTX, 66.12% of total venom proteins), phospholipase A2 (PLA2, 33.26%) and cysteine-rich secretory protein (CRiSP, 0.05%). The 3FTX were α-neurotoxins (five long neurotoxins, LNTX, 48.87%; two short neurotoxins, SNTX, 16.94%) and a trace amount of two cytotoxins (CTX, 0.31%). PLA2 were present with a large diversity of homologues (≥20 forms), however none was annotated to the lethal proteoform reported previously. The venom is highly lethal in mice (LD50=0.10μg/g) and this is driven primarily by the SNTX and LNTX (LD50=0.05-0.13μg/g), since the PLA2 proteins were non-lethal up to 2μg/g (20-time the venom LD50). The SNTX and LNTX were effectively cross-neutralized by the heterologous Sea Snake Antivenom (SSAV, Australian product) (potency=0.27mg toxin per ml antivenom, and 0.40mg/ml, respectively), corroborating the cross-neutralization of the whole venom (potency=1.09mg/ml) and its antigenic immunoreactivity toward SSAV. Furthermore, compared with earlier studies, the present work reveals geographical variation of venom composition for L. colubrina which may have implication for the evolution and conservation of the species.

    BIOLOGICAL SIGNIFICANCE: Laticauda colubrina (yellow-lipped sea krait) is a widely distributed, semi-aquatic venomous snake species. The venom proteome at the level of protein family is unsophisticated and consistent with its restricted prey selection. Nonetheless, the subproteomic findings revealed geographical variability of the venom for this widely distributed species. In contrast to two previous reports, the results for the Balinese L. colubrina venom showed that LNTX Neurotoxin a and Neurotoxin b were co-existent while the PLA2 lethal subtype (PLA-II) was undetected by means of LCMS/MS and by in vivo assay. This is an observable trait of L. colubrina considered divergent from specimens previously studied for the Philippines and the Solomon Islands. The stark geographical variation might be reflective of trophic adaptation following evolutionary arms race between the snake and the prey (eels) in different localities. The preferred trait would likely propagate and remain significant within the geographical population, since the strong behaviour of site fidelity in the species would have minimized gene flow between distant populations. Meanwhile, the in vivo neutralization study verified that the efficacy of the heterologous Sea Snake Antivenom (Australian product) is attributable to the cross-neutralization of SNTX and LNTX, two principal lethal toxins that made up the bulk of L. colubrina venom proteins. The findings also implied that L. colubrina, though could be evolutionarily more related to the terrestrial elapids, has evolved a much streamlined, neurotoxin- and PLA2-predominated venom arsenal, with major antigenicity shared among the true sea snakes and the Australo-Papuan elapids. The findings enrich our current understanding of the complexity of L. colubrina venom and the neutralizing spectrum of antivenom against the principal toxins from this unique elapid lineage.

  10. Oh AMF, Tan CH, Tan KY, Quraishi NH, Tan NH
    J Proteomics, 2019 02 20;193:243-254.
    PMID: 30385415 DOI: 10.1016/j.jprot.2018.10.016
    The proteome of the Pakistani B. sindanus venom was investigated with reverse-phase HPLC and nano-ESI-LCMS/MS analysis. At least 36 distinct proteins belonging to 8 toxin protein families were identified. Three-finger toxin (3FTx), phospholipase A2 (including β-bungarotoxin A-chains) and Kunitz-type serine protease inhibitor (KSPI) were the most abundant, constituting ~95% of total venom proteins. The other toxin proteins of low abundance are snake venom metalloproteinase (SVMP), L-amino acid oxidase (LAAO), acetylcholinesterase (AChE), vespryn and cysteine-rich secretory protein (CRiSP). The venom was highly lethal to mice with LD50 values of 0.04 μg/g (intravenous) and 0.15 μg/g (subcutaneous). The 3FTx proteins are diverse, comprising kappa-neurotoxins, neurotoxin-like protein, non-conventional toxins and muscarinic toxin-like proteins. Kappa-neurotoxins and β-bungarotoxins represent the major toxins that mediate neurotoxicity in B. sindanus envenoming. Alpha-bungarotoxin, commonly present in the Southeast Asian krait venoms, was undetected. The Indian VINS Polyvalent Antivenom (VPAV) was immunoreactive toward the venom, and it moderately cross-neutralized the venom lethality (potency = 0.25 mg/ml). VPAV was able to reverse the neurotoxicity and prevent death in experimentally envenomed mice, but the recovery time was long. The unique toxin composition of B. sindanus venom may be considered in the formulation of a more effective pan-regional, polyspecific antivenom. BIOLOGICAL SIGNIFICANCE: Bungarus sindanus, an endemic krait species distributed mainly in the Sindh Province of Pakistan is a cause of snake envenomation. Its specific antivenom is, however, lacking. The proteomic study of its venom revealed a substantial presence of κ-bungarotoxins and β-bungarotoxins. The toxin profile corroborates the potent neurotoxicity and lethality of the venom tested in vivo. The heterologous Indian VINS polyvalent antivenom (VPAV) cross-reacted with B. sindanus venom and cross-neutralized the venom neurotoxicity and lethality in mice, albeit the efficacy was moderate. The findings imply that B. sindanus and the phylogenetically related B. caeruleus of India share certain venom epitopes. Research should be advanced to improve the efficacy spectrum of a pan-regional polyspecific antivenom.
  11. Wong KY, Tan CH, Tan NH
    Am J Trop Med Hyg, 2016 06 01;94(6):1392-9.
    PMID: 27022154 DOI: 10.4269/ajtmh.15-0871
    Geographical variations of snake venoms can result in suboptimal effectiveness of Indian antivenoms that are currently used in most South Asian countries. This study investigated the toxicity and neutralization profile of the venom and toxins from Pakistani spectacled cobra, Naja naja, using VINS polyvalent antivenom (VPAV, India), Naja kaouthia monovalent antivenom (NKMAV, Thailand), and neuro bivalent antivenom (NBAV, Taiwan). Cation-exchange and reverse-phase high-performance liquid chromatography fractionations followed by toxin identification through liquid chromatography-mass spectrometry (MS)/MS indicated that the venom comprised mainly of postsynaptic neurotoxins (NTXs) (long neurotoxins [LNTXs], 28.3%; short neurotoxins [SNTXs], 8%), cytotoxins (CTXs) (31.2%), and acidic phospholipases A2 (12.3%). NKMAV is the most effective in neutralizing the lethal effect of the venom (potency = 1.1 mg venom/mL) and its LNTX (potency = 0.5 mg toxin/mL), consistent with the high content of LNTX in N. kaouthia venom. VPAV was effective in neutralizing the CTX (potency = 0.4 mg toxin/mL), in agreement with the higher CTX abundance in Indian cobra venom. All the three antivenoms were weak in neutralizing the SNTX (potency = 0.03-0.04 mg toxin/mL), including NBAV that was raised from the SNTX-rich Taiwanese cobra venom. In a challenge-rescue experiment, envenomed mice were prevented from death by a maximal dose of VPAV (intravenous 200 μL) but the recovery from paralysis was slow, indicating the need for higher or repeated doses of VPAV. Our results suggest that optimal neutralization for Pakistani N. naja venom may be achieved by improving the formulation of antivenom production to enhance antivenom immunoreactivity against long and SNTXs.
  12. Tan CH, Fung SY, Yap MK, Leong PK, Liew JL, Tan NH
    J Proteomics, 2016 Jan 30;132:1-12.
    PMID: 26598790 DOI: 10.1016/j.jprot.2015.11.014
    The venom proteome of the Malayan blue coral snake, Calliophis bivirgata flaviceps from west Malaysia was investigated by 1D-SDS-PAGE and shotgun-LCMS/MS. A total of 23 proteins belonging to 11 protein families were detected from the venom proteome. For the toxin proteins, the venom consists mainly of phospholipase A2 (41.1%), cytotoxin (22.6%), SVMPs (18.7%) and vespryns (14.6%). However, in contrast to the venoms of New World coral snakes and most elapids, there was no post-synaptic α-neurotoxin detected. The proteome also revealed a relatively high level of phosphodiesterase (1.3%), which may be associated with the reported high level of adenosine in the venom. Also detected were 5'-nucleotidase (0.3%), hyaluronidase (0.1%) and cysteine-type endopeptide inhibitor (0.6%). Enzymatic studies confirmed the presence of phospholipase A2, phosphodiesterase, 5'-nucleotidase and acetylcholinesterase activities but not l-amino acid oxidase activity. The venom exhibited moderate cytotoxic activity against CRL-2648 fibroblast cell lines (IC50=62.14±0.87 μg/mL) and myotoxicity in mice, presumably due to the action of its cytotoxin or its synergistic action with phospholipase A2. Interestingly, the venom lethality could be cross-neutralized by a neurotoxic bivalent antivenom from Taiwan. Together, the findings provide insights into the composition and functions of the venom of this exotic oriental elapid snake.
  13. Tan KY, Liew JL, Tan NH, Quah ESH, Ismail AK, Tan CH
    J Proteomics, 2019 02 10;192:246-257.
    PMID: 30243938 DOI: 10.1016/j.jprot.2018.09.006
    The Asiatic coral snakes are basal in the phylogeny of coral snakes. Although envenoming by the Asiatic coral snakes is rarely fatal, little is known about their venom properties and variability from the American coral snakes. Integrating reverse-phase high performance liquid chromatography and nano-liquid chromatography-tandem mass spectrometry, we showed that the venom proteome of the Malaysian banded or striped coral snake (Calliophis intestinalis) was composed of mainly phospholipases A2 (PLA2, 43.4%) and three-finger toxins (3FTx, 20.1%). Within 3FTx, the cytotoxins or cardiotoxins (CTX) dominated while the neurotoxins' content was much lower. Its subproteomic details contrasted with the 3FTx profile of most Micrurus sp., illustrating a unique dichotomy of venom phenotype between the Old and the New World coral snakes. Calliophis intestinalis venom proteome was correlated with measured enzymatic activities, and in vivo it was myotoxic but non-lethal to mice, frogs and geckos at high doses (5-10 μg/g). The venom contains species-specific toxins with distinct sequences and antigenicity, and the antibodies raised against PLA2 and CTX of other elapids showed poor binding toward its venom antigens. The unique venom proteome of C. intestinalis unveiled a repertoire of novel toxins, and the toxicity test supported the need for post-bite monitoring of myotoxic complication. SIGNIFICANCE: Malaysian banded or striped coral snake (Calliophis intestinalis) has a cytotoxin (CTX)-predominating venom proteome, a characteristic shared by its congener, the Malayan blue coral snake (Calliophis bivirgata). With little neurotoxins (NTX), it illustrates a CTX/NTX dichotomy of venom phenotype between the Old World and the New World coral snakes. The low toxicity of the venom imply that C. intestinalis bite envenoming can be managed via symptomatic relief of the mild to moderate pain with appropriate analgesia. Systemically, the serum creatine kinase level of patients should be monitored serially for potential complication of myotoxicity. The distinct antigenicity of the venom proteins implies that the empirical use of heterologous antivenom is mostly inappropriate and not recommended.
  14. Yap HY, Chooi YH, Fung SY, Ng ST, Tan CS, Tan NH
    PLoS One, 2015;10(11):e0143549.
    PMID: 26606395 DOI: 10.1371/journal.pone.0143549
    Lignosus rhinocerotis (Cooke) Ryvarden (tiger milk mushroom) has long been known for its nutritional and medicinal benefits among the local communities in Southeast Asia. However, the molecular and genetic basis of its medicinal and nutraceutical properties at transcriptional level have not been investigated. In this study, the transcriptome of L. rhinocerotis sclerotium, the part with medicinal value, was analyzed using high-throughput Illumina HiSeqTM platform with good sequencing quality and alignment results. A total of 3,673, 117, and 59,649 events of alternative splicing, novel transcripts, and SNP variation were found to enrich its current genome database. A large number of transcripts were expressed and involved in the processing of gene information and carbohydrate metabolism. A few highly expressed genes encoding the cysteine-rich cerato-platanin, hydrophobins, and sugar-binding lectins were identified and their possible roles in L. rhinocerotis were discussed. Genes encoding enzymes involved in the biosynthesis of glucans, six gene clusters encoding four terpene synthases and one each of non-ribosomal peptide synthetase and polyketide synthase, and 109 transcribed cytochrome P450 sequences were also identified in the transcriptome. The data from this study forms a valuable foundation for future research in the exploitation of this mushroom in pharmacological and industrial applications.
  15. Yap MK, Tan NH, Sim SM, Fung SY
    Toxicon, 2013 Jun;68:18-23.
    PMID: 23537711 DOI: 10.1016/j.toxicon.2013.02.017
    Existing protocols for antivenom treatment of snake envenomations are generally not well optimized due partly to inadequate knowledge of the toxicokinetics of venoms. The toxicokinetics of Naja sputatrix (Javan spitting cobra) venom was investigated following intravenous and intramuscular injections of the venom into rabbits using double-sandwich ELISA. The toxicokinetics of the venom injected intravenously fitted a two-compartment model. When the venom was injected intramuscularly, the serum concentration-time profile exhibited a more complex absorption and/or distribution pattern. Nevertheless, the terminal half-life, volume of distribution by area and systemic clearance of the venom injected intramuscularly were not significantly different (p > 0.05) from that of the venom injected intravenously. The systemic bioavailability of the venom antigens injected by intramuscular route was 41.7%. Our toxicokinetic finding is consistent with other reports, and may indicate that some cobra venom toxins have high affinity for the tissues at the site of injection. Our results suggest that the intramuscular route of administration doesn't significantly alter the toxicokinetics of N. sputatrix venom although it significantly reduces the systemic bioavailability of the venom.
  16. Tan NH, Yeo KH, Jaafar MI
    Toxicon, 1992 Dec;30(12):1609-20.
    PMID: 1488770
    The specificity and sensitivity of an indirect and two (an 'ordinary' and a 'rapid') double sandwich enzyme-linked immunosorbent assay (ELISA) procedures for the quantitation of Calloselasma rhodostoma (Malayan pit viper) venom were examined. The three assays were equally sensitive and the accuracy of the assays was not substantially affected by individual variation in the venom composition. The specificity of the assays was examined against 26 venoms from snakes of the families Viperidae and Elapidae. While the double sandwich ELISA procedures were sufficiently specific to be used in the clinical immunodiagnosis of C. rhodostoma bite in Malaysia, the indirect ELISA procedure exhibited extensive cross-reactivity with other Malaysian pit viper venoms. Attempts were made to improve the specificity of the indirect ELISA procedure for the quantitation of C. rhodostoma venom. A 'low ELISA cross-reactivity' venom fraction (termed VF52) was isolated from C. rhodostoma venom by repeated Sephadex G-100 gel filtration chromatography. The indirect ELISA procedure using antibodies to VF52 as immunoreagent showed an improvement in specificity. The use of the indirect ELISA procedure for the detection of C. rhodostoma antibodies was also examined and the results show that the assay was sufficiently specific to be used for retrospective diagnosis of C. rhodostoma bite in Malaysia, in particular when VF52 was used as the coating antigen.
  17. Tan NH, Abu M, Woo JL, Tahir HM
    Aust N Z J Obstet Gynaecol, 1995 Feb;35(1):42-5.
    PMID: 7771998 DOI: 10.1111/j.1479-828x.1995.tb01828.x
    Transvaginal sonography was performed in 70 patients diagnosed to have placenta praevia by transabdominal sonography. The diagnosis was confirmed either by digital examination in theatre at term or operative finding at delivery. Forty-nine cases (70%) were correctly diagnosed to have placenta praevia by both modes of sonography. Transvaginal sonography ruled out placenta praevia in 12 cases (17%) thought to be placenta praevia by transabdominal ultrasound. Both transabdominal and transvaginal sonography demonstrated 'placental migration' in 4 cases (6%) which were no longer praevia at delivery. Five patients (7%) were erroneously believed to have placenta praevia by both sonographic techniques. Overall, the diagnostic accuracy of transvaginal sonography was 92.8% compared with 75.7% for transabdominal sonography. None of the subjects experienced any exacerbation of bleeding or other complications. The results suggest that transvaginal sonographic localization of the placenta is safe and superior to the transabdominal route.
  18. Fung SY, Tan NH, Liew SH, Sim SM, Aguiyi JC
    Trop Biomed, 2009 Apr;26(1):80-4.
    PMID: 19696731
    Seed of Mucuna pruriens (Velvet beans) has been prescribed by traditional medicine practitioners in Nigeria as a prophylactic oral antisnake remedy. In the present studies, we investigated the protective effects of M. pruriens seed extract (MPE) against histopathological changes induced by intravenous injection of Naja sputatrix (Malayan cobra) venom in rats pretreated with the seed extract. Examination by light microscope revealed that the venom induced histopathological changes in heart and blood vessels in liver, but no effect on brain, lung, kidney and spleen. The induced changes were prevented by pretreatment of the rats with MPE. Our results suggest that MPE pretreatment protects rat heart and liver blood vessels against cobra venom-induced damages.
  19. Tan NH, Fung SY, Sim SM, Marinello E, Guerranti R, Aguiyi JC
    J Ethnopharmacol, 2009 Jun 22;123(2):356-8.
    PMID: 19429384 DOI: 10.1016/j.jep.2009.03.025
    The seed, leaf and root of Mucuna pruriens have been used in traditional medicine for treatments of various diseases. In Nigeria, the seed is used as oral prophylactics for snakebite.
  20. Tan NH, Poh CH, Tan CS
    Toxicon, 1989;27(9):1065-70.
    PMID: 2799837
    Bungarus candidus venom exhibited high hyaluronidase, acetylcholinesterase and phospholipase A activities; low proteinase, 5'-nucleotidase, alkaline phosphomonoesterase and phosphodiesterase activities and moderately high L-amino acid oxidase activity. SP-Sephadex C-50 ion exchange chromatographic fractionation of the venom and Sephadex G-50 chromatography of the major lethal venom fractions indicate that the venom contains at least two highly lethal, basic phospholipases A with LD50 (i.v.) values of 0.02 micrograms/g (F6A) and 0.18 micrograms/g (F4A), respectively; as well as two polypeptide toxins with LD50 (i.v.) values of 0.17 micrograms/g and 0.83 micrograms/g, respectively. The major lethal toxin is the basic lethal phospholipase A, F6A, which accounts for approximately 13% of the venom protein and has a mol. wt of 21,000.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links