Displaying publications 1 - 20 of 38 in total

Abstract:
Sort:
  1. Idris Z, Tan YC, Kandasamy R, Ghani RI, Abdullah JM
    J Neurol Surg A Cent Eur Neurosurg, 2017 Mar;78(2):210-215.
    PMID: 26968147 DOI: 10.1055/s-0035-1571161
    Symptomatic intracranial arachnoid cysts are commonly treated using neuroendoscopy. Cysts located within the posterior fossa may present a greater surgical challenge to the neurosurgeon due to the numerous vital neurovascular structures located within this confined space. Adding neuronavigation during endoscopy helps a neurosurgeon to visualize and utilize both anterior and posterior corridors safely to access and manage these lesions. We present three symptomatic posterior fossa arachnoid cysts that were treated successfully using minimally invasive neuronavigation-guided endoscopic neurosurgery utilizing the anterior transfrontal transaqueductal, anterior transfrontal transtrigonal, and posterior suboccipital infratentorial supracerebellar approaches.
  2. Chan KH, Tharakan J, Pal HK, Khan N, Tan YC
    Malays J Med Sci, 2010 Oct;17(4):36-43.
    PMID: 22135559
    Post-traumatic seizure is a well-known and serious complication of traumatic brain injury (TBI). The incidence and risk factors vary among study populations. Very little data have been published concerning this in the Malaysian population. The aim of this study was to ascertain the risk factors for the development of early post-traumatic seizures among patients with TBI.
  3. David NCE, Juliana H, Chok M, Gan YZ, Tan YC, Nur Adlina MN, et al.
    Med J Malaysia, 2023 Jan;78(1):80-86.
    PMID: 36715196
    INTRODUCTION: The COVID-19 pandemic has reached a phase where many have been infected at least once. Healthcare workers were not spared from being infected. This study aimed to determine the period prevalence of COVID-19 among the paediatric healthcare workers in Negeri Sembilan as the country transitioned into an endemic phase of the pandemic. Additionally, we investigate potential sociodemographic and occupational characteristics associated with SARS-CoV-2 infection among healthcare workers.

    MATERIALS AND METHODS: A cross-sectional study was conducted among the healthcare workers in the paediatric department at three public specialist hospitals in Negeri Sembilan between 15 and 21 April 2022. Data were collected through a self-administered questionnaire.

    RESULTS: Out of the 504 eligible healthcare workers, 493 participated in this study (response rate 97.8%). The overall prevalence of COVID-19 (11 March 2020-15 April 2022) among healthcare workers was 50.9%. The majority (80.1%) were infected during the Omicron wave two months before the survey. Household contacts accounted for 35.9% of infection sources. The proportion of non-doctors in the COVID-19-infected group was significantly higher compared to the non-infected group (74.1% vs 64.0%, p=0.016). The COVID-19-infected group had a higher proportion of schoolgoing children (44.6% vs 30.6%, p=0.001) and children who attended pre-school/sent to the babysitter (49.0% vs 24.4%, p<0.001). There were no significant differences between infection rates among the healthcare workers working in the tertiary hospital and the district hospitals. There were also no significant differences in the proportion of COVID-19- infected doctors and nurses when analysed by seniority.

    CONCLUSION: Our study provided an estimate on the prevalence of COVID-19 among paediatric healthcare workers in Negeri Sembilan and the factors associated with infection, which captures the extent and magnitude of this pandemic on the state's paediatric department. Most infections resulted from household contact, with a higher proportion of infected healthcare workers having young children.

  4. Chai CY, Maran S, Thew HY, Tan YC, Rahman NMANA, Cheng WH, et al.
    Biology (Basel), 2022 Nov 02;11(11).
    PMID: 36358305 DOI: 10.3390/biology11111604
    The Harvey rat sarcoma (HRAS) proto-oncogene belongs to the RAS family and is one of the pathogenic genes that cause cancer. Deleterious nsSNPs might have adverse consequences at the protein level. This study aimed to investigate deleterious nsSNPs in the HRAS gene in predicting structural alterations associated with mutants that disrupt normal protein-protein interactions. Functional and structural analysis was employed in analyzing the HRAS nsSNPs. Putative post-translational modification sites and the changes in protein-protein interactions, which included a variety of signal cascades, were also investigated. Five different bioinformatics tools predicted 33 nsSNPs as "pathogenic" or "harmful". Stability analysis predicted rs1554885139, rs770492627, rs1589792804, rs730880460, rs104894227, rs104894227, and rs121917759 as unstable. Protein-protein interaction analysis revealed that HRAS has a hub connecting three clusters consisting of 11 proteins, and changes in HRAS might cause signal cascades to dissociate. Furthermore, Kaplan-Meier bioinformatics analyses indicated that the HRAS gene deregulation affected the overall survival rate of patients with breast cancer, leading to prognostic significance. Thus, based on these analyses, our study suggests that the reported nsSNPs of HRAS may serve as potential targets for different proteomic studies, diagnoses, and therapeutic interventions focusing on cancer.
  5. Tan IKP, Foong CP, Tan HT, Lim H, Zain NA, Tan YC, et al.
    J Biotechnol, 2020 Apr 10;313:18-28.
    PMID: 32171790 DOI: 10.1016/j.jbiotec.2020.03.006
    The polyhydroxyalkanoate (PHA) producing capability of four bacterial strains isolated from Antarctica was reported in a previous study. This study analyzed the PHA synthase genes and the PHA-associated gene clusters from the two antarctic Pseudomonas isolates (UMAB-08 and UMAB-40) and the two antarctic Janthinobacterium isolates (UMAB-56 and UMAB-60) through whole-genome sequence analysis. The Pseudomonas isolates were found to carry PHA synthase genes which fall into two different PHA gene clusters, namely Class I and Class II, which are involved in the biosynthesis of short-chain-length-PHA (SCL-PHA) and medium-chain-length-PHA (MCL-PHA), respectively. On the other hand, the Janthinobacterium isolates carry a Class I and an uncharacterized putative PHA synthase genes. No other gene involved in PHA synthesis was detected in close proximity to the uncharacterized putative PHA synthase gene in the Janthinobacterium isolates, therefore it falls into a separate clade from the ordinary Class I, II, III and IV clades of PHA synthase (PhaC) phylogenetic tree. Multiple sequence alignment showed that the uncharacterized putative PHA synthase gene contains all the highly conserved amino acid residues and the proposed catalytic triad of PHA synthase. PHA biosynthesis and in vitro PhaC enzymatic assay results showed that this uncharacterized putative PHA synthase from Janthinobacterium sp. UMAB-60 is funtional. This report adds new knowledge to the PHA synthase database as we describe scarce information of PHA synthase genes and PHA-associated gene clusters from the antarctic bacterial isolates (extreme and geographically isolated environment) and comparing with those from non-antarctic PHA-producing bacteria.
  6. Sim SK, Tan YC, Tee JH, Yusoff AA, Abdullah JM
    Turk Neurosurg, 2015;25(4):617-24.
    PMID: 26242340 DOI: 10.5137/1019-5149.JTN.14035-15.1
    This study evaluated the neuroprotective effect of intrathecally infused paclitaxel in the prevention of motoneuron death and mitochondrial dysfunction following brachial plexus avulsion injury.
  7. Tan YC, Ang CL, Wong MY, Ho CL
    Protein Pept Lett, 2016;23(11):994-1002.
    PMID: 27719656
    Plant defensins are plant defence peptides that have many different biological activities, including antifungal, antimicrobial, and insecticidal activities. A cDNA (EgDFS) encoding defensin was isolated from Elaeis guineensis. The open reading frame of EgDFS contained 231 nucleotides encoding a 71-amino acid protein with a predicted molecular weight at 8.69 kDa, and a potential signal peptide. The eight highly conserved cysteine sites in plant defensins were also conserved in EgDFS. The EgDFS sequence lacking 30 amino acid residues at its N-terminus (EgDFSm) was cloned into Escherichia coli BL21 (DE3) pLysS and successfully expressed as a soluble recombinant protein. The recombinant EgDFSm was found to be a thermal stable peptide which demonstrated inhibitory activity against the growth of G. boninense possibly by inhibiting starch assimilation. The role of EgDFSm in oil palm defence system against the infection of pathogen G. boninense was discussed.
  8. Ho CL, Tan YC
    Phytochemistry, 2015 Jun;114:168-77.
    PMID: 25457484 DOI: 10.1016/j.phytochem.2014.10.016
    Basal stem rot (BSR) of oil palm roots is due to the invasion of fungal mycelia of Ganoderma species which spreads to the bole of the stem. In addition to root contact, BSR can also spread by airborne basidiospores. These fungi are able to break down cell wall components including lignin. BSR not only decreases oil yield, it also causes the stands to collapse thus causing severe economic loss to the oil palm industry. The transmission and mode of action of Ganoderma, its interactions with oil palm as a hemibiotroph, and the molecular defence responses of oil palm to the infection of Ganoderma boninense in BSR are reviewed, based on the transcript profiles of infected oil palms. The knowledge gaps that need to be filled in oil palm-Ganoderma molecular interactions i.e. the associations of hypersensitive reaction (HR)-induced cell death and reactive oxygen species (ROS) kinetics to the susceptibility of oil palm to Ganoderma spp., the interactions of phytohormones (salicylate, jasmonate and ethylene) at early and late stages of BSR, and cell wall strengthening through increased production of guaiacyl (G)-type lignin, are also discussed.
  9. Asghar A, Tan YC, Shahid M, Yow YY, Lahiri C
    Front Microbiol, 2021;12:653562.
    PMID: 34276590 DOI: 10.3389/fmicb.2021.653562
    With a continuous threat of antimicrobial resistance on human health worldwide, efforts for new alternatives are ongoing for the management of bacterial infectious diseases. Natural products of land and sea, being conceived to be having fewer side effects, pose themselves as a welcome relief. In this respect, we have taken a scaffolded approach to unearthing the almost unexplored chemical constituents of Malaysian red seaweed, Gracilaria edulis. Essentially, a preliminary evaluation of the ethyl acetate and acetone solvent extracts, among a series of six such, revealed potential antibacterial activity against six MDR species namely, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella enterica, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, and Bacillus subtilis. Detailed analyses of the inlying chemical constituents, through LC-MS and GC-MS chromatographic separation, revealed a library of metabolic compounds. These were led for further virtual screening against selected key role playing proteins in the virulence of the aforesaid bacteria. To this end, detailed predictive pharmacological analyses added up to reinforce Eplerenone as a natural alternative from the plethora of plausible bioactives. Our work adds the ongoing effort to re-discover and repurpose biochemical compounds to combat the antimicrobial resistance offered by the Gram-positive and the -negative bacterial species.
  10. Mohan A, Munusamy C, Tan YC, Muthuvelu S, Hashim R, Chien SL, et al.
    BMC Infect Dis, 2019 Apr 18;19(1):330.
    PMID: 30999894 DOI: 10.1186/s12879-019-3963-x
    BACKGROUND: Invasive Salmonella infections result in significant morbidity and mortality in developing countries. In Asia, typhoid and paratyphoid fever are reported to be the major invasive Salmonella infections, while invasive non-typhoidal Salmonella (iNTS) infections are believed to be uncommon. Data from Sarawak, in Malaysian Borneo, are limited.

    METHODS: A retrospective study identifying all children aged

  11. Ahmad FU, Sattar MA, Rathore HA, Tan YC, Akhtar S, Jin OH, et al.
    Ren Fail, 2014 May;36(4):598-605.
    PMID: 24502512 DOI: 10.3109/0886022X.2014.882218
    Oxidative stress and suppressed H2S production lead to increased renal vascular resistance, disturbed glomerular hemodynamics, and abnormal renal sodium and water handling, contribute to the pathogenesis and maintenance of essential hypertension in man and the spontaneously hypertensive rat. This study investigated the impact of H2S and tempol alone and in combination on blood pressure and renal hemodynamics and excretory functions in the SHR. Groups of WKY rats or SHR (n=6) were treated for 4 weeks either as controls or received NaHS (SHR+NaHS), tempol (SHR+Tempol), or NaHS plus tempol (SHR+NaHS +Tempol). Metabolic studies were performed on days 0, 14, and 28, thereafter animals were anaesthetized to measure renal hemodynamics and plasma oxidative and antioxidant markers. SHR control rats had higher mean arterial blood pressure (140.0 ± 2 vs. 100.0 ± 3 mmHg), lower plasma and urinary H2S, creatinine clearance, urine flow rate and urinary sodium excretion, and oxidative stress compared to WKY (all p<0.05). Treatment either with NaHS or with tempol alone decreased blood pressure and oxidative stress and improved renal hemodynamic and excretory function compared to untreated SHR. Combined NaHS and tempol therapy in SHRs caused larger decreases in blood pressure (∼20-22% vs. ∼11-15% and ∼10-14%), increases in creatinine clearance, urinary sodium excretion and fractional sodium excretion and up-regulated the antioxidant status compared to each agent alone (all p<0.05). These findings demonstrated that H2S and tempol together resulted in greater reductions in blood pressure and normalization of kidney function compared with either compound alone.
  12. Tan KK, Tan YC, Chang LY, Lee KW, Nor'e SS, Yee WY, et al.
    J Infect Dev Ctries, 2017 Jun 01;11(5):420-425.
    PMID: 30943180 DOI: 10.3855/jidc.7598
    INTRODUCTION: Currently available tests have limitations for the identification of Brucella species and strains, and their genetic lineage. The genome sequence of the rpoB gene encoding the β-subunit of DNA-dependent RNA polymerase was investigated for its use in genotyping Brucella melitensis.

    METHODOLOGY: Complete rpoB gene sequences of globally distributed Brucella melitensis strains were analyzed. Single nucleotides polymorphisms (SNPs) of the rpoB gene sequences were identified and used to type Brucella melitensis strains.

    RESULTS: Six DNA polymorphisms were identified, of which two (nucleotides 3201 and 558) were novel. Analysis of the geographical distribution of the strains revealed a spatial clustering pattern with rpoB type 1 representing European and American strains, rpoB type 2 representing European, African, and Asian strains, rpoB type 3 representing Mediterranean strains, and rpoB type 4 representing African (C3201T) and European (C3201T/T558A) strains.

    CONCLUSIONS: We report the discovery of two novel SNPs of rpoB gene that can serve as useful markers for epidemiology and geographical tracking of B. melitensis.

  13. Looi HK, Toh YF, Yew SM, Na SL, Tan YC, Chong PS, et al.
    PeerJ, 2017;5:e2841.
    PMID: 28149676 DOI: 10.7717/peerj.2841
    Corynespora cassiicola is a common plant pathogen that causes leaf spot disease in a broad range of crop, and it heavily affect rubber trees in Malaysia (Hsueh, 2011; Nghia et al., 2008). The isolation of UM 591 from a patient's contact lens indicates the pathogenic potential of this dematiaceous fungus in human. However, the underlying factors that contribute to the opportunistic cross-infection have not been fully studied. We employed genome sequencing and gene homology annotations in attempt to identify these factors in UM 591 using data obtained from publicly available bioinformatics databases. The assembly size of UM 591 genome is 41.8 Mbp, and a total of 13,531 (≥99 bp) genes have been predicted. UM 591 is enriched with genes that encode for glycoside hydrolases, carbohydrate esterases, auxiliary activity enzymes and cell wall degrading enzymes. Virulent genes comprising of CAZymes, peptidases, and hypervirulence-associated cutinases were found to be present in the fungal genome. Comparative analysis result shows that UM 591 possesses higher number of carbohydrate esterases family 10 (CE10) CAZymes compared to other species of fungi in this study, and these enzymes hydrolyses wide range of carbohydrate and non-carbohydrate substrates. Putative melanin, siderophore, ent-kaurene, and lycopene biosynthesis gene clusters are predicted, and these gene clusters denote that UM 591 are capable of protecting itself from the UV and chemical stresses, allowing it to adapt to different environment. Putative sterigmatocystin, HC-toxin, cercosporin, and gliotoxin biosynthesis gene cluster are predicted. This finding have highlighted the necrotrophic and invasive nature of UM 591.
  14. Kuan CS, Cham CY, Singh G, Yew SM, Tan YC, Chong PS, et al.
    PLoS One, 2016;11(8):e0161008.
    PMID: 27570972 DOI: 10.1371/journal.pone.0161008
    Cladophialophora bantiana is a dematiaceous fungus with a predilection for causing central nervous system (CNS) infection manifesting as brain abscess in both immunocompetent and immunocompromised patients. In this paper, we report comprehensive genomic analyses of C. bantiana isolated from the brain abscess of an immunocompetent man, the first reported case in Malaysia and Southeast Asia. The identity of the fungus was determined using combined morphological analysis and multilocus phylogeny. The draft genome sequence of a neurotrophic fungus, C. bantiana UM 956 was generated using Illumina sequencing technology to dissect its genetic fundamental and basic biology. The assembled 37.1 Mb genome encodes 12,155 putative coding genes, of which, 1.01% are predicted transposable elements. Its genomic features support its saprophytic lifestyle, renowned for its versatility in decomposing hemicellulose and pectin components. The C. bantiana UM 956 was also found to carry some important putative genes that engaged in pathogenicity, iron uptake and homeostasis as well as adaptation to various stresses to enable the organism to survive in hostile microenvironment. This wealth of resource will further catalyse more downstream functional studies to provide better understanding on how this fungus can be a successful and persistent pathogen in human.
  15. Kuan CS, Chan CL, Yew SM, Toh YF, Khoo JS, Chong J, et al.
    PLoS One, 2015;10(6):e0131694.
    PMID: 26110649 DOI: 10.1371/journal.pone.0131694
    The outbreak of extensively drug-resistant tuberculosis (XDR-TB) has become an increasing problem in many TB-burdened countries. The underlying drug resistance mechanisms, including the genetic variation favored by selective pressure in the resistant population, are partially understood. Recently, the first case of XDR-TB was reported in Malaysia. However, the detailed genotype family and mechanisms of the formation of multiple drugs resistance are unknown. We sequenced the whole genome of the UM 1072388579 strain with a 2-kb insert-size library and combined with that from previously sequenced 500-bp-insert paired-end reads to produce an improved sequence with maximal sequencing coverage across the genome. In silico spoligotyping and phylogenetic analyses demonstrated that UM 1072388579 strain belongs to an ancestral-like, non-Beijing clade of East Asia lineage. This is supported by the presence of a number of lineage-specific markers, including fadD28, embA, nuoD and pks7. Polymorphism analysis showed that the drug-susceptibility profile is correlated with the pattern of resistance mutations. Mutations in drug-efflux pumps and the cell wall biogenesis pathway such as mmpL, pks and fadD genes may play an important role in survival and adaptation of this strain to its surrounding environment. In this work, fifty-seven putative promoter SNPs were identified. Among them, we identified a novel SNP located at -4 T allele of TetR/acrR promoter as an informative marker to recognize strains of East Asian lineage. Our work indicates that the UM 1072388579 harbors both classical and uncommon SNPs that allow it to escape from inhibition by many antibiotics. This study provides a strong foundation to dissect the biology and underlying resistance mechanisms of the first reported XDR M. tuberculosis in Malaysia.
  16. Tan KK, Tan YC, Chang LY, Lee KW, Nore SS, Yee WY, et al.
    BMC Genomics, 2015;16:93.
    PMID: 25888205 DOI: 10.1186/s12864-015-1294-x
    Brucellosis is an important zoonotic disease that affects both humans and animals. We sequenced the full genome and characterised the genetic diversity of two Brucella melitensis isolates from Malaysia and the Philippines. In addition, we performed a comparative whole-genome single nucleotide polymorphism (SNP) analysis of B. melitensis strains collected from around the world, to investigate the potential origin and the history of the global spread of B. melitensis.
  17. Tan YC, Yeoh KA, Wong MY, Ho CL
    J Plant Physiol, 2013 Nov 01;170(16):1455-60.
    PMID: 23769496 DOI: 10.1016/j.jplph.2013.05.009
    Basal stem rot (BSR) is a major disease of oil palm caused by a pathogenic fungus, Ganoderma boninense. However, the interaction between the host plant and its pathogen is not well characterized. To better understand the response of oil palm to G. boninense, transcript profiles of eleven putative defence-related genes from oil palm were measured by quantitative reverse-transcription (qRT)-PCR in the roots of oil palms treated with G. boninense from 3 to 12 weeks post infection (wpi). These transcripts encode putative Bowman-Birk serine protease inhibitors (EgBBI1 and 2), defensin (EgDFS), dehydrin (EgDHN), early methionine-labeled polypeptides (EgEMLP1 and 2), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), metallothionein-like protein (EgMT), pathogenesis-related-1 protein (EgPRP), and type 2 ribosome-inactivating protein (EgT2RIP). The transcript abundance of EgBBI2 increased in G. boninense-treated roots at 3 and 6wpi compared to those of controls; while the transcript abundance of EgBBI1, EgDFS, EgEMLP1, EgMT, and EgT2RIP increased in G. boninense-treated roots at 6 or 12wpi. Meanwhile, the gene expression of EgDHN was up-regulated at all three time points in G. boninense-treated roots. The expression profiles of the eleven transcripts were also studied in leaf samples upon inoculation of G. boninense and Trichoderma harzianum to identify potential biomarkers for early detection of BSR. Two candidate genes (EgEMLP1 and EgMT) that have different profiles in G. boninense-treated leaves compared to those infected by T. harzianum may have the potential to be developed as biomarkers for early detection of G. boninense infection.
  18. Tan YC, Wong MY, Ho CL
    Plant Physiol Biochem, 2015 Nov;96:296-300.
    PMID: 26322853 DOI: 10.1016/j.plaphy.2015.08.014
    Basal stem rot is one of the major diseases of oil palm (Elaies guineensis Jacq.) caused by pathogenic Ganoderma species. Trichoderma and mycorrhizae were proposed to be able to reduce the disease severity. However, their roles in improving oil palm defence system by possibly inducing defence-related genes in the host are not well characterized. To better understand that, transcript profiles of eleven putative defence-related cDNAs in the roots of oil palm inoculated with Trichoderma harzianum T32 and mycorrhizae at different time points were studied. Transcripts encoding putative Bowman-Birk protease inhibitor (EgBBI2) and defensin (EgDFS) increased more than 2 fold in mycorrhizae-treated roots at 6 weeks post inoculation (wpi) compared to those in controls. Transcripts encoding putative dehydrin (EgDHN), glycine-rich RNA binding protein (EgGRRBP), isoflavone reductase (EgIFR), type 2 ribosome inactivating protein (EgT2RIP), and EgDFS increased in the oil palm roots treated with T. harzianum at 6 and/or 12 wpi compared to those in the controls. Some of these genes were also expressed in oil palm roots treated with Ganoderma boninense. This study provides an insight of some defence-related genes induced by Trichoderma and mycorrhizae, and their roles as potential agents to boost the plant defence system.
  19. Tan YC, Mustangin M, Rosli N, Wan Ahmad Kammal WSE, Md Isa N, Low TY, et al.
    Cryobiology, 2024 Mar;114:104843.
    PMID: 38158171 DOI: 10.1016/j.cryobiol.2023.104843
    Coolant-assisted liquid nitrogen (LN) flash freezing of frozen tissues has been widely adopted to preserve tissue morphology for histopathological annotations in mass spectrometry-based spatial proteomics techniques. However, existing coolants pose health risks upon inhalation and are expensive. To overcome this challenge, we present our pilot study by introducing the EtOH-LN workflow, which demonstrates the feasibility of using 95 % ethanol as a safer and easily accessible alternative to existing coolants for LN-based cryoembedding of frozen tissues. Our study reveals that both the EtOH-LN and LN-only cryoembedding workflows exhibit significantly reduced freezing artifacts compared to cryoembedding in cryostat (p 
  20. Chun-Ern Ng D, Liew CH, Tan KK, Lim HY, Zailanalhuddin NEB, Tan SF, et al.
    Pediatr Int, 2023;65(1):e15690.
    PMID: 38037505 DOI: 10.1111/ped.15690
    BACKGROUND: We describe the epidemiology, clinical characteristics, and outcomes of multisystem inflammatory syndrome in children (MIS-C) among children from Negeri Sembilan, Malaysia.

    METHODS: A retrospective, multicentre, observational study was performed among children ≤15 years old who were hospitalized for MIS-C between January 18, 2021 and June 30, 2023. The incidence of MIS-C was estimated using reported SARS-CoV-2 cases and census population data. Descriptive analyses were used to summarize the clinical presentation and outcomes.

    RESULTS: The study included 53 patients with a median age of 5.7 years (IQR 1.8-8.7 years); 75.5% were males. The overall incidence of MIS-C was approximately 5.9 cases per 1,000,000 person-months. Pediatric intensive care unit (PICU) admission was required for 22 (41.5%) patients. No mortalities were recorded. Children aged 6-12 years were more likely to present with cardiac dysfunction/shock (odds ratio [OR] 5.43, 95% confidence interval [CI] 1.67-17.66), whereas children below 6 years were more likely to present with a Kawasaki disease phenotype (OR 5.50, 95% CI 1.33-22.75). Twenty patients (37.7%) presented with involvement of at least four organ systems, but four patients (7.5%) demonstrated single-organ system involvement.

    CONCLUSION: An age-based variation in the clinical presentation of MIS-C was demonstrated. Our findings suggest MIS-C could manifest in a spectrum, including single-organ involvement. Despite the high requirement for PICU admission, the prognosis of MIS-C was favorable, with no recorded mortalities.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links