Displaying publications 1 - 20 of 88 in total

Abstract:
Sort:
  1. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Feb 13;114(6):061801.
    PMID: 25723204
    A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at √[s]=8  TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7  fb(-1). Events are selected with an electron and muon with opposite charges that both have transverse impact parameter values between 0.02 and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-μ final states. Limits are set on the "displaced supersymmetry" model, with pair production of top squarks decaying into an e-μ final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to cτ=2  cm, excluding masses below 790 GeV at 95% confidence level.
  2. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Feb 6;114(5):051801.
    PMID: 25699433
    A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4  fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W(±)W(±) and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.
  3. Chatrchyan S, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Phys Rev Lett, 2014 Apr 25;112(16):161802.
    PMID: 24815637
    Results are presented of a search for a "natural" supersymmetry scenario with gauge mediated symmetry breaking. It is assumed that only the supersymmetric partners of the top quark (the top squark) and the Higgs boson (Higgsino) are accessible. Events are examined in which there are two photons forming a Higgs boson candidate, and at least two b-quark jets. In 19.7  fb-1 of proton-proton collision data at s=8  TeV, recorded in the CMS experiment, no evidence of a signal is found and lower limits at the 95% confidence level are set, excluding the top squark mass below 360 to 410 GeV, depending on the Higgsino mass.
  4. CMS Collaboration, Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, et al.
    Eur Phys J C Part Fields, 2014 09 26;74(9):3036.
    PMID: 25814912
    Searches for the direct electroweak production of supersymmetric charginos, neutralinos, and sleptons in a variety of signatures with leptons and [Formula: see text], [Formula: see text], and Higgs bosons are presented. Results are based on a sample of proton-proton collision data collected at center-of-mass energy [Formula: see text] with the CMS detector in 2012, corresponding to an integrated luminosity of 19.5 [Formula: see text]. The observed event rates are in agreement with expectations from the standard model. These results probe charginos and neutralinos with masses up to 720 [Formula: see text], and sleptons up to 260 [Formula: see text], depending on the model details.
  5. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Feb 19;116(7):071801.
    PMID: 26943527 DOI: 10.1103/PhysRevLett.116.071801
    A search for narrow resonances in proton-proton collisions at sqrt[s]=13  TeV is presented. The invariant mass distribution of the two leading jets is measured with the CMS detector using a data set corresponding to an integrated luminosity of 2.4  fb^{-1}. The highest observed dijet mass is 6.1 TeV. The distribution is smooth and no evidence for resonant particles is observed. Upper limits at 95% confidence level are set on the production cross section for narrow resonances with masses above 1.5 TeV. When interpreted in the context of specific models, the limits exclude string resonances with masses below 7.0 TeV, scalar diquarks below 6.0 TeV, axigluons and colorons below 5.1 TeV, excited quarks below 5.0 TeV, color-octet scalars below 3.1 TeV, and W^{'} bosons below 2.6 TeV. These results significantly extend previously published limits.
  6. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Jan 22;116(3):032301.
    PMID: 26849587 DOI: 10.1103/PhysRevLett.116.032301
    The production cross sections of the B^{+}, B^{0}, and B_{s}^{0} mesons, and of their charge conjugates, are measured via exclusive hadronic decays in p+Pb collisions at the center-of-mass energy sqrt[s_{NN}]=5.02  TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6  nb^{-1}. The production cross sections are measured in the transverse momentum range between 10 and 60  GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in Pb+Pb collisions.
  7. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Mar 13;114(10):101801.
    PMID: 25815923
    Results are presented from a search for new decaying massive particles whose presence is inferred from an imbalance in transverse momentum and which are produced in association with a single top quark that decays into a bottom quark and two light quarks. The measurement is performed using 19.7  fb^{-1} of data from proton-proton collisions at a center-of-mass energy of 8 TeV, collected with the CMS detector at the CERN LHC. No deviations from the standard model predictions are observed and lower limits are set on the masses of new invisible bosons. In particular, scalar and vector particles, with masses below 330 and 650 GeV, respectively, are excluded at 95% confidence level, thereby substantially extending a previous limit published by the CDF Collaboration.
  8. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2020 Sep 04;125(10):102001.
    PMID: 32955327 DOI: 10.1103/PhysRevLett.125.102001
    The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with p_{T}^{jet}>60  GeV/c and D^{0} mesons with p_{T}^{D}>4  GeV/c in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=5.02  TeV, recorded by the CMS detector at the LHC. The radial distribution of D^{0} mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as to the energy loss and diffusion processes undergone by its parent parton inside the strongly interacting medium produced in Pb-Pb collisions. When compared to Monte Carlo event generators, the radial distribution in pp collisions is found to be well described by pythia, while the slope of the distribution predicted by sherpa is steeper than that of the data. In Pb-Pb collisions, compared to the pp results, the D^{0} meson distribution for 4
  9. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 May 18;120(20):202301.
    PMID: 29864330 DOI: 10.1103/PhysRevLett.120.202301
    The prompt D^{0} meson azimuthal anisotropy coefficients, v_{2} and v_{3}, are measured at midrapidity (|y|<1.0) in Pb-Pb collisions at a center-of-mass energy sqrt[s_{NN}]=5.02  TeV per nucleon pair with data collected by the CMS experiment. The measurement is performed in the transverse momentum (p_{T}) range of 1 to 40  GeV/c, for central and midcentral collisions. The v_{2} coefficient is found to be positive throughout the p_{T} range studied. The first measurement of the prompt D^{0} meson v_{3} coefficient is performed, and values up to 0.07 are observed for p_{T} around 4  GeV/c. Compared to measurements of charged particles, a similar p_{T} dependence, but smaller magnitude for p_{T}<6  GeV/c, is found for prompt D^{0} meson v_{2} and v_{3} coefficients. The results are consistent with the presence of collective motion of charm quarks at low p_{T} and a path length dependence of charm quark energy loss at high p_{T}, thereby providing new constraints on the theoretical description of the interactions between charm quarks and the quark-gluon plasma.
  10. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Dec 14;121(24):241802.
    PMID: 30608761 DOI: 10.1103/PhysRevLett.121.241802
    Three of the most significant measured deviations from standard model predictions, the enhanced decay rate for B→D^{(*)}τν, hints of lepton universality violation in B→K^{(*)}ℓℓ decays, and the anomalous magnetic moment of the muon, can be explained by the existence of leptoquarks (LQs) with large couplings to third-generation quarks and masses at the TeV scale. The existence of these states can be probed at the LHC in high energy proton-proton collisions. A novel search is presented for pair production of LQs coupled to a top quark and a muon using data at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 35.9  fb^{-1}, recorded by the CMS experiment. No deviation from the standard model prediction has been observed and scalar LQs decaying exclusively into tμ are excluded up to masses of 1420 GeV. The results of this search are combined with those from previous searches for LQ decays into tτ and bν, which excluded scalar LQs below masses of 900 and 1080 GeV. Vector LQs are excluded up to masses of 1190 GeV for all possible combinations of branching fractions to tμ, tτ and bν. With this analysis, all relevant couplings of LQs with an electric charge of -1/3 to third-generation quarks are probed for the first time.
  11. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Nov 27;125(22):222001.
    PMID: 33315428 DOI: 10.1103/PhysRevLett.125.222001
    Ultrarelativistic heavy ion collisions recreate in the laboratory the thermodynamical conditions prevailing in the early universe up to 10^{-6}  sec, thereby allowing the study of the quark-gluon plasma (QGP), a state of quantum chromodynamics (QCD) matter with deconfined partons. The top quark, the heaviest elementary particle known, is accessible in nucleus-nucleus collisions at the CERN LHC, and constitutes a novel probe of the QGP. Here, we report the first evidence for the production of top quarks in nucleus-nucleus collisions, using lead-lead collision data at a nucleon-nucleon center-of-mass energy of 5.02 TeV recorded by the CMS experiment. Two methods are used to measure the cross section for top quark pair production (σ_{tt[over ¯]}) via the selection of charged leptons (electrons or muons) and bottom quarks. One method relies on the leptonic information alone, and the second one exploits, in addition, the presence of bottom quarks. The measured cross sections, σ_{tt[over ¯]}=2.54_{-0.74}^{+0.84} and 2.03_{-0.64}^{+0.71}  μb, respectively, are compatible with expectations from scaled proton-proton data and QCD predictions.
  12. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Apr 19;122(15):151802.
    PMID: 31050519 DOI: 10.1103/PhysRevLett.122.151802
    For the first time, a search for the rare decay of the W boson to three charged pions has been performed. Proton-proton collision data recorded by the CMS experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 77.3  fb^{-1}, have been analyzed. No significant excess is observed above the background expectation. An upper limit of 1.01×10^{-6} is set at 95% confidence level on the branching fraction of the W boson to three charged pions. This provides a strong motivation for theoretical calculations of this branching fraction.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Apr 05;122(13):132003.
    PMID: 31012605 DOI: 10.1103/PhysRevLett.122.132003
    The observation of single top quark production in association with a Z boson and a quark (tZq) is reported. Events from proton-proton collisions at a center-of-mass energy of 13 TeV containing three charged leptons (either electrons or muons) and at least two jets are analyzed. The data were collected with the CMS detector in 2016 and 2017 and correspond to an integrated luminosity of 77.4fb^{-1}. The increased integrated luminosity, a multivariate lepton identification, and a redesigned analysis strategy improve significantly the sensitivity of the analysis compared to previous searches for tZq production. The tZq signal is observed with a significance well over 5 standard deviations. The measured tZq production cross section is σ(pp→tZq→tℓ^{+}ℓ^{-}q)=111±13(stat)_{-9}^{+11}(syst)  fb, for dilepton invariant masses above 30 GeV, in agreement with the standard model expectation.
  14. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2020 Aug 07;125(6):061801.
    PMID: 32845700 DOI: 10.1103/PhysRevLett.125.061801
    The first observation of the tt[over ¯]H process in a single Higgs boson decay channel with the full reconstruction of the final state (H→γγ) is presented, with a significance of 6.6 standard deviations (σ). The CP structure of Higgs boson couplings to fermions is measured, resulting in an exclusion of the pure CP-odd structure of the top Yukawa coupling at 3.2σ. The measurements are based on a sample of proton-proton collisions at a center-of-mass energy sqrt[s]=13  TeV collected by the CMS detector at the LHC, corresponding to an integrated luminosity of 137  fb^{-1}. The cross section times branching fraction of the tt[over ¯]H process is measured to be σ_{tt[over ¯]H}B_{γγ}=1.56_{-0.32}^{+0.34}  fb, which is compatible with the standard model prediction of 1.13_{-0.11}^{+0.08}  fb. The fractional contribution of the CP-odd component is measured to be f_{CP}^{Htt}=0.00±0.33.
  15. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2017 Mar 24;118(12):122301.
    PMID: 28388204 DOI: 10.1103/PhysRevLett.118.122301
    Charge-dependent azimuthal particle correlations with respect to the second-order event plane in p-Pb and PbPb collisions at a nucleon-nucleon center-of-mass energy of 5.02 TeV have been studied with the CMS experiment at the LHC. The measurement is performed with a three-particle correlation technique, using two particles with the same or opposite charge within the pseudorapidity range |η|<2.4, and a third particle measured in the hadron forward calorimeters (4.4
  16. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Jun 08;120(23):231801.
    PMID: 29932697 DOI: 10.1103/PhysRevLett.120.231801
    The observation of Higgs boson production in association with a top quark-antiquark pair is reported, based on a combined analysis of proton-proton collision data at center-of-mass energies of sqrt[s]=7, 8, and 13 TeV, corresponding to integrated luminosities of up to 5.1, 19.7, and 35.9  fb^{-1}, respectively. The data were collected with the CMS detector at the CERN LHC. The results of statistically independent searches for Higgs bosons produced in conjunction with a top quark-antiquark pair and decaying to pairs of W bosons, Z bosons, photons, τ leptons, or bottom quark jets are combined to maximize sensitivity. An excess of events is observed, with a significance of 5.2 standard deviations, over the expectation from the background-only hypothesis. The corresponding expected significance from the standard model for a Higgs boson mass of 125.09 GeV is 4.2 standard deviations. The combined best fit signal strength normalized to the standard model prediction is 1.26_{-0.26}^{+0.31}.
  17. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2018 Aug 10;121(6):062002.
    PMID: 30141647 DOI: 10.1103/PhysRevLett.121.062002
    The pseudorapidity distributions of dijets as functions of their average transverse momentum (p_{T}^{ave}) are measured in proton-lead (pPb) and proton-proton (pp) collisions. The data samples were collected by the CMS experiment at the CERN LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. A significant modification of the pPb spectra with respect to the pp spectra is observed in all p_{T}^{ave} intervals investigated. The ratios of the pPb and pp distributions are compared to next-to-leading order perturbative quantum chromodynamics calculations with unbound nucleon and nuclear parton distribution functions (PDFs). These results give the first evidence that the gluon PDF at large Bjorken x in lead ions is strongly suppressed with respect to the PDF in unbound nucleons.
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 06;123(23):231803.
    PMID: 31868480 DOI: 10.1103/PhysRevLett.123.231803
    A search for narrow low-mass resonances decaying to quark-antiquark pairs is presented. The search is based on proton-proton collision events collected at 13 TeV by the CMS detector at the CERN LHC. The data sample corresponds to an integrated luminosity of 35.9  fb^{-1}, recorded in 2016. The search considers the case where the resonance has high transverse momentum due to initial-state radiation of a hard photon. To study this process, the decay products of the resonance are reconstructed as a single large-radius jet with two-pronged substructure. The signal would be identified as a localized excess in the jet invariant mass spectrum. No evidence for such a resonance is observed in the mass range 10 to 125 GeV. Upper limits at the 95% confidence level are set on the coupling strength of resonances decaying to quark pairs. The results obtained with this photon trigger strategy provide the first direct constraints on quark-antiquark resonance masses below 50 GeV obtained at a hadron collider.
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2019 Dec 13;123(24):241801.
    PMID: 31922872 DOI: 10.1103/PhysRevLett.123.241801
    Results are reported from a search for new particles that decay into a photon and two gluons, in events with jets. Novel jet substructure techniques are developed that allow photons to be identified in an environment densely populated with hadrons. The analyzed proton-proton collision data were collected by the CMS experiment at the LHC, in 2016 at sqrt[s]=13  TeV, and correspond to an integrated luminosity of 35.9  fb^{-1}. The spectra of total transverse hadronic energy of candidate events are examined for deviations from the standard model predictions. No statistically significant excess is observed over the expected background. The first cross section limits on new physics processes resulting in such events are set. The results are interpreted as upper limits on the rate of gluino pair production, utilizing a simplified stealth supersymmetry model. The excluded gluino masses extend up to 1.7 TeV, for a neutralino mass of 200 GeV and exceed previous mass constraints set by analyses targeting events with isolated photons.
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2021;81(4):312.
    PMID: 34727148 DOI: 10.1140/epjc/s10052-021-08949-5
    This paper presents new sets of parameters ("tunes") for the underlying-event model of the H E R W I G 7 event generator. These parameters control the description of multiple-parton interactions (MPI) and colour reconnection in H E R W I G 7 , and are obtained from a fit to minimum-bias data collected by the CMS experiment at s = 0.9 , 7, and 13 Te . The tunes are based on the NNPDF 3.1 next-to-next-to-leading-order parton distribution function (PDF) set for the parton shower, and either a leading-order or next-to-next-to-leading-order PDF set for the simulation of MPI and the beam remnants. Predictions utilizing the tunes are produced for event shape observables in electron-positron collisions, and for minimum-bias, inclusive jet, top quark pair, and Z and W boson events in proton-proton collisions, and are compared with data. Each of the new tunes describes the data at a reasonable level, and the tunes using a leading-order PDF for the simulation of MPI provide the best description of the data.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links