Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Hatai K, Kamada T, Lau LM, Kulip J, Phan CS, Vairappan CS
    Biocontrol Sci, 2018;23(1):35-39.
    PMID: 29576593 DOI: 10.4265/bio.23.35
     The antifungal activity of two Bornean medicinal wild gingers Plagiostachys megacarpa and Zingiber phillippsiae were examined against Lagenidium thermophilum. The most active extract was P. megacarpa at concentration of 320 µg/mL inhibiting both hyphal growth and zoospore production of L. thermophilum in 24 h. Toxicity tests were conducted using mud crab (Scylla tranquebarica) larva. Bath treatment of P. megacarpa at concentrations of 320 and 640 µg/mL for 24 h were highly effective against hyphae and zoospores of the strain and it is non-toxic to mud crab larva. Therefore, crude extracts P. megacarpa may be used as alternative treatment for marine Oomycete infection of mud crab.
  2. Vairappan CS
    Biomol. Eng., 2003 Jul;20(4-6):255-9.
    PMID: 12919806
    Red algae genus Laurencia (Rhodomelaceae, Ceramiales) are known to produce a wide range of chemically interesting secondary halogenated metabolites. This investigation delves upon extraction, isolation, structural elucidation and antibacterial activity of inherently available secondary metabolites of Laurencia majuscula Harvey collected from two locations in waters of Sabah, Malaysia. Two major halogenated compounds, identified as elatol (1) and iso-obtusol (2) were isolated. Structures of these compounds were determined from their spectroscopic data such as IR, 1H-NMR, 13C-NMR and optical rotation. Antibacterial bioassay against human pathogenic bacteria was conducted using disc diffusion (Kirby-Bauer) method. Elatol (1) inhibited six species of bacteria, with significant antibacterial activities against Staphylococcus epidermis, Klebsiella pneumonia and Salmonella sp. while iso-obtusol (2) exhibited antibacterial activity against four bacterial species with significant activity against K. pneumonia and Salmonella sp. Elatol (1) showed equal and better antibacterial activity compared with tested commercial antibiotics while iso-obtusol (2) only equaled the potency of commercial antibiotics against K. pneumonia and Salmonella sp. Further tests conducted using dilution method showed both compounds as having bacteriostatic mode of action against the tested bacteria.
  3. Shahpuan MS, Laneng LA, Looi KC, Inaguma Y, Vairappan CS
    Data Brief, 2019 Dec;27:104422.
    PMID: 31660422 DOI: 10.1016/j.dib.2019.104422
    Rehabilitation of degraded forest is being intensified in Borneo, effort by the INIKEA Rehabilitation Project in Luasong (Sabah) has resulted in healthy growth of native timber species to Borneo. Slow growth rate of Dipterocarps has been attributed to presence of biofoulers on its leaves and herbivory. Therefore, an investigation was conducted to document the coverage and distribution of foliicolous lichens on the leaves of five common timber species Dipterocarpus conformis, Dryobalanops lanceolate, Dryobalanops keithii, Shorea ovalis, and Shorea fallax, planted during this project in 2008. Colonization of foliicolous lichen on timber species was seen to exist in two distinct pattern; leaves of genus Shorea showed surface colonization of 28-29%, while genus Dipterocarpus and Drybalanopsis exhibited a lesser coverage of 15-18%. A total of 32 species belonging to nine families were recorded during the course of this study. Lichen diversity was higher on leaves of Dipterocarpus conformis and Shorea ovalis as compared to the other three species. In addition, nine new records of foliicolous lichens were isolated, identified and their descriptions are presented here.
  4. Frank K, Krell FT, Slade EM, Raine EH, Chiew LY, Schmitt T, et al.
    Ecol Lett, 2018 08;21(8):1229-1236.
    PMID: 29938888 DOI: 10.1111/ele.13095
    At the global scale, species diversity is known to strongly increase towards the equator for most taxa. According to theory, a higher resource specificity of consumers facilitates the coexistence of a larger number of species and has been suggested as an explanation for the latitudinal diversity gradient. However, only few studies support the predicted increase in specialisation or even showed opposite results. Surprisingly, analyses for detritivores are still missing. Therefore, we performed an analysis on the degree of trophic specialisation of dung beetles. We summarised 45 studies, covering the resource preferences of a total of 994503 individuals, to calculate the dung specificity in each study region. Our results highlighted a significant (4.3-fold) increase in the diversity of beetles attracted to vertebrate dung towards the equator. However, their resource specificity was low, unrelated to diversity and revealed a highly generalistic use of dung resources that remained similar along the latitudinal gradient.
  5. Wijesinghe WA, Kim EA, Kang MC, Lee WW, Lee HS, Vairappan CS, et al.
    Environ Toxicol Pharmacol, 2014 Jan;37(1):110-7.
    PMID: 24317194 DOI: 10.1016/j.etap.2013.11.006
    5β-Hydroxypalisadin B, a halogenated secondary metabolite isolated from red seaweed Laurencia snackeyi was evaluated for its anti-inflammatory activity in lipopolysaccharide (LPS)-induced zebrafish embryo. Preliminary studies suggested the effective concentrations of the compound as 0.25, 0.5, 1 μg/mL for further in vivo experiments. 5β-Hydroxypalisadin B, exhibited profound protective effect in the zebrafish embryo as confirmed by survival rate, heart beat rate, and yolk sac edema size. The compound acts as an effective agent against reactive oxygen species (ROS) formation induced by LPS and tail cut. Moreover, 5β-hydroxypalisadin B effectively inhibited the LPS-induced nitric oxide (NO) production in zebrafish embryo. All the tested protective effects of 5β-hydroxypalisadin B were comparable to the well-known anti-inflammatory agent dexamethasone. According to the results obtained, 5β-hydroxypalisadin B isolated from red seaweed L. snackeyi could be considered as an effective anti-inflammatory agent which might be further developed as a functional ingredient.
  6. Riutta T, Malhi Y, Kho LK, Marthews TR, Huaraca Huasco W, Khoo M, et al.
    Glob Chang Biol, 2018 07;24(7):2913-2928.
    PMID: 29364562 DOI: 10.1111/gcb.14068
    Tropical forests play a major role in the carbon cycle of the terrestrial biosphere. Recent field studies have provided detailed descriptions of the carbon cycle of mature tropical forests, but logged or secondary forests have received much less attention. Here, we report the first measures of total net primary productivity (NPP) and its allocation along a disturbance gradient from old-growth forests to moderately and heavily logged forests in Malaysian Borneo. We measured the main NPP components (woody, fine root and canopy NPP) in old-growth (n = 6) and logged (n = 5) 1 ha forest plots. Overall, the total NPP did not differ between old-growth and logged forest (13.5 ± 0.5 and 15.7 ± 1.5 Mg C ha-1  year-1 respectively). However, logged forests allocated significantly higher fraction into woody NPP at the expense of the canopy NPP (42% and 48% into woody and canopy NPP, respectively, in old-growth forest vs 66% and 23% in logged forest). When controlling for local stand structure, NPP in logged forest stands was 41% higher, and woody NPP was 150% higher than in old-growth stands with similar basal area, but this was offset by structure effects (higher gap frequency and absence of large trees in logged forest). This pattern was not driven by species turnover: the average woody NPP of all species groups within logged forest (pioneers, nonpioneers, species unique to logged plots and species shared with old-growth plots) was similar. Hence, below a threshold of very heavy disturbance, logged forests can exhibit higher NPP and higher allocation to wood; such shifts in carbon cycling persist for decades after the logging event. Given that the majority of tropical forest biome has experienced some degree of logging, our results demonstrate that logging can cause substantial shifts in carbon production and allocation in tropical forests.
  7. Vairappan CS
    Indian J Exp Biol, 2003 Aug;41(8):837-45.
    PMID: 15248481
    Brown algae of genus Sargassum are known to produce relatively higher amount of alginic acid. Optimal extraction of this algalcolloid for local consumption requires in-depth studies on post-harvest treatment of the algal fronds. Present investigation endeavors to establish the dynamics and inter-relationship of moisture content and bacteria found on the surface of the alga and alginic acid content during post-harvest desiccation of Sargassum stolonifolium Phang et Yoshida. Harvested fronds were subjected to desiccation for 31 days and bacterial dynamics were monitored with relation to moisture content and water activity index (a(w)). There was 85% decrease in moisture content, however, a(w) showed a more gradual decrease. Total bacterial count increased during the first week and attained maximal value on day 7. Thereafter, a drastic decrease was seen until day 14, followed by a gradual decline. Six species of bacteria were isolated and identified, i.e. Azomonas punctata, Azomonas sp., Escherichia coli, Micrococcus sp., Proteus vulgaris and Vibrio alginolyticus. Calculated ratios for increase in alginic acid content and decrease in moisture content were almost the same throughout the desiccation process, implying that extracellular alginase-producing bacteria did not use the alginic acid produced by the algae as its carbon source. It became apparent that drastic decrease in bacterial count after day 7 could not be attributed to salinity, moisture content, a(w) or lack of carbon source for the bacteria. The possible exposure of these bacteria to algal cell sap which is formed due to the rupture of algal cells was seen as the most likely reason for the drop in bacterial population. Scanning electron microscope (SEM) micrograph taken on day 10 of desiccation showed the presence of cracks and localities where bacteria were exposed to algal cell sap. In vitro antibacterial tests were carried out to verify the effect of algal extracts. Separation and purification of crude algal extracts via bioassay guided separation methodology revealed the identity of active compounds (i.e. gylcolipids and free fatty acids) involved in this inherently available antibacterial defense mechanism during algal desiccation.
  8. Ishii T, Kamada T, Vairappan CS
    J Asian Nat Prod Res, 2016 May;18(5):415-22.
    PMID: 26983053 DOI: 10.1080/10286020.2016.1145670
    Three new cembranoid diterpenes, 10-hydroxy-nephthenol acetate (1), 7,8-epoxy-10-hydroxy-nephthenol acetate (2), and 6-acetoxy-7,8-epoxy-10-hydroxy-nephthenol acetate (3), along with a known compound, 6-acetoxy-7,8-epoxy-nephthenol acetate (4), were isolated from the Bornean soft coral Nephthea sp. Antibacterial and anticancer activities were exhibited by compounds 1 and 2 against Staphylococcus aureus (ATCC 6538)/Escherichia coli (ATCC 13311) and Hela/MCF-7, respectively.
  9. Ng SY, Kamada T, Suleiman M, Vairappan CS
    J Asian Nat Prod Res, 2016 Jul;18(7):690-6.
    PMID: 26828126 DOI: 10.1080/10286020.2015.1134503
    A new compound, chandonanol (1), along with four known compounds, chandonanthone (2), iso-chandonanthone (3), anastreptene (4), and (6R,7S)-sesquiphellandrene (5), was isolated from the MeOH extract of Bornean liverwort Chandonanthus hirtellus. The structure of the new metabolite was established by analyses of the spectroscopic data (1D NMR, 2D NMR, HRESIMS, and IR). These compounds were tested for their activity against antibiotic-resistant clinical strains. Chandonanol (1) exhibited potent bactericidal activity against Staphylococcus aureus and Escherichia coli.
  10. Shamsudin KJ, Phan CS, Kulip J, Hatai K, Vairappan CS, Kamada T
    J Asian Nat Prod Res, 2019 May;21(5):435-441.
    PMID: 29502443 DOI: 10.1080/10286020.2018.1440391
    The medicinal plant, Syzygium leucoxylon or commonly known as Obah found in North Borneo was considered as traditional medicine by local committee. Two new phenolics, leucoxenols A (1) and B (2) were isolated and identified as major secondary metabolites from the leaves of S. leucoxylon. Their chemical structures were elucidated based on spectroscopic data such as NMR and HRESIMS. Furthermore, these compounds were active against selected strains of fungi.
  11. Kamada T, Phan CS, Vairappan CS
    J Asian Nat Prod Res, 2019 Mar;21(3):241-247.
    PMID: 29281900 DOI: 10.1080/10286020.2017.1417265
    Two new halogenated nonterpenoids C15-acetogenins, nangallenes A-B (1-2), together with two known halogenated compounds itomanallene A (3) and 2,10-dibromo-3-chloro-α-chamigrene (4), were isolated and identified from the organic extract of the marine red alga Laurencia nangii Masuda collected from the coastal waters in Semporna, Borneo. Their structures were established by means of spectroscopic analysis including IR, high-resolution electrospray ionization mass spectrometry (HRESI-MS), and 1D and 2D NMR techniques. All these metabolites were submitted for the antifungal assay against four species of selected marine fungi. Compounds 1-4 showed potent activity against Haliphthoros sabahensis and Lagenidium thermophilum.
  12. Sakai K, Hassan MA, Vairappan CS, Shirai Y
    J Biosci Bioeng, 2022 Feb 09.
    PMID: 35151536 DOI: 10.1016/j.jbiosc.2022.01.001
    Palm oil is a representative and important biomass, not only as the most edible vegetable oil consumed worldwide, but also as a material for chemicals and biofuels. Despite the potential sustainability of the palm oil industry, it has conventionally emitted excess greenhouse gases, waste materials, and wastewater, brought land use change, thus affecting the natural environment. Therefore, the successful development of a sustainable palm oil industry is a touchstone for promoting the bioeconomy. Here, we first review the concept of the bioeconomy and the positive and negative aspects of the palm oil industry. Then, we consider solutions for introducing a green economy into the palm oil industry, such that it may coexist with biodiversity and environmental conservation toward the Sustainable Development Goals.
  13. Suzuki M, Daitoh M, Vairappan CS, Abe T, Masuda M
    J Nat Prod, 2001 May;64(5):597-602.
    PMID: 11374951
    In connection with our chemotaxonomic studies of Malaysian species of the red algal genus Laurencia, the chemical composition of Laurencia pannosa Zanardini was examined. Two halogenated sesquiterpenoids, named pannosanol (1) and pannosane (2), have been isolated along with a halogenated C15-acetogenin, (3Z)-chlorofucin (3). The structures of these compounds were determined from their spectroscopic data (IR, 1H NMR, 13C NMR, 2D NMR, and MS). Pannosanol and pannosane are novel halometabolites with an unusual rearranged chamigrane framework. Antibacterial activities of these metabolites against marine bacteria are also described.
  14. Mehjabin JJ, Wei L, Petitbois JG, Umezawa T, Matsuda F, Vairappan CS, et al.
    J Nat Prod, 2020 06 26;83(6):1925-1930.
    PMID: 32432877 DOI: 10.1021/acs.jnatprod.0c00164
    Chemical investigation of the organic extract from Moorea bouillonii, collected in Sabah, Malaysia, led to the isolation of three new chlorinated fatty acid amides, columbamides F (1), G (2), and H (3). The planar structures of 1-3 were established by a combination of mass spectrometric and NMR spectroscopic analyses. The absolute configuration of 1 was determined by Marfey's analysis of its hydrolysate and chiral-phase HPLC analysis after conversion and esterification with Ohrui's acid, (1S,2S)-2-(anthracene-2,3-dicarboximido)cyclohexanecarboxylic acid. Compound 1 showed biosurfactant activity by an oil displacement assay. Related known fatty acid amides columbamide D and serinolamide C exhibited biosurfactant activity with critical micelle concentrations of about 0.34 and 0.78 mM, respectively.
  15. Vairappan CS, Ishii T, Lee TK, Suzuki M, Zhaoqi Z
    Mar Drugs, 2010;8(6):1743-9.
    PMID: 20631866 DOI: 10.3390/md8061743
    In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae.
  16. Phan CS, Ng SY, Kim EA, Jeon YJ, Palaniveloo K, Vairappan CS
    Mar Drugs, 2015 May;13(5):3103-15.
    PMID: 25996100 DOI: 10.3390/md13053103
    Two new bicyclogermacrenes, capgermacrenes A (1) and B (2), were isolated with two known compounds, palustrol (3) and litseagermacrane (4), from a population of Bornean soft coral Capnella sp. The structures of these metabolites were elucidated based on spectroscopic data. Compound 1 was found to inhibit the accumulation of the LPS-induced pro-inflammatory IL-1b and NO production by down-regulating the expression of iNOS protein in RAW 264.7 macrophages.
  17. Oguri Y, Watanabe M, Ishikawa T, Kamada T, Vairappan CS, Matsuura H, et al.
    Mar Drugs, 2017 Aug 28;15(9).
    PMID: 28846653 DOI: 10.3390/md15090267
    Six new compounds, omaezol, intricatriol, hachijojimallenes A and B, debromoaplysinal, and 11,12-dihydro-3-hydroxyretinol have been isolated from four collections of Laurencia sp. These structures were determined by MS and NMR analyses. Their antifouling activities were evaluated together with eight previously known compounds isolated from the same samples. In particular, omaezol and hachijojimallene A showed potent activities (EC50 = 0.15-0.23 µg/mL) against larvae of the barnacle Amphibalanus amphitrite.
  18. Kamada T, Kang MC, Phan CS, Zanil II, Jeon YJ, Vairappan CS
    Mar Drugs, 2018 Mar 21;16(4).
    PMID: 29561805 DOI: 10.3390/md16040099
    Soft corals are known to be prolific producers of a wide spectrum of biologically active cembranoids. One new cembranoid, sinularolide F (2), along with three known compounds, cembranolide (1), (E,E,E)-6,10,14-trimethyl-3-methylene-cis-3α,4,5,8,9,12,13,15α-octahydrocyclo tetradeca[β]furan-2(3H)-one (3), and denticulatolide (4), were isolated from the Bornean soft coral Sinularia sp. Compounds 2 and 4 showed potential anti-inflammatory activities against lipopolysaccharide-stimulated RAW 264.7 with IC50 values less than 6.25 µg/mL and anticancer activity against HL60 cell lines. The compounds' mechanisms of action were investigated via the Western blot evaluation of their protein markers. These activities could be attributed to the presence of tertiary methyl at C-8 and the compounds' 3D configurations.
  19. Tin HS, Palaniveloo K, Anilik J, Vickneswaran M, Tashiro Y, Vairappan CS, et al.
    Microb Ecol, 2018 Feb;75(2):459-467.
    PMID: 28779295 DOI: 10.1007/s00248-017-1043-6
    Decline in forest productivity due to forest conversion is defining the Bornean landscape. Responses of bacterial communities due to land-use changes are vital and could define our understanding of ecosystem functions. This study reports the changes in bacterial community structure in organic soil (0-5 cm; O-Horizon) and organic-mineral soil (5-15 cm; A-Horizon) across Maliau Basin Conservation Area old growth forest (MBOG), Fragment E logged forest (FELF) located in Kalabakan Forest Reserve to Benta Wawasan oil palm plantation (BWOP) using two-step PCR amplicon analysis of bacteria DNA on Illumina Miseq next generation sequencing. A total of 30 soil samples yielded 893,752-OTU reads at ≥97% similarity from 5,446,512 good quality sequences. Soil from BWOP plantation showed highest unshared OTUs for organic (49.2%) and organic-mineral (50.9%) soil. MBOG soil showed a drop in unshared OTUs between organic (48.6%) and organic-mineral (33.9%). At phylum level, Proteobacteria dominated MBOG but shifted to Actinobacteria in logged and plantation soil. Present findings also indicated that only FELF exhibited change in bacterial communities along the soil depth, moving from the organic to the organic-mineral layer. Both layers of BWOP plantation soils deviated from other forests' soil in β-diversity analysis. To our knowledge, this is the first report on transitions of bacterial community structures with different soil horizons in the tropical rainforest including Borneo, Sabah. Borneo tropical soils form a large reservoir for soil bacteria and future exploration is needed for fully understanding the diversity structure and their bacterial functional properties.
  20. Thüs H, Wolseley P, Carpenter D, Eggleton P, Reynolds G, Vairappan CS, et al.
    Microorganisms, 2021 Mar 05;9(3).
    PMID: 33807993 DOI: 10.3390/microorganisms9030541
    Many lowland rainforests in Southeast Asia are severely altered by selective logging and there is a need for rapid assessment methods to identify characteristic communities of old growth forests and to monitor restoration success in regenerating forests. We have studied the effect of logging on the diversity and composition of lichen communities on trunks of trees in lowland rainforests of northeast Borneo dominated by Dipterocarpaceae. Using data from field observations and vouchers collected from plots in disturbed and undisturbed forests, we compared a taxonomy-based and a taxon-free method. Vouchers were identified to genus or genus group and assigned to functional groups based on sets of functional traits. Both datasets allowed the detection of significant differences in lichen communities between disturbed and undisturbed forest plots. Bark type diversity and the proportion of large trees, particularly those belonging to the family Dipterocarpaceae, were the main drivers of lichen community structure. Our results confirm the usefulness of a functional groups approach for the rapid assessment of tropical lowland rainforests in Southeast Asia. A high proportion of Dipterocarpaceae trees is revealed as an essential element for the restoration of near natural lichen communities in lowland rainforests of Southeast Asia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links