Displaying all 5 publications

Abstract:
Sort:
  1. Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, et al.
    Nature, 2020 Dec;588(7837):E14.
    PMID: 33204035 DOI: 10.1038/s41586-020-2952-y
    An amendment to this paper has been published and can be accessed via a link at the top of the paper.
  2. Maxwell SL, Cazalis V, Dudley N, Hoffmann M, Rodrigues ASL, Stolton S, et al.
    Nature, 2020 10;586(7828):217-227.
    PMID: 33028996 DOI: 10.1038/s41586-020-2773-z
    Humanity will soon define a new era for nature-one that seeks to transform decades of underwhelming responses to the global biodiversity crisis. Area-based conservation efforts, which include both protected areas and other effective area-based conservation measures, are likely to extend and diversify. However, persistent shortfalls in ecological representation and management effectiveness diminish the potential role of area-based conservation in stemming biodiversity loss. Here we show how the expansion of protected areas by national governments since 2010 has had limited success in increasing the coverage across different elements of biodiversity (ecoregions, 12,056 threatened species, 'Key Biodiversity Areas' and wilderness areas) and ecosystem services (productive fisheries, and carbon services on land and sea). To be more successful after 2020, area-based conservation must contribute more effectively to meeting global biodiversity goals-ranging from preventing extinctions to retaining the most-intact ecosystems-and must better collaborate with the many Indigenous peoples, community groups and private initiatives that are central to the successful conservation of biodiversity. The long-term success of area-based conservation requires parties to the Convention on Biological Diversity to secure adequate financing, plan for climate change and make biodiversity conservation a far stronger part of land, water and sea management policies.
  3. O'Bryan CJ, Garnett ST, Fa JE, Leiper I, Rehbein JA, Fernández-Llamazares Á, et al.
    Conserv Biol, 2021 06;35(3):1002-1008.
    PMID: 32852067 DOI: 10.1111/cobi.13620
    Indigenous Peoples' lands cover over one-quarter of Earth's surface, a significant proportion of which is still free from industrial-level human impacts. As a result, Indigenous Peoples and their lands are crucial for the long-term persistence of Earth's biodiversity and ecosystem services. Yet, information on species composition on these lands globally remains largely unknown. We conducted the first comprehensive analysis of terrestrial mammal composition across mapped Indigenous lands based on data on area of habitat (AOH) for 4460 mammal species assessed by the International Union for Conservation of Nature. We overlaid each species' AOH on a current map of Indigenous lands and found that 2695 species (60% of assessed mammals) had ≥10% of their ranges on Indigenous Peoples' lands and 1009 species (23%) had >50% of their ranges on these lands. For threatened species, 473 (47%) occurred on Indigenous lands with 26% having >50% of their habitat on these lands. We also found that 935 mammal species (131 categorized as threatened) had ≥ 10% of their range on Indigenous Peoples' lands that had low human pressure. Our results show how important Indigenous Peoples' lands are to the successful implementation of conservation and sustainable development agendas worldwide.
  4. Wilson HB, Meijaard E, Venter O, Ancrenaz M, Possingham HP
    PLoS One, 2014;9(7):e102174.
    PMID: 25025134 DOI: 10.1371/journal.pone.0102174
    The Sumatran orangutan is currently listed by the IUCN as critically endangered and the Bornean species as endangered. Unless effective conservation measures are enacted quickly, most orangutan populations without adequate protection face a dire future. Two main strategies are being pursued to conserve orangutans: (i) rehabilitation and reintroduction of ex-captive or displaced individuals; and (ii) protection of their forest habitat to abate threats like deforestation and hunting. These strategies are often mirrored in similar programs to save other valued and endangered mega-fauna. Through GIS analysis, collating data from across the literature, and combining this information within a modelling and decision analysis framework, we analysed which strategy or combination of strategies is the most cost-effective at maintaining wild orangutan populations, and under what conditions. We discovered that neither strategy was optimal under all circumstances but was dependent on the relative cost per orangutan, the timescale of management concern, and the rate of deforestation. Reintroduction, which costs twelve times as much per animal as compared to protection of forest, was only a cost-effective strategy at very short timescales. For time scales longer than 10-20 years, forest protection is the more cost-efficient strategy for maintaining wild orangutan populations. Our analyses showed that a third, rarely utilised strategy is intermediate: introducing sustainable logging practices and protection from hunting in timber production forest. Maximum long-term cost-efficiency is achieved by working in conservation forest. However, habitat protection involves addressing complex conservation issues and conflicting needs at the landscape level. We find a potential resolution in that well-managed production forests could achieve intermediate conservation outcomes. This has broad implications for sustaining biodiversity more generally within an economically productive landscape. Insights from this analysis should provide a better framework to prioritize financial investments, and facilitate improved integration between the organizations that implement these strategies.
  5. Laurance WF, Clements GR, Sloan S, O'Connell CS, Mueller ND, Goosem M, et al.
    Nature, 2014 Sep 11;513(7517):229-32.
    PMID: 25162528 DOI: 10.1038/nature13717
    The number and extent of roads will expand dramatically this century. Globally, at least 25 million kilometres of new roads are anticipated by 2050; a 60% increase in the total length of roads over that in 2010. Nine-tenths of all road construction is expected to occur in developing nations, including many regions that sustain exceptional biodiversity and vital ecosystem services. Roads penetrating into wilderness or frontier areas are a major proximate driver of habitat loss and fragmentation, wildfires, overhunting and other environmental degradation, often with irreversible impacts on ecosystems. Unfortunately, much road proliferation is chaotic or poorly planned, and the rate of expansion is so great that it often overwhelms the capacity of environmental planners and managers. Here we present a global scheme for prioritizing road building. This large-scale zoning plan seeks to limit the environmental costs of road expansion while maximizing its benefits for human development, by helping to increase agricultural production, which is an urgent priority given that global food demand could double by mid-century. Our analysis identifies areas with high environmental values where future road building should be avoided if possible, areas where strategic road improvements could promote agricultural development with relatively modest environmental costs, and 'conflict areas' where road building could have sizeable benefits for agriculture but with serious environmental damage. Our plan provides a template for proactively zoning and prioritizing roads during the most explosive era of road expansion in human history.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links